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Preface

This book has two goals. One goal is to provide a means for those new to
high-energy-density physics to gain a broad foundation from one text. The
second goal is to provide a useful working reference for those in the field.

This book has at least four possible applications in an academic con-
text. It can be used for training in high-energy-density physics, in support
of the growing number of university and laboratory research groups working
in this area. It also can be used by schools with an emphasis on ultrafast
lasers, to provide some introduction to issues present in all laser–target ex-
periments with high-power lasers, and with thorough coverage of the material
in Chap. 11 on relativistic systems. In addition, it could be used by physics,
applied physics, or engineering departments to provide in a single course an
introduction to the basics of fluid mechanics and radiative transfer, with dra-
matic applications. Finally, it could be used by astrophysics departments for
a similar purpose, with the parallel benefit of training the students in the
similarities and differences between laboratory and astrophysical systems.

The notation in this text is deliberately sparse and when possible a given
symbol has only one meaning. A definition of the symbols used is given in
Appendix A. In various cases, additional subscripts are added to distinguish
among cases of the same quantity, as for example in the use of ρ1 and ρ2

to distinguish the mass density in two different regions. With the goals of
minimizing the total number of symbols and of using them uniquely, the text
avoids various common usages. An example is the use of µ for the coefficient of
viscosity, which is avoided, with the viscosity expressed always as the product
or ρν, where ν is the kinematic coefficient of viscosity.

Much of the homework throughout this text is only feasible using a com-
putational mathematics program. The author prefers Mathematica, which
has been an essential tool in the preparation of this text, but there are
now and will be several such programs available. This departure from tradi-
tional norms reflects the emergence of such programs as effective tools. They
should be part of the standard toolkit of all future scientists. This dramat-
ically changes the meaning of “simple” solutions to problems. For example,
an eighth-order polynomial equation is not necessarily difficult to deal with.
Appendix B includes examples of Mathematica code for two of the issues
discussed in the book, to help the reader get started.



VIII Preface

A word on the use of units is in order. The metric system in a broad sense
is the common language of science. But the world in general and high-energy-
density systems, in particular, are not conveniently analyzed within any single
standard subsystem of these units. Each of the SI system, the Gaussian cgs
system, and other systems is the most convenient for certain problems, as
are a few other specific units such as the electron Volt. This is why these
systems exist. It is an essential tool for a practicing scientist to be able to
readily convert between systems of units “on the fly”. This is true because
the existing literature is presented for the most part in convenient units,
which working scientists use because they are convenient. But comparisons
of one system to another are very important as checks on one’s reasoning,
and this often leads to the need to convert units. Thus, the author is an
adamant opponent of the SI purists who would commit nothing to print
that is not in SI units and an adamant advocate for defining one’s units
in all work one does. When feasible, the equations in this book are written
in unit-independent form. When this is not possible, as for example with
the Lorentz force, the units are specified and are usually in the Gaussian cgs
system, which is the most convenient for most plasma applications. The units
are also specified when practical equations are given. At least this was the
author’s intent. Please let him know where he failed. Finally, the appendix
on units in Jackson’s Classical Electrodynamics is an excellent reference on
this subject.

Bibliographic references are sparse in most chapters of this text. Most of
the references are to published books that address a certain topic in more
detail than is feasible here. The journal literature is cited only when there
are as yet no relevant books, and such citations often fail to reflect the scope
of work in the journal literature. This was deliberate for several reasons.
One of my goals has been to write a book that will prove useful for many
years. The archival literature changes rapidly and the present era is one of
very rapid advance in high-energy-density physics and in astrophysics. As
a result, any references to the current literature will rapidly become dated.
In addition, the era of immediate bibliographic database searches is here to
stay, so future readers will readily be able to find up-to-date references in the
archival literature of their time.

A second goal has been to present the material here with a common voice,
because in the opinion of the author this is pedagogically most effective. A
book that ties itself too closely to published literature can become disjointed.
A third goal has been to show that this material is “simple”, in the sense
that a physicist would use. A rich panoply of phenomena evolves straight-
forwardly from what are at root a few and simple starting equations. In the
spirit of Richard Feynman, one can understand a great deal without need-
ing more than clear thinking. (Though one must add that a computational
mathematics program helps a lot for some nonlinear problems.) The greatest
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departure from this goal has been in Chaps. 3 and 8, where to avoid very
protracted discussions we have been forced to ask the reader to accept some
details without much explanation.

Throughout this text, there are a number of figures showing the results
of computer simulations, in order to display hydrodynamic and radiation
hydrodynamic phenomena. Unless otherwise noted, these simulations were
done using the HYADES computer code authored by Jon Larsen and available
at this writing from Cascade Sciences Inc. A number of similar tools exist;
they prove very useful for calculations to evaluate possible experiments and to
identify the most important physical mechanisms in specific physical systems
of interest.

Writing acknowledgments is rather daunting, given the many individuals
who contribute to a project such as this. To those overlooked: remind me and
I will at least buy you dinner. I must thank my family and my current research
group for tolerating the time required for such a project. Dmitri Ryutov has
been a source of inspiration, instruction, and encouragement, in addition to
a vital collaborator, for a number of years, and also reviewed two chapters.
Alexander Velikovich reviewed two chapters, made time for several delight-
ful conversations, and significantly broadened my understanding of several
issues. Harry Robey provided valuable insight into hydrodynamic instabili-
ties and found an important error. Robert Kauffman and David Montgomery
provided specific useful figures. Enam Chowdhury provided useful input and
graciously allowed me to use some of his work. Michael DesJarlais, Warren
Mori, Mordecai Rosen, Mark Hermann, James Knauer, Riccardo Betti, and
Bedros Afeyan found time to comment on or discuss some of the material.
Farhat Beg and William Kruer taught from the draft text. Ralph Schneider
was a source of enduring encouragement.

The students in the lectures at Michigan in 2003 and 2005 and the 28
attendees of the summer school in 2004, though too numerous to list, helped
identify errors and provided opportunities to improve the text. My own cur-
rent graduate students Amy Reighard, Carolyn Kuranz, Eric Harding, and
Tony Visco suffered through working with the draft, even while providing
continuing motivation. Korbie Dannenberg, in addition to having done some
of the work reflected in examples herein, kept my group moving forward
when I was off writing. Jan Beltran provided a wide range of administrative
assistance with the summer school and with the book, all of which I greatly
appreciate. Of course, the responsibility for the errors in the text rests solely
with me.

Beyond this specific group, I have enjoyed collaborations with a large
community of scientists, engineers, and technicians during the past 20-plus
years. A few of the key individuals not mentioned above are Dave Arnett,
Jim Asay, Hector Baldis, Steve Batha, Bruno Bauer, Serge Bouquet, Jim Car-
roll, John DeGroot, Kent Estabrook, Adam Frank, Gail Glendinning, Martin
Goldman, Tudor Johnston, Jave Kane, Paul Keiter, Alexei Khokhlov, Marcus
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Knudson, Barbara Lasinski, Sergey Lebedev, Dick McCray, Tom Mehlhorn,
Aaron Miles, Steve Obenschain, Ted Perry, Diana Schroen, Wolf Seka, Bob
Turner, David Villeneuve, Russell Wallace, Bob Watt, James Weaver, and Ed
Williams. There are many others. I also appreciate the positive interactions
and encouragement from my editor at Springer, Dr. Chris Caron.

I love to work in coffee shops and was fortunate that my local favorite,
Espresso Royale, opened a branch on Plymouth Road near my home early
during this project. I did a lot of writing, editing, and deriving at their tables.
To Sarah and all the staff who have worked there, thanks for the hospitality.

Finally, this book would not exist without two people. E. Michael Camp-
bell talked me into entering this field when it had troubled times, supported
doing the science needed to make inertial fusion succeed, and helped me move
on when the time came for that. Bruce A. Remington talked me into jumping
into the astrophysical applications of high-energy-density tools when this was
a new idea and has continued to be a valuable collaborator since that time.
I thank them both.

Ann Arbor, Michigan R. Paul Drake
December 2005
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1 Introduction to High-Energy-Density
Physics

This book concerns itself with the physics of systems having high-energy-
density. By high-energy-density systems, we refer to those having a pressure
above one million atmospheres. The units of this pressure can be designated
by 1 Mbar, 1011 Pascals, 1011 J/m3, 1012 dynes/cm2, or 1012 ergs/cm3. We
will tend to express the pressure in Mbars, as this is the most common of these
units found in the relevant literature. This characterization was developed in
a report of the National Academy of Sciences in the U.S., entitled Frontiers
in High-Energy-Density Physics: the X-games of Contemporary Science. It
reflects several observations. For example, one learned in school that solids
and liquids are “incompressible”, but this is not strictly true. If one applies a
pressure exceedin ∼1 Mbar to ordinary solid matter, it compresses. Another
way to make this point is to say that the internal energy of a hydrogen
molecule is ∼1 Mbar.

Thinking further on this point, one might realize that once the energy
that holds a collection of particles together, whether as applied pressure or
as binding energy, becomes of the order of the internal energy of molecules
and atoms; these will behave more as ions and electrons than as neutral
particles. Indeed, the fact that metals have conduction electrons might be
viewed as the beginning of this type of phenomenon. At higher pressures
(or lower densities, so that 1 Mbar corresponds to higher temperatures) the
material will definitely be an ionized medium. An ionized medium is a plasma,
but traditional plasma theory applies to ionized gasses. We will see in Chap. 2
that very little of the regime of high-energy-density physics can be described
validly by traditional plasma theory. Thus, another way to characterize high-
energy-density systems is as plasma that is too dense for traditional plasma
theory. We explore the implications of this in Chap. 3. We discuss how to
produce these dense, high-energy-density plasmas in Chap. 8. One might like
to take this up sooner, but in fact the concepts developed in Chaps. 3–7 are
essential to presenting a comprehensive and comprehensible discussion.

Chapter 8 discusses how to create these conditions. For example, one
might launch a shock wave that converts ordinary matter into high-energy-
density matter. Such shock waves have velocities above 10 km/s. At constant
pressure, shock velocities increase as density decreases, so that shock waves
above 100 km/s (>360,000 km per hour) are common in high-energy-density
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physics. Alternatively, one might produce an intense beam of photons, elec-
trons, or ions that can penetrate the matter and directly heat it.

High-energy-density physics encompasses more than the regime of dense
plasma, in the sense just described. It also includes conditions in which pres-
sures >1 Mbar result from very high temperature at very low density. For
example, air at a density of 1 mg/cm3, of the order of atmospheric density,
reaches a pressure of ∼1 Mbar at a temperature above 10 keV. (Throughout
this text we express temperature in the energy unit of an electron Volt, so
that the Boltzmann constant is 1.6 × 10−12 ergs/eV or 1.6 × 10−19 J/eV.)
A temperature of 10 keV is roughly 100 million degree Kelvin, so that tem-
peratures of millions of degrees or more are common in high-energy-density
physics. As the density decreases further, conditions in which the pressure
remains above one Mbar soon become relativistic, and thus also outside the
realm of traditional plasma theory. Overall, what high-energy-density sys-
tems have in common with traditional plasmas and with condensed-matter
systems is that collective effects are an essential aspect of the behavior. The
difference from traditional plasma physics is that the particles are more corre-
lated, relativistic, or both. The difference from traditional condensed-matter
physics is that ionization and Coulomb interactions are essential.

The present text is the first book to be written as a textbook in high-
energy-density physics. (We place it in the context of prior work later in this
chapter.) This reflects the fact that high-energy-density physics is in some
sense a new field. One can see that the regimes just discussed offer some
challenges beyond established areas of physics, but one might wonder both in
what sense this is new and why. The material discussed here, as in condensed-
matter physics and other areas, is entirely built on the foundations of classical
and modern physics as established from the mid 19th to the mid 20th century.
In addition, much of the material discussed herein is discussed in more depth
in one of a dozen or so more-advanced books. The fundamental sense in which
this is a new area is that there are new tools and that new tools beget new
areas of science. It is now practical for scientists in an academic or laboratory
setting to perform experiments to study the fundamental behavior of high-
energy-density systems over a significant range of parameters. This creates a
need for the treatment of this material as an integrated subject, moving from
fundamentals to their applications, for the presentation of the material in a
common voice suitable for graduate courses and as a first working reference,
and for a discussion that spans the range of conditions now (or soon to be)
available for study. Hence the emergence of high-energy-density physics as a
distinct field and hence this text.

1.1 Some Historical Remarks

Let us consider the new tools that brought this about. One can identify
several precursors. The development of particle accelerators in the 1930s
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began the effort to focus large numbers of particles to small areas. The advent
of nuclear weapons in the 1940s produced high-energy-density conditions,
but not in a way that permitted systematic study. In the 1950s the ill-fated
Z-pinch was developed, in pursuit of controlled thermonuclear fusion for
power production. The Z-pinch was intended at first to gradually compress
and heat matter through the attraction of parallel channels of current. In
the late 1950s and through the 1960s the laser was invented and developed
until relatively intense, pulsed lasers became possible. All of this set the tech-
nological stage for what followed. We summarize this here, with the intent
of giving the flow of key technical developments, as opposed to a thorough
historical review.

By the mid 1960s it became sensible to ask whether lasers might be used
to produce controlled thermonuclear fusion. This would be accomplished by
creating momentary collections of burning fusion fuel, held together by only
their inertia. Atzeni and Meyer-ter-Vehn, in their book, review the founda-
tions for this specific development, some of which were in classified research
programs, and credit a number of key contributors not mentioned here. The
effort to address this question in the USSR was led by Basov. In 1972, Nuck-
olls, Lowell, and Wood published the key paper arguing that this approach to
fusion might be feasible. Programs to pursue what became known as inertial
confinement fusion were begun in the U.S., the Soviet Union, Europe, and
Japan. A key figure during the development of the necessary lasers was John
Emmett, who led the program at Lawrence Livermore that first produced
lasers delivering >1 kJ in 1 ns. By the end of the 1970s, there were lasers
in several countries that could deliver a number of kJ to volumes of a cubic
mm or less in pulses of order 1 ns in duration. One Mbar is 100 J/mm3, so
these systems produced high-energy-density conditions. During the same pe-
riod, devices that could drive currents above 1 MA, known as pulsed-power
devices, were also developed, motivated as well by their potential application
to inertial confinement fusion. In the U.S. this was done at Sandia National
Laboratories. The initial intent was that these devices could create inertial
fusion using particle beams, but in the end they contributed to the revolution
in Z-pinches described below. Other lasers were also developed as high-energy
sources, including CO2 lasers at the Los Alamos Laboratory and Iodine lasers
in the Soviet Union. These lasers did not work out for fusion, but in some
sense they encouraged the development of KrF lasers, pursued further in the
U.S. at the Naval Research Laboratory and at this writing a candidate for
use in producing electricity powered by inertial fusion.

These tools could create high-energy-density systems, but not in a way
that permitted systematic study. During the 1970s a few research projects and
programs began to do systematic fundamental science at high energy density,
notably in Europe and at the Naval Research Laboratory. This is perhaps too
harsh, as one can find a sequence of refereed journal papers tracing progress
in the science from all of the participants. But all such efforts were hampered
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by a lack of experimental technique and diagnostic hardware. They were
also hampered by a tendency to focus on the goal of fusion to the exclusion
of its fundamental underpinnings. As an extreme example, the head of the
project to build the Nova laser, completed in the mid-1980s, once told the
author that the only diagnostic needed by Nova for the success of inertial
fusion was a single neutron detector. This proved to be far from the truth.
Experiments and diagnostics in a number of areas, in addition to substantial
improvements to the facility itself, were required before Nova could achieve
the compression of DT fusion fuel to 1,000 times liquid density (a remarkable
accomplishment).

Meanwhile, a revolution in experimental technique was occurring in the
U.S. and around the world. Low-energy lasers had been in use as probe beams
for some time, and this continued. Now the collection of high-energy laser
beams began to be used for several independent purposes. Some beams could
strike a target to produce a desired system, other beams might be used to
drive some process or event in that system, and still others might be used
as diagnostics, often by producing x-rays whose transmission or scattering
could be measured. This required that the beams be independently timed
and controlled, which is easy to say but imposes considerable additional cost
and complexity. In addition, the 1980s saw the realization and demonstration
of affordable instrumentation that could obtain data on a sub-ns timescale,
including snapshots and time histories as images or as spectra. It may be un-
fair to single out this decade, as these developments occurred both before and
after as well, but in my view it was during the 1980s that doing high-energy-
density physics with lasers became practical. This was in part driven by an
increased focus on studying the elements of the physics that were required
for inertial fusion. While many researchers around the world contributed to
this developing focus, the one individual who had the biggest impact in the
biggest program was a young group leader named Michael Campbell, at the
Lawrence Livermore National Laboratory.

The 1980s also saw the invention of chirped-pulse amplification by Gerard
Morou, described in Chap. 8. This made it practical to drive the irradiance
of lasers above 1018 W/cm2, and to begin to produce relativistic effects. Such
systems have short pulses, typically below 1 ps, and so are known as ultrafast
lasers. They have contributed the tools that enable exploration of the low-
density, relativistic regime of high-energy-density physics.

The available experimental tools for high-energy-density physics expanded
again in the 1990s with the development of the wire-array Z pinch. A modifi-
cation known as the fast Z pinch had been under exploration for fusion since
the late 1970s. A fast Z pinch avoids the magnetohydrodynamic instabilities
that disabled the Z pinches of the 1950s, by using the pinch to briefly accel-
erate material inward, after which the stagnation of the imploding material
converts kinetic energy to internal energy. There is hope that this might pro-
vide an alternative approach to fusion. Whether or not this works out, such
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pinches are large and efficient radiation sources. When they distribute the
current across hundreds of metallic wires, they can produce energies of MJs
in volumes of cubic centimeters. This development, also discussed further in
Chap. 8, provided yet another environment for the pursuit of high-energy-
density physics, and there was a veritable explosion in such activity using
pinches at around the turn of the century.

Meanwhile, particle accelerators continued to develop, driven primarily by
the needs of particle physics. By the 1990s, these accelerators could also pro-
duce collections of numerous relativistic particles in the high-energy-density
regime. Both ion beams and electron beams can produce high-energy-density
conditions. As one example, the Stanford Linear Accelerator has been used
to produce bunches of order 1010 electrons at an energy of 50 GeV, in a 5 ps
pulse. These bunches form a 3 µm spot, and so have an irradiance of 1020

W/cm2. They deliver 150 J per pulse so a target, and they arrive at a rate
that can exceed 100 Hz. These electrons are themselves a high-energy-density
medium and can be caused to interact with materials of choice.

All of the above developments produced an environment within which
it became possible to pursue questions in high-energy-density physics for
their own sake. Researchers around the world can now address the proper-
ties of matter, the development of dynamic structure and of instabilities, the
properties and transport of radiation, the effect of radiation on the dynamic
behavior, and relativistic phenomena in this regime. These fundamentals are
what we take up in the next six chapters and Chap. 11. Researchers can then
use this knowledge to invent novel approaches to inertial fusion (Chap. 9), to
learn things needed for astrophysics (Chap. 10), and to develop technologies
ranging from improved lithographic systems to novel medical therapies. Be-
fore turning to these tasks, the following provides some further overview of
the regimes of high-energy-density physics and of its applications to fusion
and to astrophysics.

1.2 Regimes of High-Energy-Density Physics

The report of the U.S. National Academy of Sciences mentioned above in-
cludes a figure that summarizes the parameter regime of high-energy-density
physics. We have adapted this here as Fig. 1.1. This figure merits an exten-
sive discussion, which will point the way to much of our work throughout
this text. The horizontal axes show density (mass density below and number
density above, for hydrogen). The vertical axes show temperature, in degree
Kelvin to the left and in eV to the right. All the axes are logarithmic, so
that this figure spans 23 orders of magnitude in density and more than 9
orders of magnitude in temperature. It shows a number of boundaries and
curves. These boundaries and curves assume that the matter and radiation
are approximately in equilibrium. We will work our way through these and
see what they tell us.
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Fig. 1.1. Regimes of high-energy-density physics. Adapted from the NRC Report:
High Energy Density Physics: The X-Games of Contemporary Science

We begin along the left edge of this figure. Working up in temperature, the
first curve encountered shows the boundary between ionized and unionized
matter. Once the temperature reaches about an eV, one begins to see some
ionization. The required temperature increases as density increases, reflecting
the increasing density of electrons that can recombine with the ions. Then, at
densities approaching 1 g/cm3 (g/cc in the axis label), the curve turns over.
At high-enough density, matter is ionized at any temperature, for reasons
discussed in Chap. 3. This phenomenon is known as pressure ionization.

Continuing up the left axis, one sees horizontal lines labeled “Total pres-
sure = 1 Mbar” and “1 Gbar”. These lines correspond to the temperature
at which an equilibrium radiation field produces these pressures. Above the
lines the plasma is radiation-dominated, if the system is in equilibrium. A
plasma at low-enough density becomes radiation-dominated at a tempera-
ture of about 1 keV. We introduce radiation-dominated plasmas in Chap. 3
and discuss them in more depth in Chs. 6 and 7. Following these horizon-
tal lines to the right, one sees that they tilt downward. This occurs as the
thermal pressure of the matter becomes equal to and then dominant over the
radiation pressure. Thus, for example, the thermal pressure at a density of 1
g/cm3 and a temperature of 1 eV is roughly 1 Mbar. At a density just above
1 g/cm3, the curve showing a pressure of 1 Mbar becomes vertical. This is
the density where the Fermi pressure of the electrons exceeds 1 Mbar. We
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discuss the properties of the electrons as fermions in Chap. 3, and they are
important for inertial fusion as discussed in Chap. 9. The 1 Gbar curve, if
continued, would become vertical at a higher density.

Two lines cross the middle of the graph. One of these is labeled “Strongly
Coupled eφ > kBT” and the other is labeled “Fermi Degenerate εF > kBT”.
To the right of the first of these lines, the energy of Coulomb interactions
exceeds the thermal energy. Such plasmas are often labeled strongly coupled
plasmas. We discuss strongly coupled plasmas in Chap. 3, and develop an
approach to describing their behavior in the regime that can be studied in
the early 21st century. As we shall see, the boundary above which traditional
plasma theory is valid lies above and to the left of this line. In the region to
the right of the second of these lines, the Fermi energy exceeds the thermal
energy, and one has a plasma that is Fermi degenerate. This is obviously
connected with the vertical boundary in pressure discussed previously. We
discuss Fermi-degenerate plasmas in Chap. 3.

The figure also shows some laboratory and astrophysical benchmarks. In
the core of the plot, one can see the regions known to be accessible to selected,
early-21st-century facilities in the U.S. These include the Omega laser at
the University of Rochester, the largest Z pinches at the Sandia National
Laboratories, and NIF (the National Ignition Facility) at Lawrence Livermore
National Laboratory. This core regime, corresponding to ion densities from
about 1019 cm−3 to 1024 cm−3 and to temperatures from 1 eV to 1 keV, will
occupy much of our attention. Above this region is shown the plasmas that
can be produced by the ultrafast lasers mentioned in Sect. 1.1. These plasmas
are not in equilibrium, but do produce MeV temperatures in two senses. They
produce beams of particles with exponential distributions having MeV energy
scales, and they produce electrons that oscillate with MeV kinetic energies.

The astrophysical benchmarks in Fig. 1.1 include gamma-ray bursts (up-
per left), supernova progenitors (upper right), and several dark curves show-
ing the evolution of astrophysical systems in time or space. At the top of the
plot, the dark curve shows the evolution of the Big Bang, with later times
moving down and to the left. Near the center of the plot, four curves trace
the structure of various stars and planets from their core (at high tempera-
ture and density, to the upper right) toward their surface (to the lower left).
One can see that the cores of these objects are in the high-energy-density
regime, and that brown dwarfs and giant planets contain strongly coupled,
Fermi-degenerate plasmas. Work at high-energy-density facilities clearly has
the potential to produce knowledge relevant to the interiors of these astro-
physical objects.

However, Fig. 1.1 also provides an incomplete picture of high-energy-
density physics, because it assumes equilibrium. What is missing is dynam-
ical processes. Phenomena such as shock waves, radiation waves, material
ablation, radiative cooling, and hydrodynamic instabilities are not included.
Much of Chaps. 4, 5, and 7 are concerned with these dynamical processes.
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Dynamical processes are also essential to the production of high-energy-
density conditions (Chap. 8), to the achievement of inertial fusion (Chap. 9),
and to the simulation of astrophysical phenomena (Chap. 10). There is no
simple plot that summarizes all this, but we can provide a summary intro-
duction to inertial fusion and to experimental astrophysics before we proceed
to our detailed task.

1.3 An Introduction to Inertial Confinement Fusion

We mentioned in Sect. 1.1 that inertial confinement fusion or ICF is the
application that has driven much of the development of high-energy-density
technology and science. Chapter 9 discusses ICF, beginning with fundamen-
tals. ICF can produce a net energy gain because light elements release energy
when they are combined to form heavier elements. This requires a high tem-
perature, to overcome the Coulomb repulsion of the nuclei, but the energy
released can be used to sustain the high temperature. This is very much like
ordinary combustion, and so fusion fuel is said to ignite and to burn under the
proper conditions. The applications of ICF will expand as the energy gain of
ICF systems increases. Here energy gain is the ratio of the electricity used to
produce an ICF event to the energy of the neutrons (or x-rays) it produces.
At modest gains, even of order 1, ICF will produce large amounts of neutrons
and/or x-rays that can be used for further areas of research. At larger gains
(of order 10), the neutrons from ICF events might be used to breed fuel for
electric power plants powered by nuclear fission. At large enough gains (of
order 100), ICF events might be used directly as the energy source in electric
power plants.

An ICF power plant would operate on a rhythmic cycle that has been
compared to the cycle of an internal combustion engine. (The author is unsure
whom to credit for this analogy.) Let us work our way through this cycle,
discussing its elements. The cycle of an ICF power plant would begin with
injection of an ICF target into a reactor chamber, in analogy to the injection
of fuel into the cylinder of an engine. The target is a structure designed to
produce energy by fusion when energy is delivered to it in a specific way. The
target will include a capsule of fusion fuel (probably DT fuel – deuterium and
tritium – and very likely spherical in shape) covered by a material known as
an ablator. The target may also include other structures necessary for the
operation of a specific fusion design. Fig. 1.2a shows an example. Here the
spherical object is a fusion capsule while the cylindrical structure surrounding
it is an object known as a hohlraum (see Chap. 8 and the discussion below).
In Fig. 1.2a the target is mounted on a glass stalk; in a power plant it would
be dropped into position, very likely while spinning to help maintain its
orientation.

The phase in internal combustion that follows injection is compression of
the fuel, generally by the motion of a piston. This provides energy to the fuel
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Fig. 1.2. Inertial fusion targets. (a) A hohlraum target containing a fusion capsule.
(b) Image of a thin-walled hohlraums showing where the laser beams strike. Credit:
Lawrence Livermore National Laboratory

as it compresses the fuel. This phase exists in ICF, though it is somewhat
more involved. The first phase is to deliver energy to the target with the
required spatial distribution and uniformity. The device that provides the
energy is called a driver in the jargon of ICF. It might be a laser beam or a
particle beam or conceivably an intense photon source. The target might be
driven by direct irradiation (a condition known as direct drive) or indirectly
(known as indirect drive). Indirect drive might be accomplished, for example,
through the conversion of the energy from the driver into some other form
of energy such as thermal x-ray photons. The hohlraum of Fig. 1.2a converts
laser energy into x-rays, producing an x-ray environment with a temperature
of order 2 million degrees (200 eV). Fig. 1.2b, obtained with a thin hohlraum
that allows one to see where the laser beams strike the interior walls, shows
an example of such irradiation.

This delivery of energy to the ablator causes it to ablate away (hence
the name). This, however, is not a passive process. The delivery of energy
to the ablator produces temperatures of millions of degrees and pressures of
order 100 Million atmospheres. High-velocity, ablated material is propelled
away from the hot, high-pressure material at the surface of the ablator. In
reaction, the remaining material and the fuel are accelerated inward. This
process is identical to rocket propulsion, so that an ICF capsule is sometimes
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described as “spherical rocket”. Evidently, the inward motion of the capsule
will compress the fuel, thus completing the compression phase of the cycle.
The fuel is compressed somewhat more than hydrocarbon fuels are, reaching
a final density of 1,000 to several thousand times the density of liquid DT.

The next phase of the cycle in both internal combustion and ICF is ig-
nition. One can have spontaneous ignition, as in diesel engines, or sparkplug
ignition, as in gasoline engines. Both these approaches are possible in princi-
ple for ICF. On the one hand, one can design the target so that the fuel at
the center of the imploding capsule ignites when the fuel stagnates against
this central material. This is known as ignition from a central hot spot. On
the other hand, one can compress the fuel and then use an external energy
source to ignite it. This approach is known as fast ignition. At this writing,
it is not clear which of these will prove at first most productive, or in the
long run most practical. The ignition and subsequent burning of the fusion
fuel creates a large quantity of energy, completing this phase of the cycle.

The next phase of the cycle is energy extraction. In internal combustion,
this occurs as the expanding hot gas does work on the piston. It is more
complicated in ICF, as neither neutrons nor x-rays, nor even high-energy
particles, are able to push effectively on solid matter. They penetrate rather
than push. Instead one must extract their energy in some other way. When
ICF uses DT fuel, most of the energy emerges as neutrons, and the only
known way to extract their energy is to use them to heat a large volume of
matter. This hot matter can in turn heat water to drive a steam cycle, in
which energy is extracted by driving large turbines with steam. This may or
may not prove economical for electric power production. Steam cycles are not
particularly efficient, so one may hope that in the long run one can use fusion
fuel that produces only charged-particle output. This is more demanding but
offers the potential of directly extracting the energy, with high efficiency.
In the absence of new physics, the compact fusion plants that drive many
spaceships in science–fiction would only be possible using these advanced
fuels.

Returning our focus to high-energy-density physics, many elements of
the ICF process depend upon such physics for their success. These include
the production of the energy that drives the target, the delivery of energy
to the ablator, the implosion process itself, the final properties of the fuel,
and any attempt at fast ignition. ICF depends upon the properties of high-
energydensity matter (Chap. 3), on the production of shock waves and related
effects (Chap. 4), on limitation of hydrodynamic instabilities (Chap. 5), on
the transport of radiation within the target (Chap. 6), and on the impact of
radiation on material motions (Chap. 7). Furthermore, the basic approaches
to ICF reflect the various options for producing high-energy-density condi-
tions (Chap. 8). This makes it fairly clear why the science of high-energy-
density physics grew out of ICF and its facilities, and why knowledge of this
physics is essential if one is to deeply understand ICF.
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1.4 An Introduction to Experimental Astrophysics

We made the point above that new sciences arise from new tools. A second
and more specific example of this is the emergence of high-energy-density
experimental astrophysics. One might say that the human brain as a tool
gave rise to astronomy. Adam Frank has observed that the spectrometer can
be argued to have given rise to astrophysics. In the same sense, the ability
to do high-energy-density physics in the laboratory has given rise to this
branch of experimental astrophysics. Remington, Drake, and Ryutov provide
a review of work in this area through 2004. Some summary remarks follow
here. Various examples are given throughout the text. In Chap. 10 we will
take up the specific problem of doing experiments that are sensibly scaled
from the astrophysical system to the laboratory.

The potential for contributions to astrophysics from high-energy-density
physics is clear from Fig. 1.1. That figure leads one to focus on the possibil-
ity of measuring the equation of state, which for example might relate the
pressure, density, and temperature of materials of astrophysical interest. At
this writing, for example, it is not yet clear just when and how dense hy-
drogen enters its metallic state. This is particularly important for gas giant
planets such as Jupiter. Figure 1.3 shows a pie-shaped slice to illustrate a
segment of the spherical cross section of this planet. The equation of state
of hydrogen determines whether Jupiter must have a rock core. The nature
of the transition to the metallic state constrains how the dynamo in Jupiter
produces its magnetic fields. This connection has been recognized for some
time but equation of state experiments are difficult, as they require very high
precision. By the 1980s one could begin to attempt measurements using the
tools capable of such work at that time. These were principally devices called
gas guns and rail guns that can accelerate slabs of material to high velocity,
producing high pressure when they collide with other slabs of material. Un-
til recently, such guns could not produce pressures as large as 1 Mbar. The
emergence of pulsed-power devices that could drive 10 MA currents, and of
lasers capable of creating very large pressures led at around the turn of the
century to work at pressures of several Mbar.

The equation of state is one example of a property of matter in its equi-
librium state that has implications for astrophysics. Another example is the
x-ray opacity. Much of the energy transported within stars and other hot,
dense objects is carried by radiation. The absorption of this radiation turns
out to control some of the properties of these objects. Yet this radiation
absorption is often dominated by the electronic transitions in various ions,
especially those up to and including ions of iron. The measurement of the
opacity of materials of astrophysical interest, and the comparison of these
measurements with newly available computer codes that could calculate the
opacities accurately, began in the early 1990s.

Measurements of equation of state and opacity carry out the research
suggested naturally by Fig. 1.1, determining important equilibrium properties
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Fig. 1.3. Schematic interior of Jupiter

of materials. An explosion of work in laboratory astrophysics followed the
realization, independently by Hideaki Takabe in Japan and Bruce Remington
in the U.S., that one could also use high-energy-density tools to explore the
large-scale dynamics that matters for astrophysics. To that point, our Earth-
bound knowledge of astrophysical dynamics depended entirely on computer
simulations that could be tested against one another but not against any
benchmark data. Some of the resulting work is discussed further in Chap. 10.
Here we provide a partial overview.

It is most straightforward to produce a well-scaled experiment in systems
that are purely hydrodynamic, so that viscous dissipation, heat conduction,
and radiation are negligible. This may seem like too much simplification to
be worthwhile, but that is not the case. It turns out that many astrophysical
systems behave mostly or entirely as hydrodynamic systems, including super-
novae, some supernova remnants, blast waves, and some astrophysical jets.
Some of these systems also very likely produce turbulence that is fundamen-
tally hydrodynamic. In addition, the complex three-dimensional instabilities
within these systems and interactions among them are beyond the capabil-
ities of turn-of-the-century simulations to reproduce. This creates a role for
experiments. Early work, around the turn of the century, focused on the un-
stable phenomena that occur during supernova explosions. Figure 1.4 shows
an example. As a result of the passage of a blast wave like that in supernova,
the structure at a first interface affected the evolution of a second interface.
Other early experiments in this area also explored the simulation of processes
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Fig. 1.4. Structure produced when a blast wave crosses two interfaces. The second
interface is visible only where a diagnostic tracer is present behind it. There is little
contrast across the blast wave itself, making it difficult to see

in supernova remnants, the dynamic behavior of hydrodynamic astrophysical
jets, and the crushing of clouds by shock waves.

Once the transport of energy by radiation becomes important in the evo-
lution of the matter, one has entered the regime of radiation hydrodynamics
(Chap. 7). Important astrophysical phenomena in this regime include radi-
ation waves, radiative shock waves, and radiative jets, not to mention the
interiors of stars. Here, however, one nearly always loses the ability to do a
precisely scaled experiment. Instead, one can hope to scale the essential di-
mensionless parameters so that the dynamics of interest to astrophysics are
present in the laboratory. One example is the radiative jet, in which there
are three key parameters: (i) are the internal Mach number (the ratio of the
jet velocity to the sound speed of the material in the jet), (ii) the ratio of
density in the jet to the ambient density around it, and (iii) the ratio of the
distance along the jet required for significant cooling to occur to the radius
of the jet. An experiment can in principle scale these three numbers. Such an
experiment and an astrophysical jet would be expected to show qualitatively
similar behavior, even if some detailed processes, such as the nature of the
radiative cooling, were different. Similarly, for radiative shock waves there are
three key parameters. The first two are the transmission of radiation by the
regions ahead of and behind the density jump produced by the shock wave.
The third parameter is the ratio of the radiation energy flux produced in the
shocked matter just behind the shock to the material energy flux coming to
the shock (in a frame of reference in which the shock is at rest). These para-
meters can also in principle be scaled from an experiment to an astrophysical
case.

An additional area in which astrophysical processes can be simulated in
high-energy-density experiments is the production of photoionized plasmas.
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Most Earth-bound plasmas are produced by electron-impact ionization, in-
cluding those in fluorescent light bulbs, in magnetized laboratory plasmas,
and in laser-irradiated materials. This is also true of many astrophysical envi-
ronments, such as the solar corona. However, there are a number of astrophys-
ical environments in which the dominant source of plasma is photoionization.
(This is also true of portions of the ionosphere above the Earth.) Indeed, since
we depend primarily upon spectroscopy for the study of astrophysical objects,
the data we get from very energetic environments such as neutron stars and
the space near black holes come from photoionized plasmas. Without well-
grounded knowledge of the properties of such plasmas, we cannot hope to
interpret the data to see, for example, whether Einstein’s theories of grav-
ity accurately describe black holes. Beginning in the mid 1990s, experiments
began to produce photoionized plasmas in well scaled environments and to
measure their properties.

Finally, astrophysical environments often produce relativistic effects.
These are many. A few examples include the production of electron–positron
pairs in intense radiation environments, the alteration of atomic structure
in very strong magnetic fields, the propagation of relativistic jets through
magnetic fields, and the evolution of gamma-ray bursts, which seem likely
to involve relativistic radiation hydrodynamics. At this writing, the use of
ultrafast lasers to explore such phenomena has yet to begin, but seems likely
to begin soon.

1.5 Some Connections to Prior Work

As indicated above, high-energy-density physics is a new field in some sense,
having evolved out of some historical precursors. It might have emerged
sooner in the absence of classification of fusion research to various degrees.
However, it might not have, because the ability to do systematic experiments
remains relatively recent. Even so, there are a number of historical books in
related fields and notably in astrophysics that provide a deeper discussion
of some of the material covered here. This section provides an overview of
some of this work, oriented to the order of the following chapters. There are
two areas for which no more detailed books are available. These are exper-
imental astrophysics (Chap. 10) and relativistic high-energy-density physics
(Chap. 11). These are both relatively new areas of research at this writing.
Some review papers exist, no doubt soon to be superceded by others. One
will have to wait for book-length treatments.

The properties of matter at high-energy-density (Chap. 3) could be ad-
dressed more thoroughly by a detailed study of the statistical mechanics of
matter in the high-energy-density regime. Such a work does not exist but
various references approach aspects of this problem. Many books in statisti-
cal mechanics address various fundamentals; one good example is Volume 5
of the series by Landau and Lifshitz. Even so, the specific issues that arise in
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ionized media and otherwise at high energy density are not addressed there.
The book on equations of state by Eliezer, Ghatak, and Hora considers some
of these issues, as does the book on plasma spectroscopy by Salzman. They
are also dealt with, on a fairly ad hoc basis, in the books to be highlighted
later by Zeldovich and Raizerand Mihalas and Mihalas. Griem addresses sev-
eral specific issues in his book on plasma spectroscopy, which is alas not so
easy to read.

The behavior of shock waves and rarefactions (Chap. 4) is addressed to
various degrees in a number of texts, notably including those by Sedov and
by Whitham. Principal among such works, for problems of interest to high-
energy-density physics, is the book by Zeldovich and Raizer. This book quite
rightly has been venerated for many years. If there is a single text that might
be said to be a precursor to the field of high-energy-density physics, it is this.
It has also long been the best general introduction to high-energy-density
physics, despite being too detailed in many respects and incomplete in others.
The author hopes that the present text might take over this function. Even
so, Zeldovich and Raizer will remain the next book of choice for details of
one-dimensional hydrodynamics and approaches to the key physics based on
similarity solutions.

In the area of hydrodynamic instabilities (Chap. 5), the work that stands
clearly at the forefront in the analysis of hydrodynamic instabilities is that of
Chandrasekhar. It is thorough, it is fundamental, and it works a number of
problems of central interest to high-energy-density systems. Unfortunately,
having been written in the 1950s this text does not discuss some aspects of
compressible hydrodynamic instabilities that are also of substantial interest.
For these, to go beyond what little is done in the present text one must head
to the archival literature. In the specific area of incompressible hydrodynamic
turbulence, the outstanding introductory text is by Tennekes and Lumley and
the thorough and definitive tome is by Hinze.

For issues relevant to high-energy-density physics, radiative transfer
(Chap. 6) and radiation hydrodynamics (Chap. 7) have never been treated
in independent books, so we will discuss them together. The field of radia-
tive transfer has many applications, as this kind of process is essential to
the behavior of planetary atmospheres, stellar interiors, energetic astrophys-
ical events, and high-energy-density laboratory systems. Chandrasekhar for
example also contributed a book on radiative transfer. However, the book
that is without question most relevant to radiative transfer and to radiation
hydrodynamics in high-energy-density physics is that by Mihalas and Miha-
las. The material on these areas in Zeldovich and Raizer is also relevant and
is very insightful. Unfortunately, Mihalas and Mihalas is well known to be
difficult to read. This may be in part because of the excellent connections
it makes with the literature that existed when it was written. The author
hopes that the present text, with its more pedagogical focus and simplified
presentation, will provide a foundation that enables a better appreciation of
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their thorough discussions. Because of its emphasis on the essential physics,
the present text has steered clear of the issue that occupies most of the time
of most of the people working in radiative transfer and radiation hydrody-
namics, which is the discovery and implementation of computer algorithms
that can produce practical approximate solutions of radiative transfer prob-
lems, either in isolation or in the context of radiation hydrodynamics. There
is some discussion of these issues in Mihalas and Mihalas. In addition, Castor
has published the definitive text in this area in 2004.

We now turn to experiments and applications. The production of high-
energy-density systems touches on a number of areas of research. Some of
these have many more-detailed books while others have none. There are many
books, for example, on lasers, no one of which seems uniquely relevant. Much
less is available on what happens when the laser strikes the target, with the
principal reference being the text on laser–plasma interactions by Kruer. The
book on Z pinches by Lieberman et al. has some material that is relevant to
high energy density, and much that is not.

It is no surprise that more is available in the area of inertial fusion, as
this has been the driving application. Two books in this area deserve specific
mention. Atzeni and Meyer-ter-Vehn published in 2004 an extensive book
whose focus is inertial fusion. This book takes up most of the topics covered
here, and a number of topics not covered here, all in the context of how they
impact inertial fusion as an application and a goal. It is heavy on formulae,
including parametric fits to many complex relationships, and comparatively
light on discussion and explanations. As a result, it will be a very useful tool
for experts. An earlier book by Lindl, published soon after the declassification
of fusion using hohlraums, has more of an engineering orientation. It addresses
primarily the specific issues involved in producing fusion by this method,
about which it includes much useful detail. It also includes a number of useful
formulae based on studies by computer simulation. In a number of cases in
Chap. 8 and Chap. 9, we compare results from a fundamental and simplified
analysis with those reported by Lindl.

1.6 Variables and Notation

One difficulty with work that involves contributions from various disciplines
is conflict of variable definitions. Certain symbols find very common use to
mean different things. For example, γ is used as the ratio of specific heats
throughout fluid dynamics but is also used extensively as the symbol for a
growth rate in instability theory and as the Lorentz factor in relativity. The
goal here has been to use a notation that was consistent throughout the
text while keeping close to standard usage where feasible. For this reason,
we have made extensive use of subscripts. Appendix A includes a list of
variables used in the text, and of the symbols used for a number of common
constants. This list is intended to include all variables that are used in more
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than one section and many of the dimensional variables. It may not include
some variables that are used solely within the context of a single derivation
or a single section of the text, especially when these are nondimensional. As
discussed at more length in the preface, the intent in the equations has been
to either ensure that an equation has evident and consistent units, so that
any system of units can be used, or to give the units used explicitly. In nearly
all cases, we write equations involving a temperature as equations in energy
units, representing the contribution of the temperature as kBT, where kB is
the Boltzmann constant and T is the temperature.

In writing variables and equations, we have used italic text for scalar
quantities and boldface text for vector quantities. For tensors of the second
rank, we have used either underlined boldface symbols, such as P , or dyadic
notation, such as uw. (The element in the ith column and jth row of a
tensor written in dyadic notation are (uwij = uiwj). In writing differential
equations, we have explicitly written the derivatives as fractions rather than
using a more compact notation.



2 Descriptions of Fluids and Plasmas

Not long ago, one could say that 99% of the known universe is plasma. The
recent discovery of dark matter and dark energy imply that this may no longer
be true, but it will remain the case that 99% of the readily observed universe
is plasma. The interstellar medium, stars, and more exotic compact objects
are all composed of or surrounded by ionized matter. Without understanding
something about plasmas, one cannot hope to understand the universe.

It is equally true that knowledge of plasmas is essential to high-energy-
density physics. To reach pressures above a megabar at densities of a few times
solid density or smaller requires temperatures large enough to ionize the mat-
ter. Thus, in most high-energy-density systems the matter is in the plasma
state. In various contexts and regimes, this plasma may behave like a simple
fluid, like a traditional plasma, or like a plasma beyond the scope of tradi-
tional plasma theories. In addition, plasma behavior is essential to the use of
lasers to produce high-energy-density systems (Chap. 8). When the behavior
of high-energy-density systems departs from that of simple hydrodynamic
fluids, either plasma effects or radiation effects are typically responsible. In
addition, the models of use in describing plasmas are supersets of those used
to describe simpler fluids. We discuss various approaches to describing plas-
mas and fluids here. Radiation and radiation effects are described in Chaps. 6
and 11.

If the reader has studied plasma physics, then parts of this chapter will
be review. If the reader has studied electrodynamics or fluid dynamics, but
not plasma physics as such, then other parts of this chapter will be review.
In addition, our focus here is not at all to span fluid dynamics and plasma
physics in a few pages, but rather to introduce the models we will need in
the pages that follow. Moreover, we assume here that all motions are non-
relativistic. Relativistic motions are considered in Chaps. 6 and 11.

2.1 The Euler Equations for a Polytropic Gas

In books on plasma physics, it is common to begin with collections of individ-
ual particles, to determine how to describe their behavior statistically using
the Boltzmann equation, and then to average their behavior in ways that
produce simpler models of plasma dynamics. Here we take the reverse path,
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beginning with the very simple averaged equations that are useful in many
high-energy-density contexts, and working our way toward more-complex de-
scriptions that are more powerful but also less-often necessary. In this spirit,
we begin with the Euler equations for a polytropic gas:

∂ρ

∂t
+ ∇ · ρu = 0, (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p, and (2.2)

∂p

∂t
+ u · ∇p = −γp∇ · u, (2.3)

where u, ρ, and p are the velocity, density, and pressure, respectively. Here
(2.1) is the continuity equation, describing conservation of mass, (2.2) is the
equation of motion, describing the change in momentum density, and (2.3) is
the energy equation. Equation (2.3) assumes that the fluid is polytropic so
p ∝ ργ where γ is the adiabatic index (the ratio of specific heats). Landau and
Lifshitz report that “polytropic processes” is a historic term for processes in
which pressure is proportional to some inverse power of volume. This is why
a fluid or gas with p ∝ ργ is described as a polytropic gas, and why γ is often
called the polytropic index or polytrope. For a fully ionized nonrelativistic
gas (at a high enough temperature and a low enough density) γ is equal to
5/3; for a gas where radiation pressure is dominant, γ is equal to 4/3; for a
diatomic molecular gas, γ is equal to 7/5. We discuss more general versions
of these equations in Sect. 2.3. In some of the later discussion, especially of
shock waves, it will prove useful to have the energy equation in conservative
form, discussed next. In this form the energy equation is

∂

∂t

(
ρε +

ρu2

2

)
= −∇ ·

[
ρu

(
ε +

u2

2

)
+ pu

]
. (2.4)

Other useful forms of the energy equation are discussed later in this section.
Although it is not evident at first glance, all three of these equations

are at root continuity equations, in which the total amount of something
is changed only by sources (sinks are negative sources). They all can be
written in “conservative form”, in which the change in the density, ρQ, of
some quantity Q is determined by the flux of that quantity, Γ Q, having units
of Q per unit area per unit time, and the net volumetric sources of that
quantity, SQ. The conservative form is then

∂

∂t
ρQ + ∇ · ΓQ = SQ. (2.5)

If one integrates such an equation over some volume with a surface, σ, and
applies the Gauss’ law, one obtains
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∂

∂t
Q +

∮
σ

ΓQ · dA = Net source in volume, (2.6)

in which the second term is the net flow of Q into or out of the volume and∮
σ

represents the integral over the closed surface σ.

Homework 2.1

One approach to deriving the Euler equations is to identify the density, flux,
and sources of mass, momentum, and energy and then to use (2.5). Do this for
a polytropic gas and then simplify the results to obtain (2.1) through (2.3).

Equation (2.1) is often referred to as the continuity equation. It constrains
the dynamics of a fixed amount of matter. One can recognize the second
term on the left as the divergence of a flux. As a result, if one integrates
this equation over a finite volume, the change of mass within the volume
will equal the flow of mass into or out of the volume. If there were mass
sources or mass sinks, these would appear on the right-hand side of (2.1).
This equation, though simple, is a key factor in the complex behavior of
hydrodynamic systems, because in many cases the variation of both ρ and
v is important. This makes (2.1) an essentially nonlinear partial differential
equation, not readily solved by any analytic technique.

Equation (2.2) is the momentum equation, or more accurately is an equa-
tion derived from the calculation of the rate of change of momentum density.
This specific equation applies when electric and magnetic fields, viscous mo-
mentum transfer, and radiative forcing are all negligible. The only remain-
ing momentum source is the pressure gradient, which causes compression or
decompression of the plasma. Its effect is represented by the term on the
right-hand side. The second term on the left describes the convection of mo-
mentum.

An important simple application of (2.1) and (2.2), for which an analytic
solution is straightforward, is that they describe small-amplitude acoustic
waves. We consider this here as an example of the technique called “lineariza-
tion”, because linearization will be important in numerous contexts later in
the book. Linearization is possible when the variation of every variable in
a problem can be described as a small deviation from a constant average
value (which might be zero). The essence of linearization is the realization
that terms that are linear in the small deviations are vastly larger than terms
that are nonlinear in these quantities. Here we use the subscript 0 for the av-
erage values and the subscript 1 for the small deviations, and we also assume
that p can be described as a function of ρ. Then with uo = 0, (2.1) becomes

∂ρ1

∂t
+ ρ0∇ · u1 + u1 · ∇ρ1 + ρ1∇ · u1 = 0 (2.7)

and (2.2) becomes
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ρ0

(
∂u1

∂t
+ u1 · ∇u1

)
+ ρ1

(
∂u1

∂t
+ u1 · ∇u1

)
= −∂p

∂ρ
∇ρ1. (2.8)

Then the nonlinear terms, with products involving ρ1 and/or u1, can be
discarded as small. To show this formally one should rework these equations
so that every small quantity is expressed as a ratio that is actually small. This
is left as a homework problem, as is the derivation from these two equations
of the acoustic wave equation

∂2

∂t2
ρ − ∂p

∂ρ
∇2ρ = 0. (2.9)

Here the square of the sound speed, cs, is c2
s = ∂p/∂ρ, which equals γp/ρ for a

polytropic gas. The definition of the sound speed squared is often expressed as
the partial derivative of pressure with respect to density at constant entropy.
In more detail, this partial derivative is taken according to the properties
of the system under study. If the fluctuations are adiabatic, then it is taken
at constant entropy. If rapid heat transport keeps the temperature constant,
then it is taken at constant temperature, and so on.

Homework 2.2

Linearize the Euler equations to derive (2.7) and (2.8). Find appropriate
divisors to make these equations nondimensional and discuss which terms
are smaller than others. Then derive (2.9).

It is also useful preparation for later analysis to discuss the solutions of
(2.9). A formal solution involves a sum over terms that include exp[i(±k ·x±
ωt)], in which the angular frequency of the oscillation is ω and its wavevec-
tor is k (whose magnitude k is related to the wavelength λ by k = 2π/λ).
Throughout this book x and t are used as variables for position and time,
with boldface indicating vector quantities. A formal solution also must in-
clude a consideration of how real physical quantities are to be related to the
complex mathematics. (For a discussion of this last point see for example
Chap. 6 of the electrodynamics text by Jackson). If, however, one either as-
sumes that the variation in ρ is proportional to any one of the exponential
forms, such as exp[i(k ·x−ωt)], or if one takes the Fourier transform of (2.9),
one finds the dispersion relation for acoustic waves:

ω2 − c2
sk

2 = 0, (2.10)

from which one sees that cs is both the phase velocity (ω/k) and the group ve-
locity (∂ω/∂k) of these waves. Note that the fluctuating amplitude ρ1 cancels
out of the dispersion relation. This quantity is thus not constrained by (2.1)
and (2.2), until it becomes large enough that linearization becomes invalid.
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Homework 2.3

Take the actual, mathematical Fourier transform of (2.9) to find (2.10).

Homework 2.4

Substitute, for the density in (2.9), the actual, mathematical Fourier trans-
form of the spectral density ρ̃(k, ω). Show how the result is related to (2.10).

Indeed, one aspect of the behavior of acoustic waves of larger amplitude is
worth mentioning. This is acoustic wave steepening, encountered more often
in theory than in practice. The crest of a large acoustic wave is at a higher
density than the trough, and the sound speed is correspondingly larger. This
has the effect that any given wave crest tends to overtake the trough ahead
of it. This in turn causes a steepening of the “front” of the wave. In a system
determined by the Euler equations, ordinary acoustic waves steepen until
they become a series of abrupt increases in the plasma pressure and density
connected by smooth decreases. In any actual plasma, finite viscosity will
limit the steepening of the wave fronts.

Equation (2.3) explicitly describes the variation of the plasma pressure
but in fact is the simplified equation obtained by calculating the rate of
change of the energy density in the plasma. For any polytropic medium, the
total energy density is proportional to the pressure and is given by p/(γ−1).
In (2.3) the left-hand side describes the temporal and convective variation of
the plasma pressure. In an incompressible fluid, for which ∇ · u is zero, this
is the entire story of energy conservation. In a compressible fluid, in contrast,
the work done during compression or decompression, during which ∇ · u is
nonzero, is part of the flow of energy. An important additional point here is
that (2.2) and (2.3) describe the pressure as a scalar quantity. In general the
pressure is a tensor, P , and what we write as ∇p would in general be the
vector given by ∇ ·P . In most circumstances in high-energy-density physics,
the concept of an isotropic scalar pressure applies very well. We allow for the
tensorial nature of pressure when including viscous effects in Sect. 2.3. Other
cases where the pressure is not scalar include work with solids, which can
sustain shear stresses and other asymmetric internal forces, and with well-
magnetized plasmas, in which case the behavior along the magnetic field is
fundamentally different than behavior perpendicular to it.

Equation (2.3) also has an important relation to the entropy of the plasma.
To be specific, we consider a polytropic gas, although the conclusion is more
general than this. The specific entropy (the entropy per unit mass) of a
polytropic gas, s, can be expressed (Sedov, p. 261) as

s = cV ln
(

p

ργ

)
− cV ln

(
po

ργ
o

)
+ so, (2.11)

in which so is the value of s in a reference state, for which p = po and ρ = ρo,
and cV is the specific heat at constant volume. If one evaluates the total
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derivative of s, Ds/Dt = ∂s/∂t + u · ∇s, one finds

1
cV

Ds

Dt
=

1
p

∂p

∂t
+

1
p
u · ∇p + γ∇ · u. (2.12)

Equation (2.3) then implies that Ds/Dt = 0, so one concludes that specific
entropy is conserved across regions of time and space where (2.3) is contin-
uously valid. Note that entropy is not conserved across transitions with a
discontinuous change in the fluid parameters, such as shock waves. In addi-
tion, heat transport or other dissipative processes lead to a change of entropy.
In simulations of hydrodynamic systems that include dissipative processes,
one can evaluate their importance by examining the change in entropy of
the fluid elements. The ways in which these equations apply to shock waves
are discussed in Chap. 4. (Note that the total derivative, discussed at more
length in texts on fluid dynamics, is the rate of change of the some quantity
within some specific parcel of fluid. It includes the inherent time dependence
of the quantity and also the rate of change resulting from fluid motion in the
presence of a spatial derivative.)

The energy equation can be expressed in other useful ways, which will
matter for later chapters. If one expands (2.4) and collects all the terms
involving derivatives of density, one finds that these terms sum to zero by the
continuity equation. By taking the dot product of u with (2.2), one obtains
an equation for the mechanical energy in the plasma. Subtracting this from
the energy equation, and substituting for ∇·u from the continuity equation,
one obtains what is sometimes called the gas-energy equation,

(
∂

∂t
+ u · ∇

)
ε − p

ρ2

(
∂

∂t
+ u · ∇

)
ρ = 0. (2.13)

In the presence of energy sources or heat transport, the right-hand side of
this equation would not be zero. For an ideal gas, with ε = p/[ρ(γ − 1)], this
equation reduces to a particularly useful form:

(
∂

∂t
+ u · ∇

)
p − c2

s

(
∂

∂t
+ u · ∇

)
ρ = 0. (2.14)

Homework 2.5

Derive (2.14) from (2.1), (2.2), and (2.4).

2.2 The Maxwell Equations

Many simplified fluid equations have some electrodynamic component. To
understand these, we will need the Maxwell equations of electrodynamics.
They are written here for reference and to allow some discussion of Gaussian
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cgs and other units. We write these equations assuming that the media are
not inherently magnetized or electrically polarized, so that we can account
explicitly for all charges and currents, and can take the polarization and
magnetization fields to be zero. This is common in plasma physics but not in
other areas where polarization electric field and material magnetization are
useful concepts. We have Gauss’ law,

∇ · E = 4πk1ρc, (2.15)

the absence of magnetic monopoles,

∇ · B = 0, (2.16)

Faraday’s law

∇× E = −k3
∂B

∂t
, (2.17)

and Maxwell’s generalization of Ampere’s Law

∇× B =
k2

k1k3

∂E

∂t
+ 4π

k2

k3
J . (2.18)

Here ρc is the charge density and J is the current density. Here we have
followed Jackson in expressing these equations in unit-independent form. In
most applications in this text, the equations will be written in Gaussian
cgs units, which turn out to produce convenient expressions for plasma phe-
nomena. In such equations, B is in Gauss and other quantities are in cgs
units. The constants are k1 = 1, k2 = 1/c2, and k3 = 1/c. In these cases
one tends not to be interested in the electric quantities – few researchers
actually use statvolts/cm as a unit of electric field. The cgs unit of en-
ergy is the erg, which may be of use or may be converted to eV or keV
(1 eV = 1.6 × 10−12ergs = 1.6 × 10−19 J).

Researchers who need to calculate magnetic fields typically work with the
SI version of Ampere law:

1
µo

∇× B = εo
∂E

∂t
+ J , (2.19)

in which µo = 4π × 10−7 H/m, εo = 107/(4πc2) F/m (Farads/m) with c
in m/s, B is in Tesla, E is in V/m, and J is in A/m2 (Amps/m2). More
generally, for SI units k1 = 1/(4πεo) m/F = 10−7c2, k2 = µo/(4π) = 10−7

H/m, and k3 = 1.
One also needs the Lorentz force, which acts on any charge q with velocity

v and is

F L = q

(
E +

v × B

c

)
(cgs)

= q (E + v × B)(SI) , (2.20)

in which the units are designated by the text in parentheses.
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We will also find it convenient to work with the vector potential, A, so
that

B = ∇× A (2.21)

and
E = −∇Φ − 1

c

∂A

∂t
, (2.22)

in which the scalar potential is Φ, using the Coulomb gauge, so ∇ · A = 0.
We will also need at times to work with the energy density and energy

flux of electromagnetic field. In cgs units the energy densities WE and WB

of the electric and magnetic fields, respectively, are

WE =
E2

8π
(2.23)

and

WB =
B2

8π
. (2.24)

Note that when one averages over many cycles of a fluctuating field to obtain
an averaged energy density, these quantities are divided by 2. This is also the
case for the Poynting flux,

S =
vg

4π
E × B, (2.25)

in which the group velocity of the wave is vg.

2.3 More General and Complete Single-Fluid Equations

Figure 2.1 shows an image of the Cygnus loop. This object, 6 times the size
of the moon when viewed from the Earth, is the result of a supernova that
occurred about 15,000 years ago. It features very thin, crenellated layers of
matter. Spectroscopic imaging of the emission from different elements shows
where they are produced. Analysis of these emissions has found that the
various features are produced by shock waves and has revealed some of their
properties. The Cygnus loop is of note here because it cannot be described
using only the Euler equations. In this case, the phenomenon that is missing
and that matters is radiative heat transport. There are many cases in which
one or more phenomena, beyond the interplay of pressure and momentum,
are essential to the behavior of a system of interest. Even so, one very often
can ignore the fact that real plasmas include some combination of ions and
electrons. A great deal of the behavior of plasmas, especially including high-
energy-density ones, can be described by treating the plasma as a single
fluid that can be charged, carry currents, and interact with radiation. In
this section we discuss such single-fluid equations and a few specific limits of
interest.
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Fig. 2.1. The Cygnus loop supernova remnant. The background image is an optical
image from a ground-based telescope. The inset, from the WFPC2 instrument on
the Hubble Space Telescope, shows the very thin layer of emission (by hydrogen at
656.3 nm) produced by the upward-moving shock wave in the small box aligned with
the arrows. The ground-based image of the Cygnus loop (shown in the background)
measures 3◦×2◦ and was taken by CalTech with the Oschin Schmidt Telescope and
scanned as part of the Digitized Sky Survey. Hubble Image credit: Eusopean Space
Agency. http://origins.jpl.nasa.gov/library/story/101100-aold.html

2.3.1 General Single-Fluid Equations

We discussed, with reference to (2.4), the general structure of transport equa-
tions. This structure still applies here. The more complex element is that
other sources and fluxes of any given quantity are considered. The problems
of concern in this book do not involve interior mass sources, so the continuity
equation,

∂ρ

∂t
+ ∇ · ρu = 0, (2.26)

remains unchanged. The general transport equations for momentum and en-
ergy, in the nonrelativistic limit, are

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇ (p + pR) + ∇ · σν + F EM + F other (2.27)

and

∂

∂t

(
ρε +

ρu2

2
+ ER

)
+∇·

[
ρu

(
ε +

u2

2

)
+ pu

]
= −∇·H−J ·E+F other ·u.

(2.28)
Here (2.26) was used to simplify the left-hand side of (2.27); the more complex
expression, involving the time dependence and divergence of the momentum
density, is often more useful for computer simulations. The radiation pressure,
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pR, and the viscous stress tensor, σν , are further discussed below. The energy
density of the radiation field, ER, is usually ignorable and is also discussed
further shortly. The reader may notice the lack of symmetry in (2.27), be-
cause the radiation pressure enters but the radiation momentum density does
not. The radiation momentum density is insignificant except in relativistic
systems, when it must be included. These equations can be derived either by
taking moments of particle distribution functions or by reasoning about the
behavior of small elements of fluid. Versions of these equations, including or
excluding various specific source terms, can be found in any plasma physics
or fluid dynamics text.

The force density due to the interaction of charges with the electromag-
netic fields is

F EM = ρcE +
J × B

c
+ ∇pR, (2.29)

in which ρc is the density of charge, and as always throughout this book the
electric field is E, the magnetic field is B, the current density is J , and the
speed of light is c. This form of the Lorentz force (with the c) is expressed in
Gaussian cgs units. These are often though not always the most convenient
for practical work. Note that when a plasma is treated as a single fluid, the
current flows within the plasma but the flow of current does not require
motion of the single-fluid plasma. Of course, this is because the electrons
carry nearly all the current but nearly none of the momentum. Similarly,
the presence of a significant charge density does not require a significant
accumulation of mass. The force density F EM is typically needed when intense
laser light or other narrow-band radiation interacts with a plasma, and it will
play a role in our discussions of laser-produced plasmas. In contrast, when
thermal radiation interacts with dense plasmas, F EM ∼ 0, because under
these conditions the J × B force, after appropriate analysis and averaging,
equals −∇pR. Writing (2.27) as we did is a compromise that allows us to
avoid introducing new equations ex nihilo later in the text. In practice, we
will take F EM = 0 in radiation hydrodynamic systems and will let the terms
involving pR cancel when considering laser–plasma interactions.

The divergence of the energy flux, H, which enters (2.28), is

∇ · H = ∇ · [F R + (pR + ER) u + Q − σν · u] , (2.30)

in which the radiative energy flux is F R and the energy flux from thermal
heat conduction is Q. The penultimate term in (2.28), −J ·E, describes the
volumetric heating by the currents driven by electromagnetic waves. This
term is typically negligible except in any plasma penetrated by intense laser
light. Note also that the terms on the left-hand side of (2.28) can be re-
arranged into any of the forms discussed previously, and in particular into
the form of (2.14), with the addition only of source terms from the right-hand
side of (2.27) and (2.28). Alternatively, by including all the terms involving
radiation energy and radiation pressure one can develop an equation in the
form of (2.13), with ε replaced by (ε+ER/ρ) and p replaced by (p+pR), and
with source terms on the right-hand side.
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It helps develop understanding and intuition to discuss these equations
while considering a dimensional analysis in which we identify a characteristic
velocity of the system, U, and a characteristic dimension, L, which together
give a timescale L/U. To make scaling arguments one replaces u by U , ∇
by 1/L, and (∂/∂t) by U/L. There is a sound reason for this. In any profile
shaped as an exponential or linear function, the derivative is equivalent to
division by whatever scale length is present in the profile. (In any power-
law profile other than linear, the scale length is the distance variable itself,
such as x or r, to within numerical factors.) These scale lengths are not the
wavelength and frequency of local fluctuations but rather are the global scales
that define the overall system evolution. Given this identification, one can say
that the characteristic global, convective rate of change of momentum and
energy are ρU2/L and ρU3/L, respectively. If one divides any given equation
by the relevant one of these, then one obtains a dimensionless equation from
which one can assess the relative contributions of the various terms.

The use of a scalar pressure, p, is a simplification that is usually justi-
fied. The exception is systems involving solid-state materials. In this case
∇p must be replaced by the divergence of the pressure tensor. The material
experiences forces, for example, when the force per unit area in one direction
has a gradient in an orthogonal direction. The term involving pressure in
the energy equation represents the work of compression or expansion, often
referred to as pdV work. The fact that this work enters the energy equation
in this way implies that the specific enthalpy, h = ε + p/ρ, is often a useful
variable in describing how hydrodynamic systems behave. If one takes the
energy flux, H, to be zero and assumes the medium to be a polytropic gas,
one can recover (2.3) from (2.28). To evaluate the dimensionless scaling of
the pressure term, one takes ∇p ∼ p/L and divides by ρU2/L to find its nor-
malized amplitude, which is (p/ρ)/U2. This is proportional to the inverse of
the internal Mach number, U/cs. Thus, pressure gradients are of decreasing
importance as the internal Mach number increases.

The flow of heat is described in (2.30) as the divergence of a heat flux, Q.
The heat flux is very important in the heating of plasma by laser light, and
in some of the phenomena observed in plasmas produced from gases at a low
enough (less than atmospheric) pressure. It is not important in the behavior
of plasmas at near solid density or (for reasons discussed in Chap. 10) in the
behavior of most astrophysical plasmas. In many cases, the heat flux can be
related to the gradient in fluid temperature, T, using an equation of state to
relate T to p or ε:

Q = −κth∇T, (2.31)

in which the coefficient of heat conduction is κth. In a stationary fluid in which
only the temperature variation is important and ε ∝ T, this yields a diffusion
equation, ∂T/∂t ∝ −∇2T , so the heat transport from such a description
is essentially diffusive. For scaling arguments, it is useful to identify and
calculate the kinematic coefficient of thermal diffusivity, χ, which has purely
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the dimensions of a diffusion coefficient (step size squared / collision time).
The relation between χ and κth, developed in Landau and Lifshitz, is

κth = χρcp = χnkBγ/(γ − 1), (2.32)

in which cp is the specific heat at constant pressure and n is the density of
particles in the fluid, each of which is part of a distribution with the common
temperature T. The second equality gives the result for a polytropic gas whose
pressure is described by Boyle’s law. The Boltzmann constant is kB , which
can be combined with T to give kBT in energy units. In practical units, one
has

χ(cm2s−1) = 2 × 1021 [T (eV)]5/2

ln ΛZ(Z + 1)ni(cm−3)

= 3.3 × 10−3 A[T (eV)]5/2

ln ΛZ(Z + 1)ρ(g cm−3)
,

(2.33)

in which A and Z are the average atomic mass and ionic charge of the plasma
ions, lnΛ is the Coulomb logarithm discussed in Sect. 2.4, and the particle
and mass density of the ions are ni and ρ, respectively. These specific formulas
are based on the analysis of processes dominated by Coulomb collisions in the
book chapter by Braginskii(1965). Precise values in sufficiently dense plasmas
might be different.

To evaluate the dimensionless scaling of the heat transport term, one finds
∇·Q ∼ χρ(kBT )/(AmpL

2), divides by ρU3/L, and notes that kBT/(Amp) ∼
U2. The normalized amplitude of the heat transport term is thus the inverse
of the Peclet number, Pe = UL/χ. When Pe is large, heat transport can be
neglected.

These equations include several terms describing the effects of radiation.
Their derivation and more general forms are discussed in Mihalas and Miha-
las. Here we define these terms and consider when they matter. In general,
the radiative energy flux, F R. F R is in fact equal to S, the Poynting flux,
given by (E × B)c/(4π) (when we explicitly account for all charges and the
group velocity of the light is c), when S is evaluated for all the radiation
present. However, in practical applications one uses the traditional form of
S only when there are few waves in the problem, as for example in laser–
plasma interactions. When there is broadband or line radiation from emission
and absorption by dense plasma, one works instead with expressions for F R

that formally represent the integral of the Poynting flux, averaged over ap-
propriate time and spatial scales. For example, the radiative flux emitted by
a blackbody at a temperature T is σT 4. Fluids cool by emitting radiation.
They emit blackbody radiation when they are sufficiently opaque. Otherwise,
their cooling is often dominated by emission from atomic lines. We discuss
this further in Chap. 6. The radiative energy flux is often significant in high-
energy-density experiments. Note that −∇·F R is the rate of absorption, per
unit volume, of radiative energy by the fluid. In Chap. 8 we will consider
cases in which the absorption of laser light or the absorption of x-rays are
important.
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The terms involving ER and pR are important much less often, and it is
easy to show why. When the radiation and the fluid are in equilibrium with
a temperature T, then one has

pR = ER/3 = 4σT 4/(3c). (2.34)

The ratio of radiation pressure to plasma pressure is of order

4mpσT 4

3cρkBT
= 0.05T 3/ρ, (2.35)

in which the proton mass is mp and on the right-hand side T is in keV and ρ

is in g/cm3. Plastics often have densities of ∼ 1g/cm3, as does water, so one
can see from (2.35) that temperatures above 1 keV are required for radiation
pressure and energy to be important in the fluid dynamics. Radiation pressure
is dominant over material pressure in the shocked material in supernovae (at
somewhat lower density). The readers of this book may well be producing and
studying radiation-dominated plasmas using facilities now under construction
in the early 21st century.

Let us more formally explore the dimensionless scaling of the radiative
terms. The normalized radiation pressure term, for radiation in equilibrium
with the fluid, is pR/ρU2, which is approximately the same ratio as in (2.35)
(with kBT/mp ∼ U2). The energy flux term in (2.30) is larger than the
enthalpy (pR + ε) term by roughly U/c, and has a normalized value of
σT 4/(ρU3) ∼ mpσT 4/(ρkBTU) ∼ 1/Bo, in which Bo is known as the Boltz-
mann number (see Mihalas and Mihalas) and is small when the energy flux
due to radiation affects the dynamics significantly. Note that 1/Bo is c/U
times larger than the ratio in (2.35), which reflects the fact that radiative
energy fluxes become significant at temperatures much lower than those re-
quired for radiative pressures to be significant. We give specific examples of
this in Chaps. 6 and 7.

In some systems, the relative importance of radiation may need to be
evaluated by other measures. One can construct a radiation Peclet number
when one can identify a (kinematic) radiative thermal conductivity, χr ∼ �̄c,
where the mean free path �̄ might be due to bremsstrahlung interactions, to
Compton scattering, or to atomic emission and absorption . Alternatively,
one can compare the radiative cooling time, defined as the ratio of energy
content to blackbody energy flux, to the hydrodynamic time, L/U. There is
a further discussion of these points in Ryutov et al. (1999).

In general, fluids also possess internal friction. The collisions of the parti-
cles in the fluid resist its motion, a process known as viscosity. These effects
are generally small for plasmas, but we will see when we discuss turbulence
in Chap. 5 that they can have important consequences for the structures that
develop. In general, collisional viscous effects create forces in a given direction
due to gradients in velocity in orthogonal directions. This may be easiest to
see by imagining a simple shear layer, in which the velocity is entirely in a
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direction we label as z, but there is a gradient in velocity in the orthogonal
direction, x. When collisions move particles in the x direction, they cause a
net transport of momentum. This creates a force. The elements of the stress
tensor are

σνij = ρν

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
+ ζδij

∂uk

∂xk
, (2.36)

in which δij is the Kronecker delta, the kinematic viscosity is ν, and the
second coefficient of viscosity (often ignorable) is ζ. In the usual case that
particulate viscosity dominates, the kinematic viscosity is approximately the
mean free path squared divided by the collision time; the quantity (ρν) is the
dynamic viscosity. In vector notation, the stress tensor is

σν = ρν

(
∇u + (∇u)T − 2

3
(∇ · u) I

)
+ ζ (∇ · u) I, (2.37)

in which I is the identity tensor and the superscript T designates the trans-
pose. Most theories of turbulence are developed for incompressible fluids,
which have ∇ ·u = 0. In other cases, such as the damping of acoustic waves,
the compressible terms are essential. The gradient of the viscous stress is
experienced by the fluid as a force density.

The presence of the viscous stress also contributes to the energy content
of the fluid. Energy is transported as the stressed fluid moves. The contribu-
tion of viscosity to the increase in total energy, (∇ · σν) · u, includes both
contributions to the rate of increase in internal energy, of the form

ρν

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
, (2.38)

and to the rate of increase in kinetic energy (the remainder). For readers
interested in more detail, Hinze provides a derivation of this, while Landau
and Lifshitz consider only the kinetic energy.

In practical units, the kinematic viscosity is dominated by the ions (for Z
below about 6) and is given by

νi(cm2s−1) = 2 × 1019 [T (eV)]5/2

lnΛ
√

AZ4ni(cm−3)

= 3.3 × 10−5

√
A[T (eV)]5/2

ln ΛZ4ρ(g cm−3)
.

(2.39)

Here the definitions are those used for (2.33). In plasmas of a high enough
temperature, the photon viscosity can be important (in this case one adds the
kinematic viscosities). The kinematic photon viscosity (see Jeans, Thomas)
is

νrad(cm2s−1) ≈ l̄cσT 4

ρc3
= 3 × 10−9 A[T (eV)]4

Z[ρ(g cm−3)]2
. (2.40)
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Here �̄ is the photon mean-free path and other quantities have their standard
definitions.

To evaluate the dimensionless scaling of the viscous effects in the mo-
mentum equation, one takes ∇ ·σν ∼ ρνU/L2 and divides by ρU2/L to find
the normalized amplitude, which is 1/Re, where Re is the Reynolds num-
ber, Re = UL/ν. (The viscous effects in the energy equation have this same
scaling, as the extra factor of U from the viscous term in the energy equa-
tion divides out when one normalizes.) The Reynolds number is perhaps the
most well-known dimensionless parameter, because it has proven very use-
ful in characterizing qualitative regimes of turbulent behavior. When Re is
large, viscous effects can be ignored in (2.27) to (2.30). However, turbulence
phenomena may inherently involve viscous dissipation on some scale, a topic
discussed further in Chap. 5.

The momentum and energy equations also include the electromagnetic
force F EM and the plasma heating that results. The divergence of the radia-
tive flux, −∇·F R, which was already discussed, is the heating related to the
J × B force. The electrostatic force, ρqE, produces volumetric heating that
can be expressed as J · E. In the simple case that the current is resistive
and given by ηJ = E, where η is the resistivity, this power dissipation is
also resistive and of magnitude ηJ2. The heating need not be resistive in the
general case, however. For problems with an electromagnetic component, one
finds J ,E, and B, in addition to the fluid quantities, by solving the Maxwell
equations (see Sect. 2.3) in addition to the single-fluid equations. The dimen-
sionless parameter that in most circumstances relates to the scaling of these
forces is the magnetic Reynolds number, discussed in Sect. 2.3.2.

Finally, the force F other is present in (2.27) and (2.28) to allow for the
inclusion of other forces such as gravity.

2.3.2 Magnetohydrodynamics

In many plasma applications the magnetic field plays an essential role in the
dynamics, phenomena at frequencies a great deal larger than acoustic fre-
quencies are unimportant, and all the distances that matter are a very large
multiple of the ion orbit radius (see Sect. 2.5). In such cases, the fluid equa-
tions and the Maxwell equations can be reduced to a much simpler set of
equations, known as the equations of magnetohydrodynamics, or the MHD
equations. There are many cases in astrophysics for which MHD modeling
can be highly valuable, including the study of stellar atmospheres, planetary
magnetospheres, interplanetary and interstellar space, among others. Fur-
thermore, the relativistic generalization of the MHD equations is effective for
the description of pulsar magnetospheres, galactic jets, and other phenom-
ena. In some of these systems the magnetic field is dynamically important
and strongly affects the behavior of matter. Even when the magnetic field
is not dynamically important, over large volumes it can contain substantial
amounts of energy.
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We will need to consider such “low-frequency” magnetic fields and their
effects in some of the high-energy-density systems we discuss. The magnetic
field is essential to the use of Z-pinches and the accelerators that drive them
for high-energy-density physics. It is also important to the dynamics of rela-
tivistic high-energy-density systems.

The MHD equations in Gaussian cgs units are continuity,

∂ρ

∂t
+ ∇ · ρu = 0, (2.41)

momentum,

ρ

(
∂u

∂t

)
= −∇p +

J × B

c
, (2.42)

Ohm’s law,

E +
u × B

c
= ηJ , (2.43)

Faraday’s law,

∇× E = −1
c

∂B

∂t
, (2.44)

and Ampere’s law,
c∇× B = 4πJ (2.45)

The terms dropped from the more general equations (specifically (2.16)
and (2.18)) are small under the assumptions of MHD theory. The new equa-
tion here is Ohm’s law, which is expressed here under the same assumptions.
Both a more general version of Ohm’s law and the conditions and variants
of MHD theory are discussed in most texts on plasma physics.

This author is partial to the treatment in Krall and Trivelpiece. The re-
sistivity is

η =
νeime

nee2
=

4πνei

ω2
pe

sec, (2.46)

in cgs units; the conversion to SI units is 1 sec = 9 × 109 ohm-m. Here the
plasma frequency ωpe and the electron–ion collision frequency νei are both
defined in Sect. 2.4. The MHD equations are not a closed set of equations.
As in the case of the Euler equations, an equation of state or some other
assumption that permits one to relate density and pressure is necessary in
order to solve these equations.

The implications of the MHD equations for motion of the magnetic field
are important for the behavior of Z-pinches and of many astrophysical sys-
tems. If one substitutes for E in Faraday’s law using Ohm’s law and replaces
the current using Ampere’s law, one finds

∂B

∂t
=

ηc2

4π
∇2B + ∇× (u × B). (2.47)

For a fluid at rest, with u = 0, this is a pure diffusion equation for the
magnetic field. (The notion that magnetic field can diffuse is confusing to
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some students. It may help to note two things. First, the presence of a field
implies the presence of current, generally carried by particles. Second, the
particles are affected by collisions, which will tend to cause any current-
carrying region to broaden.) In this case the magnetic diffusion time τB,
with a system spatial scale of L, is

τB =
4πL2

ηc2
=

ω2
peL

2

νeic2
= 1.2 × 10−8 L2

mmT
3/2
eV

Z ln Λ
sec, (2.48)

in which Lmm is L in mm and TeV is T in eV, and the Coulomb logarithm lnΛ
is also defined in Sect. 2.5. The numbers implied by (2.48) are quite interesting
and are illustrated in Fig. 2.2. Plasmas with sub-mm scale lengths tend to
have 1–10 ns magnetic diffusion times, while plasmas with scale lengths of a
few mm and temperatures above 100 eV have µs-scale diffusion times. High-
energy-density systems that are magnetized can be found in either of these
regimes.
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Fig. 2.2. Contours of constant magnetic diffusion time, with contour levels from
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Z = 0.63

√
TeV (see Chap. 3)

If one uses the normalizing relations of the previous section to evaluate
the dimensionless scaling of (2.48), one finds that the relative magnitude of
the diffusion term scales with 1/Rm, where Rm is the magnetic Reynolds



36 2 Descriptions of Fluids and Plasmas

number defined as Rm = 4πUL/(ηc2). The magnetic Reynold number is
thus the ratio of the magnetic diffusion time to the hydrodynamic timescale
(L/U).

2.3.3 Single Fluid, Three Temperature

In principle one can identify a distinct “temperature” for the electrons, the
ions, and the radiation. “Temperature” is in quotes here because this concept
is routinely abused in practice in comparison to its pure definition in ther-
modynamics or statistical mechanics. The meaning of temperature in routine
practice is “the value of the temperature of an equilibrium thermodynamic
system that would have the same mean energy as that of the actual system
being described.” The actual system, which might be an energy distribution
of electrons or photons, typically is not in equilibrium and very often has
an energy spectrum that departs significantly from the equilibrium energy
spectrum. Identifying three temperatures in a plasma is a particularly para-
doxical action, because the thermodynamic definition of temperature only
strictly applies when they are all equal. Nonetheless, the “three-temperature”
description of a single-fluid plasma is particularly useful, especially for com-
puter simulations.

It is accurate to employ the single-fluid Euler equations with a single
temperature when two conditions apply: radiation must be either negligible
or dominant, and if radiation is negligible then the collisional coupling of the
electron and ion temperatures must be strong. Under most circumstances in
high-energy-density systems, the electrons are very strongly coupled to the
ions by collisions, having the same temperature and a local density that is
ne = Zni, where ni is the ion density and Z is the average charge. For any
given density, as the temperature of a system increases the coupling of the
electrons and the ions decreases. One of the first places one sees this is at
a shock front, because shock waves directly heat the ions. The ion energy
is shared with the electrons by collisions, and the electrons are in turn the
primary source of radiation. Figure 2.3 shows how the ion temperature can
deviate from the electron temperature at a shock front, after which collisions
equalize the two over some distance.

In a three-temperature, single-fluid description, (2.1) and (2.2) are un-
changed, although the pressure must now be determined by adding the con-
tributions from the three species – electrons, ions, and radiation – indepen-
dently. One then replaces (2.3) with one equation for each species. For each
species, the temporal and convective rate of change of temperature (or per-
haps energy density) are equal to the terms involving the sources of energy
from the spatial flow of heat within the species, from exchanges of energy
with other species, and from any external sources.
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Fig. 2.3. At shock fronts, the ion, electron, and radiation temperatures may differ
significantly. This shock wave is driven at ∼ 260 km/s through xenon gas of density
0.006 g/cm3. The ion temperature is shown in gray, the electron temperature is a
solid black curve, and the radiation temperature is the dashed curve

2.3.4 Approaches to Computer Simulation

Because of its emphasis on conceptual descriptions, this book includes rela-
tively little material on computer simulations. Yet it does include a number
of examples produced from computer simulations, and many readers will pro-
ceed to work with extensively with them. The purpose of the present section
is to provide some initial context regarding what computer simulations are
and some alternative approaches to them. We will also see that these are
limiting cases and that many other possibilities exist.

Those computer simulations of interest here seek to represent a physical
system using a much smaller number of computational elements. When one
includes the material particles and the photons (or electromagnetic proper-
ties, depending on the context), the simulations of interest in high-energy-
density physics typically represent the behavior of systems having a number
of elements within a few orders of magnitude of Avogadro’s number. In con-
trast, at this writing computers are able to access of order 1 GByte per node
and have of order 100 nodes. The implication is that the description of the
physical system must be an approximate treatment of the behavior of aggre-
gates of particles.
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Fundamentally one desires that the simulation follow the evolution of the
physical system in time and in space. The fundamental description of the
system is always based on a set of differential equations like those we have
discussed above. But the simulation must necessarily take one step backward
in the calculus, and work with a discretized set of equations. This always in-
volves dividing the system into components. In many cases these components
are physical cells, in which case the distance between cells establishes the spa-
tial increment used in defining derivatives. For example, if this distance in
one direction is δx, then the derivative of pressure across the boundary from
cell i to cell j is evaluated as ∂p/∂x = (p(j) − p(i))/δx. We discuss some
aspects of this below. Other aspects, such as whether to evaluate quantities
in the center of a cell or at cell boundaries (and why), we leave to deeper
discussions.

One also must establish the temporal increment used to determine how
the value of the variables changes in time. This is known as a timestep. It must
be small enough to give reasonably accurate dynamics yet large enough that
the simulation will finish in a reasonable time. One constraint on the timestep
is known as the Courant condition. The fastest wave of interest must cross no
more than one cell in one timestep, otherwise the simulation will artificially
retard the propagation of this wave. In cases of interest here, this wave is
usually a sound wave. If it has speed cs, then the Courant condition for the
timestep is δt < min(δx/cs).

A calculation (or portion of one) in which variables are advanced in time
based on increments found from the differential equation using a timestep
is described as an explicit scheme. Very fast waves, such as the light waves
that make up the radiation, are often treated by an implicit scheme. In this
case one realizes that the response of the radiation is very fast, reaching a
steady state so quickly that the dynamic behavior does not affect the hydro-
dynamics. As a result, one can find new values of the hydrodynamic variables
explicitly and then can solve for the new steady state of the radiation. This
is only one example of the use of an implicit scheme. There are many other
more complicated examples, but these are not common in high-energy-density
physics.

The simulator also faces the problem of figuring out how to divide up
the system of interest and deciding what equations to use to describe its
evolution. The most natural choice might be to divide the space of interest
into small regions. This is known as the Eulerian approach. For example, if
the system is contained within a volume of a cubic mm, one might divide
this volume into 109 cubic cells each 1 µm on a side. One could describe the
initial condition of the system by giving the variables a value for each cell.

On the other hand, we might choose to divide the matter into cells, so that
each cell permanently followed the evolution of a given quantity of material.
This is known as the Lagrangian approach. This would mean that the cells
could move as the material moved. The equations solved in this case would not
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be precisely those discussed above. Instead one would recast these equations
using the Lagrangian mass variable, often written as m, and defined by dm =
ρdx.

Simple Eulerian codes have the strength that they can handle arbitrary
motions of the material. Their main weakness is that they are inherently dif-
fusive. Once material enters a cell it is treated as though it is spread evenly
across the cell. Then in the next timestep some of this matter can move by
another cell. The result of enhanced mass diffusion is that materials inter-
penetrate one another far faster than they would physically. The result of
momentum diffusion is that the numerical viscosity is large, typically corre-
sponding to a Reynolds number of about 103. One way to minimize these
effects is to locate many cells at regions where materials meet or where gra-
dients are steep. This can be done by using a moving grid (the grid is the set
of lines demarking the cell boundaries). A more advanced approach is to use
an adaptive grid, which changes the distribution of the cells during the sim-
ulation. Examples of this at this writing include the FLASH hydrodynamic
code developed at the University of Chicago and the BATS-R-US MHD code
developed at the University of Michigan. A different advanced approach is to
explicitly track any material interfaces in a problem and to treat them dis-
tinctly so that the materials do not interpenetrate. This is done for example
by the FRONTIER code developed at SUNY Stony Brook.

Simple Lagrangian codes have the strength that they follow the motions
of the actual material, allowing an accurate description of complex systems
involving a number of components with different properties. Such systems
are common in high-energy-density experiments. Such codes allow no diffu-
sion, which is usually a strength but can at times be a weakness. They are
outstanding tools for one-dimensional modeling of experiments. They have
a major weakness in two or three dimensions, however, because they cannot
follow swirling (vortical) motions. When the material tries to form a vortex,
it tries to send matter from one zone through another zone. This could re-
sult in overlapping zones but usually causes one corner of a cell to overtake
another corner, so that the new cell is no longer rectangular but instead looks
like a twisted rectangle (called a “bow tie” because it looks like one). One
example of a Lagrangian code, used to produce a number of figures in this
book, is the commercially available code HYADES.

Simulators have been inventing improvements on these techniques for
decades; the description above is necessarily sparse. One can for example
make a code that incorporates both Lagrangian and Eulerian elements. Ex-
amples of such codes are the RAGE code developed at Los Alamos National
Laboratory and the CALE code developed at the Lawrence Livermore Na-
tional Laboratory.

In addition, beyond these core techniques the treatment of various specific
physical mechanisms can be a major challenge. For example, accurately treat-
ing the absorption of laser light requires implementing additional physical
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models along the lines of those described in Chap. 8. As another example,
the treatment of thermal radiation or line radiation is a major issue in all
these codes. We discuss some aspects of describing radiation in Chap. 6. The
book by Castor addresses at length the difficult problem of treating radiation
and hydrodynamics computationally.

A very different alternative, not useful for hydrodynamic systems but use-
ful for the relativistic behavior of small number of particles is the particle in
cell or PIC approach. In a PIC code one solves for the electric and magnetic
fields using a discretized system of differential equations in some way, but
one approximates the particles by using sample particles taken to represent
the behavior of all the particles within a sphere of one Debye length (see
Sect. 2.4) in radius. One explicitly follows the motion of all these sample par-
ticles within the environment of the electric and magnetic fields. A variation
on PIC, usually described as a hybrid code, is a code that treats the electrons
and perhaps some of the ions as a fluid, treating the remaining ions as PIC
particles.

2.4 Plasma Theories

High-energy-density systems are nearly always plasmas, in the sense that
they are ionized and that electromagnetic interactions at a distance can play
a role in their dynamics, at least in principle. Unfortunately, the theory of
plasmas, as covered in traditional texts such as Krall and Trivelpiece, has a
range of validity that only partly overlaps the regimes of high-energy-density
physics. Even so, plasma concepts have tremendous utility when they are
valid. This motivates a discussion of these issues, before we consider briefly
two traditional plasma descriptions: the two-fluid equations and kinetic
theory.

2.4.1 Regimes of Validity of Traditional Plasma Theory

Traditional plasma theory faces the challenge of describing a system com-
posed of mobile charged particles and capable of dramatic electrodynamic
effects. The particles quickly scurry over to surround any exposed charge, yet
also can carry currents that produce magnetic fields which can store immense
energy. The eruptions on the surface of the sun are an example of the poten-
tial consequences. The shielding of exposed charges is one of the fundamental
aspects of plasmas. Yet even as the charges try to cluster about one another,
their thermal motions limit the clustering. The competition between these
gives rise to a characteristic shielding distance, known as the Debye length.
The Debye length is defined in Gaussian cgs units by

λ−2
D = 4πe2

(
ne

kBTe
+

∑
α

nαZ2
α

kBTα

)
, (2.49)
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in which the sum is over all ion species, the subscript e designates electrons
while α designates an ion species, n is a number density, T is a temperature,
Z is a number of unit charges, kB is the Boltzmann constant, and e is the
electronic charge (4.8 × 10−10 statcoul here). On the one hand, when one
considers fast enough timescales, the ions cannot move and the electron Debye
length,

λDe =
√

kBTe

4πnee2
, (2.50)

(in the same units) becomes relevant. This is the only Debye length defined in
the NRL Plasma Formulary, among other references. In addition, traditional
plasma texts often assume all plasmas to be pure hydrogen, replacing the 4
with an 8 in (2.50). On the other hand, there are cases in dense plasmas when
ion–ion shielding determines the behavior, as for example when the electrons
cluster poorly because they are Fermi degenerate (Sect. 3.1.3). Then the ion
Debye length,

λ−2
Di = 4πe2

∑
α

nαZ2
α

kBTα
, (2.51)

(in the same units) comes into play.
High-energy-density plasmas, like most plasmas, are quasi-neutral, so that

ne =
∑
α

nαZα. (2.52)

In addition, in such plasmas collision rates are large (Sect. 2.4.2) so the
temperatures of the particle species are usually equal and designated by T.
When this is the case, one can use the standard definition of the effective
charge, Zeff , as

Zeff =
∑

α nαZ2
α∑

α nαZα
=

∑
α nαZ2

α

ne
, to write (2.53)

λD =

√
kBT

4πne(1 + Zeff )e2
, (2.54)

again in Gaussian cgs units. This is a form we will use in later discussions.
For calculations involving binary collisions, Zeff is the appropriate average
charge, while for calculations involving particle counting, Z = ne/ni is the
appropriate average charge.

The Debye length arises quite naturally in the most-sophisticated devel-
opments of plasma theory. It also can be found from a simple calculation that
can be used to highlight the limitations of traditional plasma theory for us.
We consider a two-species plasma, in which the ions have charge Z, and we
also suppose that the particles are distributed by classical statistics with a
common temperature T . This implies that the density of particles with charge
q, at a location with a potential φ relative to the potential at some reference
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location is proportional to exp[−qφ/(kBT )]. Then the charge density ρc in
the vicinity of an ion at x = 0 is

ρc = Zeδ(0) − nee exp
[

eφ

kBT

]
+ nieZ exp

[
−eZφ

kBT

]
. (2.55)

If we assume that |qφ| � kBT and that the plasma is quasi-neutral, then this
becomes

ρc = Zeδ(0) − e2φ

kBT

(
ne + niZ

2
)

= Zeδ(0) − φ

4πλ2
D

. (2.56)

At this point we can write Poisson’s equation in spherical coordinates, as-
suming that the charges are distributed with spherical symmetry, as

1
r2

d
dr

(
r2 dφ

dr

)
= −4πZeδ(0) +

φ

λ2
D

, (2.57)

which (in cgs units) has the solution

φ =
Ze

r
e−r/λD . (2.58)

Homework 2.6

Generalize the above derivation to a plasma with an arbitrary number of ion
species, each of which may have a distinct temperature.

Equation (2.58) displays the standard result that the potential of any
given charge falls away exponentially faster in a plasma than it would in
vacuum. But what is relevant to our interests are two aspects of this deriva-
tion. First, (2.55) only makes sense in the end if there are numerous particles
within a sphere whose radius is the Debye length. Second, the key assumption
in this derivation is that |qφ| � kBT , which must be violated if the particles
are cold enough. These turn out to be related, and we will explore them in
turn.

The number of particles in a Debye sphere, in a quasi-neutral plasma,
is ne(1 + 1/Z)(4π/3)λ3

D. The inverse of this, sometimes defined without the
numerical coefficients, is a fundamental expansion parameter for traditional
plasma theory (see Krall and Trivelpiece). A plasma is known as an ideal
plasma when the number of particles in a Debye sphere can be taken to
approach infinity. In this case collective effects, involving all the particles,
remain, while effects relating to particle correlations vanish. Figure 2.4 shows
the number of particles in a Debye sphere in the high-energy-density regime.
There are not many. The number varies from tens of particles in the upper-left
corner of the regime shown to less then 0.01 particles in the lower-left corner.
In the lower-left corner the electrons are Fermi degenerate (Sect. 3.1.3), which
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Fig. 2.4. Contours of the number of particles in a Debye sphere. The contours
show 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 particles, and increase to the upper left. (a) A
high-Z plasma with Z = 0.63

√
TeV (see Chap. 3). (b) A low-Z plasma with Z = 4

reduces even further their ability to shield the ions. The ion density in a
typical solid is also shown. It is evident from this figure that high-energy-
density plasmas are almost never ideal plasmas.

Now consider the assumption that |qφ| � kBT. We can take a typical
value of φ to be the electrostatic interaction of two particles at their aver-
age spacing. We find the average spacing by giving each particle a spheri-
cal volume of radius rav, so that the average spacing is 2rav. Thus we take
4πr3

av/3 = 1/[ne(1 + 1/Z)]. Then we find

φ =
k1Ze

2rav
=

k1Ze

2

(
3

4πne(1 + 1/Z)

)1/3

, (2.59)

so that the assumption becomes

|qφ|
kBT

=
k1Ze2

2ravkBT
=

k14πne(1 + Z)e2

2kBT

Z/(4π)
ravne(1 + Z)

=
λD

6rav
g =

g2/3

6
� 1,

(2.60)
where g is the inverse of the number of particles in a Debye sphere, 1/g =
ne(1 + 1/Z)(4π/3)λ3

D. Thus, the two requirements of the Debye-shielding
analysis are intimately connected. It is no surprise that this assumption (2.60)
is violated over about half the parameter space shown in Fig. 2.4. The ratio
|qφ|/kBT is often known as the strong coupling parameter, Γ . Salzman dis-
cusses this parameter, which he calls the plasma coupling constant, at more
length. Like the Debye length, Γ comes in different flavors depending upon
whether one evaluates ion–ion coupling, ion–electron coupling, or electron–
electron coupling. To be precise, one must evaluate Z and rav for a specific,
chosen set of particles. The most common type of Γ found in the literature
is that for ion–ion coupling. Across much of the parameter space of Fig. 2.4,
the ions are strongly coupled but the ions and electrons are not. In plasmas
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Fig. 2.5. SNR 1006. X-ray image from the ROSAT satellite, the remnant of the
widely observed supernova from A.D. 1006. The image convolves emission in several
energy bands. The brighter emission at the upper left and lower right is attributed to
cosmic ray acceleration. Image courtesy of University of Leicester, X-ray Astronomy
Group http://wave.xray.mpe.mpg.de/rosat/calendar/1997/jul

with many electrons per ion, the result is that the ions will be well shielded
from one another and their nominal strong coupling will not be so important.
Even so, the pressure and energy of the plasma will depart from their ideal-
gas values across much of this regime. We discuss this further in Sect. 3.3.2.

2.4.2 The Two-Fluid Equations

Figure 2.5 shows the supernova remnant SNR 1006. At the edges of this
image one can see the shock wave produced as the disturbance caused by
the remnant propagates outward into the interstellar medium. As a first level
of description, one can treat this shock wave as a hydrodynamic structure
using the Euler equations, as we discuss further in Chaps. 4 and 5. And there
are weaker shocks and other phenomena within the solar system that can be
modeled with fair accuracy using the MHD equations. But in fact these are
collisionless shocks. Structures in the magnetic and electric fields are essential
to their existence. The electrons and ions interact with them very differently.
In addition, there is a third group of particles that often are analyzed as a
separate species – the energetic ions accelerated by such shocks, some of which
eventually become cosmic rays. This is an astrophysical example of a system
in which a multi-fluid treatment is essential to obtain an accurate description.
In the laboratory, multi-fluid treatments are also required to describe the
interaction of an intense laser with a plasma, discussed further in Chap. 8.
Here we discuss two-fluid models, the scaling of collisional coupling, and the
electron plasma oscillations that occur in most plasmas.

As density decreases or temperature increases, the collisional coupling of
the electrons and ions becomes smaller. Eventually the electrons and ions
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begin to act independently, and some phenomena appear in which there are
important differences in their densities. Most of these phenomena can be
successfully described using continuity and momentum equations like the
following for each of the species in the plasma:

∂n

∂t
+ ∇ · (nu) = 0, (2.61)

and

mn
∂u

∂t
+ mnu · ∇u = nq

(
E +

u

c
× B

)
−∇p −

∑
l

mn(u − ul)νjl, (2.62)

in which we would add a subscript (often e for electrons and i for ions) to
n, v,m, p, and q to correspond to each species, E and B are the electric and
magnetic fields, respectively, and we discuss the sum shortly. Equation (2.61)
is obvious, but there are some new features in the right-hand side of (2.62) by
comparison to (2.3.2). The electromagnetic effects now appear in the form
of the complete Lorentz force density, nq(E + u × B/c) in Gaussian cgs
units. As a result, and unlike the case of the MHD theory, the two-fluid
theory describes phenomena in which there is a dynamic or static electric
field. Examples include plasma oscillations, discussed below, and the Debye
sheath that forms at bodies immersed in plasmas. In addition, the final term
on the right-hand side describes the momentum exchange with other species.
The sum is over the other species in the plasma, designated by l, and the
rate of momentum loss through interaction of the species described by the
equation and the other species is νjl. (Here j would be replaced by e, i, or
some other designation as appropriate.) We discuss this momentum loss, or
drag, term further below.

Successful analysis using these equations depends upon having a quali-
tative sense of the differences between electron and ions. (I have yet to see
a student in a qualifying exam who did not know the approximate ratio of
electron to ion mass, but I regret to report that I did encounter one student
who seemed to have no sense of the implications of this. He did not pass.)
Two very important points are that the electrons nearly always move much
faster than the ions, but the momentum of an ion is huge compared to that of
an electron. A related point is that the radius of the ion orbits in a magnetic
field is much larger than that of the electron orbits.

A simple implication of (2.61) and (2.62) is the presence of electron plasma
waves in plasmas with weak enough collisions. Suppose that the final term
in (2.62) can be ignored and that we are looking for very fast, fluctuating
phenomena so that the ion density can be assumed to be fixed and unvarying.
Also suppose there is no ambient E or B. Then by linearizing these two
equations, taking the partial derivatives in time of the first and the divergence
of the second, then simplifying, we find

∂2ne1

∂t2
=

neoe

me
∇ · E1 +

1
me

∇2pe1. (2.63)
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Homework 2.7

Derive (2.63).

This particular equation helps one see the physics of the wave we are
finding. It is a purely longitudinal wave like an acoustic wave, in which the
fluctuating electric field and compression by the electron pressure both cause
the electron density to vary. The first term on the right-hand side can be
evaluated from Poisson’s equation (Sect. 2.2), which gives in this case

∇ · E1 = 4π(Zenio − eneo − ene1), (2.64)

in which the first two terms in parentheses cancel because the plasma is quasi-
neutral. Then assuming the electrons behave as a polytropic gas with index
γe, we obtain a wave equation

(
∂2

∂t2
+ ω2

pe −
γepeo

neome
∇2

)
ne1 = 0, (2.65)

in which we have introduced the electron plasma frequency,

ωpe =
√

4πe2neo/me = 5.64 × 104√neo rad/s, (2.66)

with neo in cm−3 and using Gaussian cgs units. Equation (2.65) describes
waves known as electron plasma waves. By comparison with the derivation of
acoustic waves in Sect. 2.1, one can see that the pressure term in (2.65) will
introduce terms involving the wavenumber into the dispersion relation. For
high-frequency waves which involve adiabatic compression of the electrons,
there is only one degree of freedom and γe = 3. This result can also be
confirmed using kinetic theory (Sect. 2.4.3). Then with peo = neokBTe, where
Te is the electron temperature, one finds from 2.4.17 a dispersion relation

ω2 − ω2
pe − 3

kBTe

me
k2 = 0. (2.67)

Equation (2.67) is generally known as the Bohm–Gross dispersion relation.
In the limit that Te or k are small, one obtains the so-called cold-plasma
oscillations, with ω = ωpe. This emphasizes that plasma with weak collisions
tend to sustain oscillations at ω ∼ ωpe. The discussion here is introductory. A
lot more can be said about electron plasma waves and their interactions with
other waves. The reader who needs to work with these waves seriously should
consult plasma-physics books on their damping and laser–plasma-interactions
books on their interactions.

We now return to the final term in (2.62) and discuss collisional momen-
tum exchange between species. Note that this term gives a rate of change of
momentum that is measured with respect to the momentum of the designated
species. As a result, the coefficient νjl is not symmetric in the exchange of j
and l. This is trivial to visualize, if one imagines for example that one throws
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bowling balls into a room full of bouncing ping–pong balls. The effect of the
ping–pong balls is to make tiny, and perhaps negligible changes in the mo-
mentum of the bowling balls relative to their initial momentum. In contrast,
the bowling balls make enormous changes in the momentum of those ping–
pong balls that interact with it. Mathematically, with b for bowling balls and
p for ping–pong balls, one can see that νbp � νpb. Similarly, for electrons and
ions in (2.62), νie � νei. In fact, the final term in (2.62) is nearly always
negligible in the ion equation, but often important in the electron equation.
Let us consider further νei, which enters the electron equation.

First recall some of the fundamental relations involving collisional inter-
actions. If particles of type a and density na, having a single, fixed relative
velocity, vab = |va − vb|, are interacting with particle of type b and density
nb, and the interaction cross section at this velocity is σab, then the mean
free path for this interaction is

λmfp = 1/(nbσab), (2.68)

the interaction time is 1/(nbσabvab), and the interaction rate is

νab = nbσabvab. (2.69)

In many cases, including the one of interest here, the interaction cross section
depends upon vab and vab is not fixed. In this case, describing the distribution
in velocity of the two species by distribution functions fa(va) and fb(vb),
normalized to unity so that e.g.

∫
fz(va)dva = 1 with the integral over all

velocities, one has in general

νab = nb

∫ ∫
fb(vb)fa(va) × σab (|va − vb|) × |va − vb|dvadvb. (2.70)

Next consider some of the specific properties of Coulomb collisions in plasmas.
They involve the interaction of particles in the presence of an inverse-square-
law force. This is the Rutherford scattering, with results that are typically
derived in either classical mechanics or plasma-physics texts. The force be-
tween two isolated particles extends to infinity, but the presence of other
particles creates a shielding effect, so that the collision only has an effect
until the particle separation reaches a distance comparable to this shielding
distance. The net result is that the cross section for momentum transfer is

σab = 4π ln Λ

(
qaqb

m∗vab

)2

, (2.71)

in which m* is the reduced mass mamb/(ma + mb) and ln Λ is the Coulomb
logarithm, which accounts for the effects of shielding. We refer the reader
to any plasma-physics text for a partial discussion of lnΛ, and to the book
by Shkarofsky et al. for a complete one. Such discussions are lengthy, as
a number of factors must be considered. In addition, in high-energy-density
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systems the shielding distance often becomes so small that ln Λ approaches its
limiting small value of order 1. In high-energy-density research, it is generally
sufficient to take

ln Λ = Max [1, {24 − ln (
√

ne/Te)}] , (2.72)

with ne in cm−3 and Te in eV.
The most important point about (2.71) is that the cross section is propor-

tional to 1/v4
ab, so that the contribution to the overall rate at each velocity

is proportional to 1/v3
ab. Thus, pairs of particles having low relative veloc-

ities dominate the effects of Coulomb collisions, and high-velocity particles
contribute little. One consequence of this is that all Coulomb processes, from
momentum exchange to ionization to excitation, become much weaker as the
plasma temperature increases.

The net result of the integral in (2.70), giving the change of electron
momentum by interaction with ions, when evaluated for Maxwellian distrib-
utions of particles, is

νei =
1

3(2π)3/2

Zω4
pe

nev3
e

ln Λ = 3 × 10−6 ln Λ
neZ

T
3/2
e

(1/s), (2.73)

in which ve =
√

Te/me and on the right ne is in cm−3 and Te is in eV.
Figure 2.6 shows contours of constant νei/ωpe as a function of ne and Te.
Two different evaluations of Z are used. Part (a) shows results for Z = 3.5,
typical of low-Z materials such as plastic. Part (b) shows results for Z =
0.63

√
Te, typical of higher-Z materials as is discussed in Chap. 3. Wherever

this quantity exceeds 0.1, any electron plasma wave will damp within 10
cycles, i.e., on femtosecond timescales. (The drag term at the end of (2.62)
introduces a term proportional to ∂n/∂t into the wave equation, which in
turn introduces an imaginary term into the dispersion relation so that the
implied frequency is no longer purely real, which leads to damping.) One
can see that under most high-energy-density conditions this damping is very
strong.

Homework 2.8

Derive a replacement for (2.65), keeping an appropriate version of the drag
term at the end of (2.62).

One is at times interested in the collisional mean free path. One may need
for example to assess whether heat transport might matter or to compare the
size of a computational zone to this distance. This can be estimated as

λmfp = ve/νei = (1/νei)
√

Te/me. (2.74)
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Fig. 2.6. Curves of constant collisionality, νei/ωpe, as labeled, for low-Z (left) and
high-Z (right) plasmas

2.4.3 The Kinetic Description

All of the above equations are strictly correct only if the velocity distributions
of all the particles are Maxwellian. This means that the number of particles
of species s within an interval dv around v is given by

fs(v) =
(

ms

2πkBTs

)3/2

exp
(
−msv

2

2kBTs

)
, (2.75)

in which the temperature and mass of species s are Ts and ms, respectively.
Any velocity distribution must be properly normalized. In this case the nor-
malization is ∫

fs(v)dv = 1. (2.76)

The reader should note that it is common for fs(v) to be normalized to 1,
as shown here, or to the particle density, ns. In the literature the specific
normalization is often not defined; one can even find papers that switch nor-
malizations in the course of their work. If the particle distributions are not
Maxwellian, but the interactions of interest are determined by the average
energy that they carry, then the fluid and other equations above are accu-
rate, though perhaps with some changes in the value of some coefficients and
certainly with a nonthermodynamic definition of “temperature”, as discussed
in Sect. 2.3.3.

In addition, there are circumstances in which it is an energetic “tail”
on the distribution function that produces the phenomena of interest. At low
energies the distribution usually has a Maxwellian shape. Whenever there are
waves or instabilities that affect the particles, one frequently sees a surplus
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of particles at energies above the thermal energy. This is the tail. Laser–
plasma instabilities, discussed in Chap. 8, typically produce such exponential
tails (though not for reasons that are well understood). In space systems and
astrophysics, one typically encounters power-law tails. An important example
of this is the distribution of cosmic rays, whose flux falls as 1/v3, implying a
distribution function scaling as 1/v4. In other cases of interest, such as the
transport of heat into a target (Sect. 8.1.5), the structure of the tail is more
complicated.

When distributions of energetic particles, or any other deviation from
Maxwellian distributions, are important to the dynamics of interest, then to
investigate their effects one must work with the Boltzmann equation:

∂fs

∂t
+ v · ∇fs +

F

ms
· ∇vfs =

(
δfs

δt

)
C

, (2.77)

in which F is the sum of all forces acting on each particle and ∇v is the
gradient operator in velocity space, sometimes written as ∇v = ∂/∂v. The
symbol F is typically the Lorentz force, q(E + (v/c) × B), but also would
include any other forces that are present. Equation (2.77) is fundamentally
a continuity equation relating the local rate of change of fs in time, the flow
of fs within the six-dimensional phase space of x and v, and the source of fs

on the right-hand side. Particles suddenly appear in an element of velocity
space as a result of collisions, that the right-hand side of (2.77) is the rate
of change of fs due to collisions. This term is discussed in detail in the book
by Shkarofsky et al. When the right-hand side is zero, (2.80) is known as
the Vlasov equation. It effectively describes many phenomena in collisionless
plasmas.

2.5 Single-Particle Motions

Magnetic fields play a small role in most nonrelativistic high-energy-density
systems. Even so, at the boundaries of such systems magnetic fields can be
important. In addition, they are important in some astrophysical systems
that one might hope to understand with the aid of high-energy-density ex-
periments. Moreover, by using high-energy-density tools and working at lower
mass density, one might hope to examine some issues in energetic, magne-
tized plasmas. And finally, relativistic high-energy-density systems often in-
herently involve magnetic fields. For all these reasons, understanding some
simple aspects of particle motion in magnetic fields is important for those
who work with high-energy-density systems. Those readers who have studied
plasma physics have this knowledge. For those readers with no background
in plasma physics, this section is included. In Chap. 11, some aspects of
relativistic motion are discussed.

The motion of a single particle is in general described by Newton’s second
law, which in nonrelativistic form reads
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m
dv

dt
= q

(
E +

v

c
× B

)
+ F , (2.78)

in which the particle velocity, mass, and charge are v, m, and q, respectively,
and the nonelectromagnetic forces are designated by F . Because of the cross
product in the Lorentz force, it makes sense to write v as a sum of components
perpendicular and parallel to the magnetic field, B, as

v = v⊥ + v||. (2.79)

The equation of motion along B is then

m
dv||
dt

= qE|| + F ||, (2.80)

in which the ‖ subscript designates the component of a vector that is parallel
to B. Likewise the ⊥ subscript designates components perpendicular to B.

The motion perpendicular to B is more complex but fortunately can
be separated into distinct elements. We find the first of these by assuming
E = F = 0. The equation of motion perpendicular to B is then

m
dv⊥
dt

= q
v⊥
c

× B. (2.81)

One sees that the derivative of v⊥ is inherently perpendicular to v⊥, and
is constant in magnitude. This circumstance describes circular motion. One
traditionally identifies the center of the circle as a line of magnetic field, and
says that the particle “orbits” this field line. The radius of this orbit is known
as the Larmor radius, and is given by an equation that sets the force involved
in circular motion equal to that from (2.81), as follows:

mv2
⊥

rL
= q

v⊥B

c
, (2.82)

which gives
rL =

mv⊥
qB/c

(cgs) =
mv⊥
qB

(SI). (2.83)

The frequency of the orbit is known as the gyrofrequency and (in radians per
second) is given in cgs units by qB/(mc) or in SI units by qB/m.

To find the next element of the particle motion, suppose E is nonzero and
write the particle velocity as

v = vg + vd + v||, (2.84)

in which we understand that the gryomotion is fully included in vg and that
the vector vd describes the new, “drift” motion due to the electric field but
still perpendicular to B. In this case the equation of motion becomes

m
dvd

dt
= q

(
E +

vd

c
× B

)
. (2.85)
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To find the effect of E in the direction perpendicular to B, we cross this
equation with B, obtaining with the aid of a vector identity

m

q

dvd

dt
× B = (E × B) +

vd

c
B2. (2.86)

The solution of this equation, for constant fields so vd is constant in time, is

vd = c
(E × B)

B2
cgs. (2.87)

Thus, the particles drift in a direction perpendicular to both E and B. An
interesting aspect of this behavior is that both positive and negative particles
drift in the same direction. A similar derivation shows that the drift velocity
associated with an arbitrary force F is

vd =
c

q

(F × B)
B2

cgs. (2.88)

If such a force is not charge-dependent, then the resulting drift will drive a
current.

Homework 2.9

Find the sizes and directions of the particle orbits. Explain from fundamental
laws of electromagnetics why their direction is as it is. Show pictorially why
the E × B drift moves particles in the same direction.

In the common event that the magnetic field has a spatial gradient, this
also produces a drift, known as the grad B drift. In the typical case the
gradient is small along B, so that

∇B · B = 0. (2.89)

Identifying the magnetic field at the center of the orbit as Bo, the field locally
experienced by the particle is then

B = Bo + rL · ∇B, (2.90)

so that the equation of motion perpendicular to B for E = F = 0 is

dv⊥
dt

=
q

m

v⊥
c

× Bo

(
1 +

rL · ∇B

Bo

)
. (2.91)

If we now write v⊥ as

v⊥ = vd + vg = vd +
q

m
rL × Bo, (2.92)
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where we have written the orbital velocity in terms of rL, then (2.91) be-
comes, by substitution and using a vector identity,

dv⊥
dt

= −
(

qBo

m

)2

rL

(
1 +

rL · ∇B

Bo

)
+

q

m
vd × Bo. (2.93)

This is still an instantaneous equation, but we are in fact interested in the
average behavior over many particle orbits. We average this equation over an
orbit, noting that

〈rL (rL · ∇B)〉 =
1
2
r2
L∇B. (2.94)

Then by taking the cross product of the averaged equation with B, as before,
we find the grad-B drift velocity,

vd =
1
2

mv2
⊥

q

B ×∇B

B3
. (2.95)

This concludes our brief summary of charged-particle drifts in magnetic fields.
One other aspect of particle motion is worth mentioning. Because ∇ ·

B = 0, any change in the magnitude of B along the direction of the initial
field line is also accompanied by a change in some other component of B.
The simplest example occurs when initially straight magnetic field lines are
squeezed together, for example by a magnetic coil, producing an inward radial
component to B. The Lorentz force due to this second component of B either
accelerates or decelerates the particle in its orbit and in its motion along B.
Since magnetic forces do no work, this does not change the total energy of
the particle, but it does redistribute the energy between motion along B and
orbital motion.

One can analyze the behavior in more than one way. On the one hand, one
can consider explicitly the forces on the particle and determine the particle
motion. On the other hand, one can note that the particle has a magnetic
moment because its motion represents the flow of current around a circular
loop, and can determine the effects of the electric field induced around the
loop due to changes in B. (This second calculation is easier to do.) In either
case, one finds that the magnetic moment of the particle remains constant,
a result that can be expressed as

1
2

mv2
⊥

B
= constant. (2.96)

The result of (2.96) is that as B increases, so does v⊥. This continues until all
the energy of the particle is carried by the orbital motion, at which point the
particle will change directions and begin moving in the direction of decreasing
B. A magnetic structure in which magnetic field increases to a maximum,
causing the reflection of many of the particles incident upon it, is known as
a magnetic mirror.
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The discussion of energy in Sect. 2.1 was entirely based on the notion of
a polytropic gas. The speed of sound waves, which we found by examining
fluctuations in density and velocity, was found to depend upon the variation
of pressure with density. These observations reveal the tip of an iceberg,
and the iceberg is known as the closure problem. The fluid equations can be
derived by taking moments of the velocity distribution of the particles, as is
done for example in graduate courses in plasma physics. Here we designate
particle velocities by v and fluid velocities by u. Thus the continuity equation
is the moment taken with v0, the momentum equation is the moment with v,
the energy equation is the moment with v2, the heat transport equation is the
moment with v3, and one can keep going. The closure problem arises because
every moment equation contains terms involving the next higher moment.
Equation (2.1) involves the momentum (ρu), (2.2) involves the energy density
(as p), and (2.3) would involve the heat flux had we not assumed it to be
zero. Because we assumed the heat flux to be zero, (2.1) to (2.3) form a
closed system of equations. In general, one obtains a closed system of fluid
equations by assuming that some moment of the velocity distribution is either
zero or a known function of lower moments. As another example, sometimes
the energy equation is expressed as an equation for temperature and the
heat flux is written as −κth∇T , which also produces a closed system of three
equations.

Both the polytropic gas and this last example illustrate an important
point – to successfully solve the continuity, momentum, and energy equa-
tions, even numerically, one must typically understand the relation among
internal energy, pressure, density, and temperature. The equations that spec-
ify these relations are known as equations of state, symbolized as EOS. We
discuss them in this chapter. We begin by discussing simple equations of
state, which are often useful in limited regimes and for estimates generally.
We end this section with a more extensive discussion of electrons, because
understanding their behavior is essential to understanding the properties of
matter in high-energy-density systems. In Sect. 3.2 we take up two issues.
We first discuss the degree of ionization, because high-energy-density plas-
mas are always somewhat ionized but only occasionally fully ionized. This
enables us to address two of the issues raised in Chap. 2. These are how the



56 3 Properties of High-Energy-Density Plasmas

ions behave when the Debye length is less than the size of an atom, and how
strong Coulomb interactions manifest themselves in thermodynamic behav-
ior. This in turn will enable us in Sect. 3.3 to consider the thermodynamics
of ionizing plasmas. By the end of this section we will understand the funda-
mental elements of the equations of state of high-energy-density plasma. At
this point, we will have completely addressed the problem identified in Chap.
2 – that the assumptions of traditional plasma physics do not apply to high-
energy-density plasmas. We proceed to discuss briefly some more complicated
equations of state that are important to computer simulations (Sect. 3.4), to
discuss the relation of EOS measurements in the laboratory to astrophysical
questions (Sect. 3.5), and specific experimental methods for measuring EOS
(Sect. 3.6).

Before turning to the details, consider this example of the relevance
of EOS to astrophysics. Figure 3.1 shows a theoretical phase diagram for
hydrogen, and also shows where three interesting objects lie in this diagram.
The objects are Jupiter, a typical brown dwarf, and a typical dwarf star.
The phase diagram is a model, and the location of the curves depends on
the model. These might be wrong, but the range of pressures is correct. The
phase diagram of hydrogen includes a region of molecular hydrogen, of atomic
hydrogen, and of so-called metallic hydrogen in which the electrons are free to
move and to conduct electricity. Metallic hydrogen carries the currents that

Fig. 3.1. Phase Diagram of hydrogen. The dark curve segment shows a theoret-
ical plasma phase transition. Dotted curves show the theoretical path of various
astrophysical objects. Adapted from Saumon et al., Astrophys. J. Suppl. 99, 713
1995
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Fig. 3.2. A Type Ia supernova produced the bright spot of emission near the edge
of this galaxy. Credit: Jha et al., Harvard Center for Astrophysics

sustain Jupiter’s large magnetic field. These regions have boundaries, which
might on the one hand be gradual transitions and might on the other hand
be abrupt phase transition. In this particular model, the atomic-to-metallic
transition is a phase transition. Evidently a thorough understanding of the
EOS will be essential to thoroughly understand astrophysical objects.

3.1 Simple Equations of State

Figure 3.2 shows an image of a Type Ia supernova explosion. This explosion
is brighter than the entire galaxy that surrounds it, which is not uncommon.
Current understanding is that a Type Ia supernova occurs when a white dwarf
star, accumulating mass from its environment, reaches a total of just over 1.4
solar masses. This is enough for gravitational forces to overcome the pres-
sure of the degenerate electrons (Sect. 3.2), which initiates the gravitational
collapse of the star. However, the star does not fully collapse. Instead, the
energy released as collapse begins heats the C and O that make up the white
dwarf, which initiates the violent fusion burning that blows the star apart.
The properties of the star as its explosion begins are very relevant to this
chapter. Its outer layers are accurately described using the polytropic equa-
tion of state for an ideal gas (Sect. 3.1.1). To describe its core, one must use
the Fermi-degenerate equation of state (Sect. 3.1.3). And the region heated
by the fusion burning requires an equation of state for a radiation-dominated
plasma (Sect. 3.1.2). These simple models introduce the relevant regimes and
concepts; detailed treatment of white dwarf stars and Type Ia supernovae
requires more-sophisticated models.

3.1.1 Polytropic Gases

The polytropic equation of state (EOS) is a useful approximation under many
circumstances. At a high enough temperature, any material will behave like
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an ideal gas. In practice, once the temperature is far enough above the value
required to fully ionize any material, its behavior is well described by a poly-
tropic EOS. As we shall see, even radiation-dominated plasmas can be de-
scribed that way. Moreover, for conceptual and analytic calculations we often
use a polytropic description even when it is not precisely accurate. The fol-
lowing equations of state apply to a polytropic ideal gas:

p =
ρ(1 + Z)kBT

Amp
, (3.1)

c2
s = (∂p/∂ρ)s = γp/ρ, (3.2)

and
ρε = p/(γ − 1). (3.3)

Here the specific internal energy is given by ε, and kB and T are the Boltz-
mann constant and the temperature, respectively. The average level of ion-
ization is Z, the average atomic mass of the ions in the fluid is A, and the
proton mass is mp. In the present discussion, we assume both Z and γ to be
constant. This is often a poor assumption in high-energy-density physics, as
will become clear in later sections.

Equation (3.1) can be recognized as essentially Boyle’s law. The impor-
tance of (3.2) was seen in the discussion surrounding (2.6) to (2.9), and we
note that here the partial derivative is taken at constant entropy, designated
here by the subscript s. If the gas is an ideal gas with n degrees of freedom,
then γ = 1 + 2/n. Then these equations imply that the energy per parti-
cle is (n/2)kBT , a result that is familiar from statistical mechanics. It will
also prove useful to define the specific heat (at constant volume), cV , for a
polytropic gas. It is

cV =
(

∂ε

∂T

)
ρ

, (3.4)

which from (3.1) is (
cV

)
Z,γ

=
(1 + Z)kB

(γ − 1)Amp
, (3.5)

in which we emphasize that this equation only applies when Z and γ are
constant.

It is worthwhile to explore (3.3) further, as it is often used to define γ.
Defining γ by this equation, and taking p and ρ as the independent thermo-
dynamic variables so ε = ε(p, ρ), one has

(
∂p

∂ρ

)
s

= (γ − 1)ε + (γ − 1)ρ
(

∂ε

∂ρ

)
s

. (3.6)

In addition, because constant entropy requires zero heat flow and the first
law of thermodynamics implies
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dε = dq − pd(1/ρ), (3.7)

in which the differential heat flow is dq and the second term on the right
is the mechanical or “pdV ” work, one has (∂ε/∂ρ)s = p/ρ2, so one finds
(∂p/∂ρ)s = γp/ρ. This demonstrates that defining γ by (3.3) is consistent
with the sound speed as usually defined and with p ∝ ργ for an adiabatic
process in a polytropic gas. However, if γ is not constant then (3.4) is incom-
plete and some more general approach is needed. We will explore this further
in Sect. 3.3.

3.1.2 Radiation-Dominated Plasma

The properties of blackbody radiation and of systems in which radiation is
important or dominant are discussed in Chap. 6 and 7. The radiation pressure
pR is 1/3 the radiation energy density and may be expressed as

pR =
4
3

σ

c
T 4, (3.8)

where T is the temperature, c is the speed of light, and σ is the Stefan–
Boltzmann constant familiar from blackbody emission. Because this pressure
depends upon T to the fourth power, while material pressures depend upon
T to the first power, at a high enough temperature the radiation pressure
will be completely dominant. This is the case, for example, within matter
shocked during supernova explosions and near neutron stars and black holes.
The transition temperature can be determined by asking when the radiation
pressure equals the material pressure. One finds

T (keV ) =
1

1.6 × 10−9

(
3k4

Bcρ(1 + Z)
4σmpA

)1/3

= 2.6
(

ρ(1 + Z)
A

)1/3

, (3.9)

in which ρ is in g/cm3. Here, outside the parentheses, kB = 1.6 × 10−9

ergs/keV to find the temperature in energy units (keV). Within the paren-
theses, the units of energy and temperature in kB must be consistent with
those in σ and with the other units used there. For laboratory systems or
within stars where ρ is within a few orders of magnitude of 1 g/cm3, keV
temperatures are thus required for radiation to dominate. At typical astro-
physical densities much lower temperatures would be required, except that
such systems tend to be “optically thin” (see Chap. 6), implying that the
radiation pressure is far below the value given by (3.8).

To utilize simple equations in describing radiation-dominated plasmas,
one desires to determine ∂p/∂ρ for this case – that is, to determine how the
radiation pressure varies with plasma density. This is often feasible, because
in order for the radiation temperature to remain large enough that the sys-
tem stays radiation-dominated, the mean free path for the radiation must
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be small on the scale of the physical system of interest. This in turn im-
plies that the material is strongly coupled to the radiation and will have the
same temperature. In addition, because the material is strongly coupled to
the radiation, changes in the density of the material involve changes in the
volume containing a fixed amount of radiation. This prepares us to identify
a polytropic index for the radiation-dominated plasma, as follows.

Standard arguments in statistical mechanics lead to an expression for the
pressure of the photon gas as

p = −
∑

j

σ̄j
∂εj

∂V
, (3.10)

in which the sum is over all possible states j, the mean occupancy of each state
is ōj = 1/[exp(εj/kBT )−1], and the energy of each state is εj . Equation (3.10)
makes sense when one recalls that the pressure is the negative of the change in
internal energy as volume increases. The energy of a state varies with volume
as the wavelength of the light in that state is reduced or increased by the
compression or expansion. One can see how by considering the simple example
of a cubic box with an edge of length L, in which a given state has an integer
number of wavelengths along each side of the box. The wavenumber of each
state, kj , is then proportional to 1/L, so one has εj = hckj ∝ L−1 ∝ V −1/3,
where h is the Planck constant. Thus

−∂εj

∂V
∝ V −4/3 ∝ ρ4/3 (3.11)

and p ∝ ρ4/3, showing that γ = 4/3 for a radiation-dominated plasma. The
Euler equations can be applied to such a system using γ = 4/3. Further
details on the justification of this can be found in the chapter on radiation
hydrodynamics.

3.1.3 Fermi-Degenerate EOS

In ordinary plasmas it is the thermal pressure, experienced by the particles
through Coulomb collisions, that resists compression of the plasma. This is
a classical effect. But when plasma or other matter becomes dense enough,
then quantum mechanical effects involving the electrons create pressure and
resist compression. The electrons are subject to the Pauli exclusion principal,
which prevents more than one of them from occupying the same quantum
state. As we will see, this implies that the most energetic electron in cold,
high-density matter can be quite energetic indeed. Matter in which most of
the electrons are in their lowest-energy states is described as Fermi-degenerate
matter. The EOS of Fermi-degenerate matter is of substantial importance in
massive planets, white dwarf stars, and inertial fusion implosions or other
high-energy-density experiments that compress solid matter. The fact that
electrons are fermions has an impact over a broader range of conditions, as we
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will see in Sect. 3.3. Fundamental derivations of the electron behavior can be
found in any book on statistical physics, including for example the relevant
volume by Landau and Lifshitz.

Figure 3.3 shows the energy distributions of free electrons in dense matter,
for several temperatures. In very cold, dense matter the energy distribution
is a step function – all the electrons are in the lowest accessible state. As
temperature increases, some of these states are depleted and a tail of electrons
develops at higher energy. The energy of the state whose occupancy is 50%
is known as the Fermi energy. The Fermi energy at absolute zero, εF , is

εF =
h2

2me

(
3
8π

ne

)2/3

= 7.9 n
2/3
23 eV, (3.12)

in which me is the electron mass, ne is the number density of electrons, and
n23 is the electron density in units of 1023 cm−3. This value (1023 cm−3) is
of order both the density of electrons in low-Z plasmas with a mass density
near 1 g/cm3 and the density of conduction electrons in a typical metal. In
any material there may also be bound electrons, attached to specific atoms.
These electrons do not contribute to the electron density ne in (3.12). If we
displayed the bound electrons on the scale of Fig. 3.3, they would appear
as spikes at negative electron energy. We discuss the degree of ionization
(and hence the relative numbers of free and bound electrons) in Sect. 3.2.
Equation 3.12 has a number of consequences for physical systems of interest
here. It implies that the electrons are not Fermi degenerate in plasmas with
densities well below solid density, heated to temperatures of tens to hundreds
of eV. In contrast, compressed plasmas at densities of more than 100 times
solid density, produced in inertial fusion implosions, have a Fermi energy
of hundreds of eV. Such plasmas are often cool enough that the EOS of
the electrons is the Fermi degenerate EOS. The degeneracy temperature, Td,
above which the electrons can be approximated as free particles, is found by
setting kBTd = εF .
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Despite its obvious differences from an ordinary gas, the equation of state
of Fermi-degenerate matter is quite similar to that of an ideal polytropic gas
with γ = 5/3. Equation 3.3 applies in both cases, so p = (2/3)ρε. In addition,
while the electron pressure in an ideal gas is p = nekBT , the electron pressure
in Fermi-degenerate matter is pF = (2/5)neεF . Evaluating this one finds

pF =
2
5
neεF =

h2

20me

(
3
π

)2/3

n5/3
e , (3.13)

or in practical units

pF = 0.50n
5/3
23 = 9.9

(
ρ

A/Z

)5/3

Mbars, (3.14)

in which A/Z ∼ 2 and the units of density are cgs. The transition from (3.14)
to (3.1) occurs approximately when T = Td, although one can see in Fig. 3.3
that the electron distribution still departs significantly from a Maxwellian
even at T = 10Td.

Homework 3.1

Inertial fusion designs typically involve the compression of DT fuel to about
1,000 times the liquid density of 0.25 g cm−3. Assuming that this compression
is isentropic and that the fuel remains at absolute zero, determine the energy
per gram required to compress this fuel. Compare this to the energy per gram
required to isentropically compress the fuel to this same density, assuming the
fuel is an ideal gas whose final temperature is to be the ignition temperature
of 5 keV.

The details of the partially degenerate matter at a temperature near the
degeneracy temperature involve some straightforward numerical integrals.
The ion density range of interest to high-energy-density physics spans 1019

to 1024 cm−3, but reaches ∼ 1026 cm−3 in compressed inertial fusion cap-
sules. All of the electrons participate in Fermi-degenerate properties, so this
corresponds to a range of electron densities from 1019 to 1026 cm−3, where
the upper limit might correspond either to high-Z matter at an ion density
of 1024 cm−3 or to low-Z matter compressed for inertial fusion. The electron
temperatures of interest span 1 eV to 1000 eV. Let us examine the behavior
of the electrons over this range of conditions.

The electron density is given by the integral over all momenta, χe, of the
probability that an electron will have a specific momentum. With the electron
energy given by ξc = χ2

e/(2me), this is

ne =
8π

h3

∫ ∞

0

χ2
edχe

exp[ (−µ+Ee)
kBTe

] + 1
, (3.15)
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in which µ is the chemical potential, which has energy units. Within this
integral, the term equal to χ2

edχe gives the scaling of the density of states
while the remaining term gives probability that a certain state is occupied
by an electron. Equation 3.15 can be put in the useful form

Θ =
Te

Td
= Te

[(
8π

3ne

)2/3 2mekB

h2

]
=

[
3
2
F1/2

(
µ

kBTe

)]−2/3

, (3.16)

which defines the ratio of electron temperature to degeneracy temperature as
Θ. We also define in general Fn (φ) =

∫∞
0

xn [exp(x − φ) + 1]−1 dx. This will
have further application below. Our parameter range of interest corresponds
to Θ = 10−3 to 104.

The chemical potential is the internal energy required to add a particle to
the system at constant entropy and constant volume. For a Fermi-degenerate
system the chemical potential is positive; a new particle goes in at the Fermi
energy even at zero entropy, so one must invest energy to put a new particle
into the system. For a classical system µ is negative: a new particle can be
added at zero energy but to keep entropy constant the internal energy of the
system must decrease. The limiting behavior of µ/(kBTe) is of some interest.
In the degenerate regime, µ = εF so

µ

kBTe
=

εF

kBTe
=

1
Θ

. (3.17)

In the classical limit, designating the classical chemical potential as µc, one
has

eµc/(kBTe) =
neh

3

2 (2πmekBTe)
3/2

, (3.18)

so
eµc/(kBTe) =

4
3
√

πΘ3/2
, (3.19)

so µc is zero when Θ = Θcrit = 0.827. Atzeni and Meyer-ter-Vehn give a fit
due to Ichimaru that spans both limits. This is

µ

kBTe
= −3

2
ln(Θ) + ln

(
4

3
√

π

)
+

0.25054Θ−1.858 + 0.072Θ−1.858/2

1 + 0.25054Θ−0.858
. (3.20)

One can vary µ/(kBTe) and calculate the integral (3.16). Figure 3.4 compares
the result of this calculation with the values implied by (3.17) and (3.19). The
solid curve shows the actual value, with the gray, dashed curve showing the
classical limit and the black, dashed curve showing the Fermi limit. The result
is rather dramatic. The electron chemical potential has the classical value for
Θ > Θcrit, where it abruptly transitions to the degenerate value.
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Homework 3.2

Argue conceptually that the contribution of the denominator in (3.16) at large
µ/(kBTe) is a step function. Evaluate this integral numerically to determine
how rapidly it becomes a step function as µ/(kBTe) increases.

One can evaluate the electron pressure by averaging the energy of each
state over the probability that the state is occupied. The general integral for
the internal energy density, neεe, where εe is the specific internal energy per
electron, and the pressure, pe, is

neεe =
3
2
pe =

8π

h3

∫ ∞

0

Eeχ
2
edχe

exp[ (−µ+Ee)
kBTe

] + 1
, (3.21)

which can be written as

neεe =
3
2
pe =

3
2
nekBTeΘ

3/2F3/2

(
µ

kBTe

)
= nekBTe

F3/2(
µ

kBTe
)

F1/2(
µ

kBTe
)
. (3.22)

Figure 3.5 shows how the normalized pressure, p/(nekBTe), increases with
µ/(kBTe), for Θ < Θcrit. The electron contribution to the pressure and inter-
nal energy is classical for Θ > Θcrit. Despite the difference in the pressure, the
electrons behave as a gas with γ = 5/3 throughout. Under strongly Fermi-
degenerate conditions, the electron pressure and energy completely dominate
those of the ions. However, because of the energy associated with ionization,
the electrons do not necessarily dominate the internal energy of the plasma
throughout our regime of interest. We explore this further in Sect. 3.2.
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Fig. 3.5. Normalized electron pressure versus chemical potential. This asymptotes
to (2/5)µ/(kBTe) at large µ/(kBTe) and approaches 1 as µ/(kBTe) approaches 0
(and is 1 in the classical regime)

Homework 3.3

Show, in the limit as Te → 0, that neεe = (3/5)neεF .

For various applications, including inertial fusion, it is worthwhile to un-
derstand the heat capacity and entropy of electrons. For this purpose it
helps to understand Fn(φ) more thoroughly. One can show that F ′

n (φ) =
nφ′Fn−1 (φ). In addition, if Te is near zero, then Fn(φ) = φn+1/(n + 1). It is
also useful to know that if φ is zero, then F3/2 = 1.153 while F1/2 = 0.678.
In the classical limit (3.18) implies that

Fn

(
µ

kBTe

)
=

neh
3

2(2πmekBTe)3/2
Γ (1 + n) =

4
3
√

πΘ3/2
Γ (1 + n), (3.23)

so in the classical limit F3/2 = Θ−3/2 while F1/2 = (2/3)Θ−3/2.
Turning to the heat capacity, one finds

CV =
∂

∂Te
(neεe)

∣∣∣∣
ne

=
3
2
nekB

[
5
3

F3/2

F1/2
− µ

kBTe
+

1
kB

∂µ

∂Te

]
, (3.24)

where CV has units of energy per unit volume per unit temperature and the
argument of both F3/2 and F1/2 is µ/(kBTe). In the classical limit this be-
comes CV = (3/2)nekB . In the degenerate limit and for small temperatures,
one can expand the integrals to find CV = (3/2)nekB [π2kBTe/(3εF )]. This is
the electronic contribution, which is dominant for strongly degenerate mat-
ter. As any book on statistical physics will discuss, the ionic contribution,
from the excitation of phonons, scales as temperature cubed.

The entropy per unit volume of the electrons, S/V, may be found from

S

V
=

(
− 1

V

∂(pV )
∂Te

)
µ,V

=
2
3

∂

∂Te
(neεe)

∣∣∣∣
µ,V

, (3.25)

in which −pV is one of the thermodynamic potentials discussed by Landau
and Lifshitz in their volume on statistical physics. This implies



66 3 Properties of High-Energy-Density Plasmas

S

V
=

5
2
nekB

[
2
3

F3/2(
µ

kBTe
)

F1/2(
µ

kBTe
)
− 2

5
µ

kBTe

]
, (3.26)

which for the classical limit is

S

V
= nekB

(
5
2

+ ln
[
2(2πmekBTe)3/2

neh3

])

= nekB

[
5
2

+ ln
(

3
√

πΘ3/2

4

)], (3.27)

or for Te � εF is
S

V
=

3
2
nekB

(
π2

3
Θ

)
. (3.28)

The entropy approaches zero as the temperature approaches absolute zero,
as it should.

In the context of inertial fusion, one cares about the relation of pressure
and entropy, because the shock waves produced during compression increase
the entropy (see Chap. 4). Since the pressure is proportional to F3/2, while
density is proportional to F1/2, (3.26) can be rearranged to obtain

p =
2
5

S

V
Te +

2
5
neµ. (3.29)

As Te and S approach zero, this reduces to (3.13). One sees that the
pressure is not sensitive to the value of the entropy until the entropy reaches
a threshold value given by 2neµ/5. This is evident in Fig. 3.5, where we see
that the pressure begins to depart from 2µεF /5 when µ ∼ 5kBTe or Θ ∼ 0.2
so Te ∼ 0.2Td.

The quantity p/pF is known in inertial fusion as the degeneracy parame-
ter. It has important practical consequences as the fusion gain decreases for
increasing p/pF . In general p/pF = 1 for degenerate matter and increases
with Θ, equaling (5/2) Θ in the classical regime. The practical importance of
this quantity makes it useful to have approximate estimates of p/pF . Atzeni
and Meyer-ter-Vehn give the following fit for p/pF :

p

pF
=

5
2
Θ +

0.27232Θ−1.044 + 0.145Θ0.022

1 + 0.27232Θ−1.044
. (3.30)

Homework 3.4

Derive 3.24 and 3.26 and discuss their differences.

3.2 Ionizing Plasmas

Mid-Z and high-Z ions in high-energy-density plasmas are rarely fully
stripped, meaning that all their electrons have been removed. Only as temper-
atures approach and exceed 1 keV, or as compressions exceed ten times solid
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density will one encounter completely stripped ions of any except very-low-Z
species. When it becomes routine to work far above solid density at temper-
atures of many keV, the materials may become fully stripped, although the
increased role of radiation will provide ample new complications. We discuss
some of these in Chap. 7. For the moment, it is clear that we must understand
the behavior of partially ionized plasmas, which we will describe as ionizing
plasmas, if we are to succeed in understanding high-energy-density phenom-
ena. It also became clear in Sect. 2.4 that one must understand nonideal,
strongly coupled plasmas if one is to describe plasma behavior throughout
the high-energy-density regime.

One needs to estimate the degree of ionization for a variety of reasons.
The most important is that their thermodynamic properties also depend upon
ionization, as we discuss in Sect. 3.3. The internal energy of fully stripped
ions also includes a major contribution from ionization. While the behavior
of actual materials is complicated and difficult to calculate accurately, there
are some simple models that can capture aspects of their behavior. These we
discuss here.

The electron density is Zni, but the value of the average charge Z depends
upon the temperature. To know Z precisely, one must evaluate the ionization
balance to determine the relative populations, Ni, of the various ionization
states. Then one has Z as a sum over ionization states,

Z =
1
N

∑
i

ZiNi, (3.31)

in which the state populations can be either a number or a density, and N is
either the total number of ions or the ion density ni, respectively.

We will designate the various ionization states of a given species by their
charge Zi. The electrons in any given ion may reside in the ground state or
in an excited state. These of course are designated precisely by the necessary
quantum numbers, such as the principal quantum number, n, the spin quan-
tum number, s, and the quantum number for orbital angular momentum,
l. In the present discussion, we will occasionally have reason to specify the
principal quantum number. We will often, however, ignore excited states and
implicitly treat all ions as ground state ions. In most cases this is reasonable.
The minimum excited state energy, with n = 2, has an energy above the
ground state that is 3/4 of the ionization energy, Ei. On the one hand, if
the ion is in an environment where Ei is well above Te, as is common, then
the excited state population is smaller than the ground state population by
a factor smaller than exp[−3Ei/(4kBTe)], which is fairly small. On the other
hand, if Ei is small relative to Te, then it is more likely that the electrons
striking the ion will deliver its outer electron into one of the indefinite number
of free states as opposed to one of the few and definite excited states.

The exact ionization energy required to remove the outermost electron
from a given ionization state does depend on the number and arrangement of
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the remaining electrons, but we will ignore this here and adopt a hydrogenic
atom analysis. In such a treatment, all atoms and all ions are treated as
hydrogenic systems, having one electron and a nucleus with the appropriate
net charge. This approach is more accurate as the net charge on the atom
increases (so that the inner electrons are more tightly bound). This approach
allows comparatively tractable computational models to work with a wide
range of atoms and ionization states, giving qualitatively correct answers. In
our work here we will primarily use the ionization energy associated with a
hydrogenic atom model, which is energy Ei = Z2EH , where EH = 13.6 eV
and Z is the net charge on the atom (and thus is consistent with our use of
“Z” elsewhere).

The simple view of atomic structure we will use here is distinct from
the computational “average atom model” (see Salzman). The computational
model provides a physically consistent approach to the definition of an “aver-
age atom”, including both bound states and free electrons, that characterizes
each element.

The density of ions will play an important role in our discussions of ioniza-
tion, as this scales the electron density. A factor-of-two estimate of the typical
ion density can be made by taking ρ = Znuc/4 g/cm−3 and A = 2Znuc. Then

ni =
ρ

Amp
∼ Znuc

8Znucmp
= 7.5 × 1022 g/cm3. (3.32)

This density is indicated in several of the plots in the following.

3.2.1 Ionization Balance from the Saha Equation

Determining the exact degree of ionization is a difficult problem involving
sophisticated calculations, but we can arrive at a reasonable approximation
on very simple grounds. We can expect that the ionization energy of the ions
in a plasma will have some typical relation to the electron temperature. If
we approximate the ion as a hydrogenic ion of charge Z, then the ionization
energy Ei = Z2EH , where EH = 13.6 eV. Thus, we expect Z2EH/(kBTe) ∼
C2, where C is a constant, so Z = C

√
kBTe/EH , which is Z = 8.57C

√
Te

with Te in keV. The problem is to find C. On the one hand, if we recall that
Coulomb processes often are effective at energies of about 3kBTe, as is the
case for heat transport (see Chap. 8), then we would say C ∼

√
3, which is

not far from the better estimates discussed next.
More sophisticated estimates of the ionization involve balancing ionization

and recombination or assuming that the distribution of ions is in equilibrium.
These turn out to be equivalent at high enough densities, but not at low den-
sities. Griem and Salzman discuss in detail the dynamics that are involved,
in their books. Here, we discuss the basic phenomena that are important for
high-energy-density systems. In low-density plasmas, the archetype of which
is the solar corona, collisional ionization is balanced by radiative recombi-
nation, establishing a situation known as coronal equilibrium. An additional
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process, dielectronic recombination, is of increasing importance as the density
increases, particularly in the range of densities found in magnetic fusion de-
vices. But at the densities found in high-energy-density systems, the relevant
balance is between collisional ionization and collisional (three-body) recom-
bination. In equilibrium, collisional ionization and collisional recombination
are equal by the principle of detailed balance. The relative populations of the
ionization states are then given by the Saha equation, a fact which Griem
uses to derive the rate coefficient for recombination.

At high enough density and temperature the distribution of ions, and
the distribution of electrons within energy levels, approaches the equilibrium
distribution given by the Saha equation. For an estimate of the ionization
balance we will ignore the distribution of electrons among the excited states,
and will focus only upon the distribution of ions among the ionization lev-
els. A typical first estimate of the average ionization state would find the
two states between which ionization and recombination are balanced. These,
however, are just the states to which the Saha equation applies. Thus, we
work here with the Saha equation to estimate Z. The Saha equation gives
the ratio of the population of ions in state j,Nj , to those in state k,Nk, as

Nj

Nk
ne =

gj

4gka3
o

(
kBTe

πEH

)3/2

e
−Ejk
kBTe , (3.33)

in which ao = 5.29 × 10−9 cm is the Bohr radius, Ejk is the energy required
to go from state k to state j, and gj and gk are the statistical weights of
states j and k, respectively. (To help interpret various references, it may
help to know that EHa2

o = h2/(8π2me), ignoring a very small center-of-mass
correction.) For simple calculations, the only practical choice is to assume
that the ions are hydrogenic, so that the ionization energy from state k to
state k + 1 = j, in an isolated ion, is E(k+1)k = Z2

k+1EH . We will discuss
below the consequences of the fact that the ions are not isolated. At a high
enough temperature, this has a small effect on the average ionization.

We can determine a characteristic charge, not far from the actual average
charge, from this equation as follows. There will be some value, Zbal, not
necessarily an integer, for which the ratio Ni/Nk = 1 for two imaginary
ionization states having charge Zbal + 1/2 and Zbal − 1/2. Then Zbal should
be close to, but may not equal, the average charge Z. Recalling that ne = Zni,
we can solve for Zbal to find

Zbal =
√

kBTe

EH

√√√√ln

[
1
ne

gj

4gka3
o

(
kBTe

πEH

)3/2
]
− 1

2
, (3.34)

which is

Zbal = 19.7

√√√√Te

[
1 + 0.19 ln

(
T

3/2
e

n24

)]
− 1

2
, (3.35)
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Fig. 3.6. Ionization from the Saha equation. Curves of constant Zbal are shown. The
electrons are Fermi degenerate in the region above the line labeled “Degenerate”.
The lower curve shows where Zbal equals the approximate value 20

√
TkeV

with Te in keV and n24 being the electron density in units of 1024 cm−3, and
(3.35) assuming gj = gk. One might approximate this as Zbal = 20

√
Te, for

Zbal ≤ Znucni, where Znuc is the nuclear charge.
The first estimate is to assume Z = Zbal, in which case one can either

approximate n24 or solve (3.35), which becomes an implicit equation for Z,
through the electron density (with ne = Zbalni). In terms of the initial formu-
lation of this problem above, the coefficient in (3.35) corresponds to C ∼ 2.3,
which is not far from our initial guess of

√
3. Figure 3.6 shows how Zbal varies

as ion density and temperature vary, solving implicitly for Zbal. If the result
were strictly 20

√
Te, the contours would be vertical. The curve crossing the

plot shows where the solution for Zbal does equal 20
√

Te. One can see that
using 20

√
Te is accurate to about 50 % over most of the parameter space

shown, with a greater error at ion densities above 1023 cm−3. One would ex-
pect the ions to exist primarily in the one or two states for which ionization
and recombination nearly balance, so the value of Z from (3.35) ought to be
close to the actual average ion charge in the plasma.

Homework 3.5

Make plots comparing Zbal from (3.35) with the estimate 20
√

Te as a function
of Te, for ion densities of 1019, 1021, and 1023 cm−3. Discuss the results.

One can demonstrate that Z ∼ Zbal, when the ionization energies are
as assumed above, as follows. One can use the definition of Zbal to rewrite
(3.32), for arbitrary j and k, as
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Fig. 3.7. Relative populations of ionization states, for Te = 1 keV and Znuc = 30

Nj

Nk
= e−

(Ejk−Z2
balEH )

kBTe . (3.36)

Note that this corresponds to a distribution of ions peaked around Zk ∼ Zbal,
since Ni < Nk for Ejk/EH > Z2

bal, and Ni > Nk for Ejk/EH < Z2
bal.

Figure 3.7 shows the ratio Nj/N1 for Te = 1 keV and Zbal = 20. Note that
to obtain this one must apply (3.36) repeatedly, obtaining

Nj/N1 =
j−1∏
k=1

Nk+1/Nk. (3.37)

This gives a sum in the exponent that can be evaluated, as follows:

Nj/N1 =
j∏

m=2

exp
[
−m2 − Z2

bal

kBTe/EH

]
= exp

[
−

(j − 1)
(
6 + 5j + 2j2 − 6Z2

bal

)
6kBTe/EH

]
.

(3.38)
Figure 3.7 shows a plot of this distribution, which turns out to be very

strongly peaked, with nearly all of the ions having a charge within a few
unit charges of Zbal. As it should, the peak of the distribution corresponds
almost exactly to Zbal as given by (3.35). One could formally evaluate the
average charge using (3.38). For the ratio of ionization state populations, and
a nuclear charge Znuc, one has

Z =
Znuc∑
j=1

j
Nj

N1

/ Znuc∑
j=1

Nj

N1
. (3.39)

One can show that Z determined by this method is quite close to Zbal.

Homework 3.6

Carry out the evaluation in (3.39) and compare the result to Zbal, for Te =
1 keV, Znuc = 30, and ni = 1021cm−3.
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It is worthwhile to emphasize that the fundamental basis for our estimate
of Z is the Saha equation. However, the Saha equation is not an inviolate
law of the universe, even for equilibrium systems. It is a consequence of
statistical mechanics when the only important energies are the ionization and
excitation energies. As plasmas become denser or colder, energies associated
with the interaction of the particles become important. Some aspects of this
are discussed in the next section. To some extent, these can be accounted for
within the framework of the Saha equation. However, once quantum effects
become essential to the behavior of the particles, whether through Fermi
degeneracy or through ion–ion correlations, their partition functions change
significantly and the Saha equation is no longer the relevant statement of
equilibrium. The curve in the upper left corner of Fig. 3.6 shows where the
electrons become Fermi degenerate based on the discussion of Sect. 3.1.3 (and
assuming Z = 20

√
Te, although the curve placement on such a log–log plot

is not very sensitive to the specific assumption about Z).
Following through on the question of when the electrons dominate the

internal energy of high-energy-density plasmas, we can compare the total
energy of ionization, which is part of the internal energy of the plasma, with
the internal energy of the electrons. The ionization energy is the sum of Z2

i EH

over the ionization states up to Z. Here we will use the integer part of Zbal

as Z for this energy. The electron energy per ion is ZkBTe, where we will
use Z = Zbal. Figure 3.8 shows the comparison of these two energies. The
ionization energy forms a stairstep in such a model, though in reality the
fact that several ionization states are present would smooth this out. The
important conclusion is that, so long as the ion can keep on ionizing and
the electrons are not Fermi degenerate, the ionization energy is the larger
contribution to the internal energy. Only once the ions become fully stripped
will the electron energy come to dominate. This is a major difference in
comparison to low-density laboratory or space plasmas, in which the internal
energy can usually be ignored.
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Fig. 3.8. The increase of internal energy and ionization energy (the stairstep) and
electron kinetic energy (the line) in eV with increasing Te
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3.2.2 Continuum Lowering and the Ion Sphere Model

Equation (3.35) is generally accurate in the plasma that has ablated from the
surface of a dense material. However, it becomes inaccurate in compressed,
denser matter with a high nuclear charge and low temperature. One reason is
that the electrons become Fermi degenerate. Another reason is that the ions
in high-energy-density plasmas do not exist in isolation. Even though plasmas
are charge-neutral on a volume-averaged basis, in detail the particles arrange
themselves so that a particle with any given charge is closer on average to
particles of the opposite charge. As a result, one would have to invest energy
to pull the plasma apart, so that the particles were far enough away from one
another that their interactions were negligible. That is to say, the potential
energy of the plasma is negative relative to vacuum. The introduction of
new particles or charges to the plasma, as occurs in ionization, lowers the
potential even further. This effect is known as continuum lowering. This has
consequences for the ions or atoms in the plasma – the vacuum energy levels
having energies between the plasma potential and vacuum no longer exist.
Figure 3.9 shows an energy level diagram to illustrate this point. With regard
to ionization, the consequence is that the energy required to ionize is reduced
relative to its value in vacuum.
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Fig. 3.9. A lowered continuum can eliminate some excited states and reduce the
ionization energy
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The amount by which the continuum is lowered can be evaluated by deter-
mining the change in electrostatic potential energy produced by the ionization
of an atom or ion. There are two approaches to this calculation, correspond-
ing to two regimes of validity. For low-density plasmas, in which the Debye
length exceeds the spacing of the ions, one can calculate the changes to the
shielding potentials and the corresponding electrostatic energy introduced by
ionization. Equivalent treatments of this regime can be found in Griem, Zel-
dovich and Raizer, and Krall and Trivelpiece. We will discuss only the case
most relevant to high-energy-density plasmas, in which the spacing of the
ions is more than a Debye length. This has the consequence that the shield-
ing occurs in the vicinity of each ion individually. This will still be true if
the electrons are Fermi degenerate, but the electron density will be more uni-
form in space than it would be otherwise. The fact that the shielding is local
around each ion gives rise to the ion sphere model. Figure 3.10 shows that
the boundary between the Debye shielding regime and the ion sphere regime
lies at lower densities than those of primary interest in high-energy-density
physics.

Fig. 3.10. Boundary between ion-sphere and long-range Debye-shielding regimes
of continuum lowering. The ion density is shown for reference, inferred from Z =
20

√
Te and ne

In the ion-sphere model, each ion is assumed to influence only a region
within a radius Ro given by

4π

3
R3

oni = 1, (3.40)

in which ni is the particle density of the ions. Beyond this distance, the
positive and negative charge densities, as seen by the ion, are equal, so these
make no contribution to the electrostatic potential energy. Recalling that the
typical ion density in cm−3 is 7.5×1022, one can see that Ro ∼ 10−8 cm ∼ 1Å
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for solids, as one would expect since atoms are about 1Å in size. Within Ro,
the charge due to the free electrons must balance that of the ion, Zi, and
for consistency (with the viewpoint of other ions) the average free electron
density must equal that throughout the entire plasma, so

Zi =
4π

3
R3

one. (3.41)

As discussed in Griem, an approximate calculation of the shift in the
energy levels of the ion can be made by determining from Poisson’s equation
the electrostatic potential surrounding the ion, assuming a constant electron
density, and by using the first-order perturbation theory of hydrogenic ions
from basic quantum mechanics. One finds the principal quantum number of
the highest remaining bound state to be

nc =
√

ZiRo/ao. (3.42)

Zeldovich and Raizer find the same result from the semiclassical argument
that the highest quantum number will be the one for which the semimajor
axis of the orbit equals Ro. The corresponding reduction in ionization energy
is

∆E ≈ ZiEHao/Ro. (3.43)

One can see that the relative importance of this effect decreases as the ion-
ization energy in vacuum (∼ Z2

i EH) increases. Specifically, one finds

∆E

Z2
i EH

=
ao

Zi

(
4πni

3

)1/3

≈ 1.33

(
n24

T
3/2
eV

)1/3

, (3.44)

in which the approximation uses the ion density in units of 1024 cm−3 and
uses the relation Z = 20

√
Te, also converting Te from keV to eV. When the

shift in ionization energy becomes large, the relation Z = 20
√

Te will cease
to be accurate, but it can be used to map out the parameter space where
the ionization energy shift becomes large. Figure 3.11 shows contours of the
relative decrease in ionization energy in a parameter space of ion density and
electron temperature. The ionization energy increases greatly as Zi increases,
so that a 30% change in this energy will make little difference in the average
charge Z for low-Z materials, and a difference of only a small number of
ionization states for high-Z materials. This may be very important for some
applications such as x-ray lasers, but is not sufficient to make qualitative
changes in the thermodynamic properties. One can see that the changes in
ionization energy are not more than this for solid density materials above a
few eV, and for once-shocked solids (corresponding to a density increase by
a factor of 4 to 7) above 10 eV.

The generalization of (3.43), to include the behavior at lower densities
where the Debye length, λD, exceeds Ro, is
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Fig. 3.11. The relative decrease of ionization energy from (3.44). Contours show
values of 0.01, 0.1, and 1

∆E ≈ ZiEH min
(

2ao

λD
,

ao

Ro

)
. (3.45)

Figure 3.10 showed the boundary between the ion-sphere regime and the
long-range Debye-shielding regime. One can see that essentially the entire
realm of high-energy-density physics lies in the ion-sphere regime.

One can also see from (3.44) that there can be conditions where ∆E is
larger than the vacuum ionization energy, producing some ionization even at
zero temperature. This effect is known by the somewhat misleading name of
pressure ionization. (The name is misleading since only density enters. How-
ever, in dense matter and especially in Fermi-degenerate matter the pressure
can be substantial even at zero temperature.)

Homework 3.7

Plot the ratio of ∆E to the ionization energy versus Zi from 1 to 80 for ion
densities of 1019, 1021, 1023, and 1025 cm−3. Discuss the results.

One can go a bit further and determine the value of Z produced by pres-
sure ionization for a hydrogenic atom, as follows. In this regime (high-density,
low-temperature), all the bound states of the ion will be occupied. Thus, the
difference between the nuclear charge, Znuc, and the ion charge Zi (which
equals the average ionic charge, Z) is given by
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Fig. 3.12. Pressure ionization. The contours show where Z = 1, 2, 5, 10, 20 and
30, based on the ion sphere model for hydrogenic ions

Znuc − Zi =
nc∑

n=1

2n2 =
nc

3
(1 + nc)(1 + 2nc), (3.46)

where (3.42) defines nc. Figure 3.12 shows the resulting contours of Z. (This
figure, based on the exact value of the sum in (3.46), differs from the figure
in Griem, who approximates the sum.)

Thus, one can see that, to the extent that the ions behave like hydrogen,
there is little pressure ionization at ordinary solid densities. Moreover, the
amount of ionization is small for compression to only a few times solid density.
The ionization increases rapidly for nuclear charges above 10 compressed
to above ten times solid density. In the regime where the ions behave like
hydrogen, one can take Z to be the maximum of the values implied by (3.46)
and Zbal from (3.35), as a crude rule of thumb. Near the transition between
the two models, this will underestimate Z, because plasma effects will reduce
the ionization energy of the next couple of ionization states significantly. To
improve the estimate in this regime, one could use (3.45) to adjust the Saha
equation. On the other hand, by the time Te increases much above 10 eV,
most materials will be in the Saha regime.

However, Fig. 3.12 can be quite misleading, because most ordinary mate-
rials, at temperatures of order an eV, do not behave like a simple hydrogenic
model would predict. One might say, for example, that conductors have an
effective ionization state corresponding to the number of free electrons per
atom that exist in the conduction band. In the case of aluminum, for exam-
ple, this is about 3 electrons per atom. One can reasonably describe this as
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“pressure ionization”, recalling again that a better term would be “density
ionization”. To some degree, the appearance of ionization where the hydro-
genic model would not find it could be due to subtle quantum effects. But
more important is the classical impact of the existence of multiple electrons
around the nucleus. In a classical context, one would say that the inner elec-
trons act to shield the outermost electrons from the nuclear charge. This
effect is accounted for in the Thomas–Fermi model discussed in Sect. 3.4,
which does find approximately the correct number of free electrons for alu-
minum. In full detail, the behavior of dense materials near and below an
eV remains a subject of active research. While all materials behave in similar
ways in a global sense, the exact density or temperature where certain transi-
tions occur varies greatly. Quantum effects may be very important, especially
in the regime known as warm dense matter, corresponding to densities of or-
der solid density and temperatures below a few eV.

3.2.3 Coulomb Interactions

Throughout most areas of plasma physics, one can describe plasmas as ideal
gasses. Boyle’s law gives the pressure and the polytropic index is near 5/3.
Ionization may be present but creates only small changes in the thermody-
namics. The dominance of hydrogen and helium in most astrophysical, space,
and laboratory plasmas contributes to making them thermodynamically sim-
ple. (Indeed, it is the neutral hydrogen that creates complications in such
environments.) This state of affairs, and traditional plasma theory, are made
possible by two saving features of many plasma systems. The particles inter-
act in pairs, and their interaction energy is small compared to their thermal
energy. We saw in Chap. 2 that both of these saving features progressively
abandon us as we enter the high-energy-density regime. The reader can find
an excellent discussion of the departure from an ideal plasma in Krall and
Trivelpiece, while Griem provides a connection with the more-recent litera-
ture. Much of the discussion in this section follows that of More et al.

Our task here is to see what more one can say about the dense-plasma
regime of interest to us. We have seen that the electrons behave as an ideal gas
(Sect. 3.1.3) but that their Coulomb interactions are substantial (Sect. 2.4),
even though they typically interact at any moment only within the ion sphere
in which they then reside. To evaluate the Coulomb effects, and to provide
a context for our discussion of the Thomas–Fermi model in the next section,
we begin with some further reminders regarding thermodynamic quantities.

The Helmholtz free energy F is fundamentally useful in determining quan-
tities of interest. The units of free energy are energy units, though it may
be expressed per particle, per unit mass, per unit volume, or as a total for a
system of particles. Here, with an eye to our application in the charge-neutral
plasma, we will work with specific quantities, defined as energy per unit total
mass. If one considers the specific free energy of the electrons to be Fe, then
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the electron pressure, pe, the specific electron entropy, se, and the electron
contribution to the specific internal energy, εe, are

pe = ρ2 ∂Fe

∂ρ
, (3.47)

se = −∂Fe

∂Te
, (3.48)

and

εe = −T 2
e

∂

∂Te

(
Fe

Te

)
. (3.49)

Equation (3.49) is convenient but also hides the fact that both free energy
and entropy contribute to the internal energy. This can be seen explicitly by
applying the chain rule to the derivative in this equation.

We determined in Sect. 3.1.3 that our primary interest is the regime in
which the electrons behave as an ideal gas in an ion-sphere environment. In
this regime the specific free energy (energy per unit total mass) is

Fe =
ZkBTe

Amp

[
−1 + ln

(
Znih

3

2(2πmekBTe)3/2

)]
− 9

10
Z2e2

RoAmp
, (3.50)

in which Ro is once again the ion-sphere radius. In the context of a quasi-
analytic model in the ion-sphere regime, Z in this equation is the number
of free (ionized) electrons per ion. (When this equation is applied to the
Thomas–Fermi model, discussed in Sect. 3.4, Z should be replaced by Znuc

here.) The first term on the right-hand side of (3.50) is the standard ex-
pression for the specific free energy of an ideal gas of particle density niZ.
The fact that Z can vary with temperature will produce some nonstandard
consequences, as we will see. The argument of the logarithm in this term is
Θ/Θcrit by the definitions of Sect. 3.1.3, but the equation only applies when
Θ < Θcrit so the logarithm is negative.

The second term on the right-hand side of (3.50) is the Coulomb interac-
tion term, which includes contributions from electron–electron and electron–
ion interactions (which are larger). In this form, this is the “Madelung en-
ergy”, which one finds by determining the potential energy of Z free electrons
uniformly distributed over the ion sphere, around a nucleus of charge Z. The
electron-ion potential energy is −(3/2)Z2e2/Ro while the electron-electron
potential energy is +(3/5)Z2e2/Ro. This is the term that drives conventional
plasma physics out of business as density increases. The density enters this
term through Ro but temperature and perhaps density can also enter through
Z. Note that this is not the potential energy associated with interactions in an
ideal plasma, discussed for example in Zeldovich and Raizer, which involves
the Debye length. In the high-energy-density regime, the relevant length is
the ion sphere radius.

From (3.50), one finds specific expressions for the pressure and internal
energy of the electrons by applying (3.47) and (3.49) to (3.50). Taking Z to
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be either 0.63
√

Te with Te in eV or Znuc if the ion is fully stripped, one finds
two results for pressure and internal energy of the electrons. Specifically,

pe = 0.63kBniT
3/2
e − 0.192e2n

4/3
i Te (3.51)

and

ρεe = 2.18kBniT
3/2
e − 0.315kBniT

3/2
e ln

[
nih

3

Te(mekB)3/2

]
, (3.52)

or

pe = ZnuckBniTe −
62/3π1/3

10
e2n

4/3
i Z2

nuc (3.53)

and

ρεe =
3
2
ZnuckBniTe −

22/335/3π1/3

10
e2n

4/3
i Z2

nuc. (3.54)

Here all quantities are in cgs units (including e = 4.8 × 10−10 statcoul
except Te, which is in eV). Also note that ni = ρ/(Amp). In the context of
the ionization model above, the system would transition from the first set
of equations to the second set when Te = (Znuc/0.63)2. Neither set of equa-
tions would apply if ion sphere effects determined the degree of ionization,
but this occurs at higher densities than those of our primary focus. Three
of these equations have straightforward contributions from the kinetic en-
ergy and the Coulomb binding energy. In (3.52), the impact of the Coulomb
binding energy on the contributions from free energy and entropy offset one
another, eliminating the terms proportional to e2. These four equations will
be important in Sect. 3.3.2. In addition to these relations, one needs to ac-
count reasonably for the pressure and internal energy of the ions. We take
this up next. Then, in Sect. 3.3.2, we evaluate the overall thermodynamic be-
havior in the high-energy-density regime. We will see there (in Figs. 3.13(a)
and 3.15(a)) that the pressure drops by roughly a factor of two as one moves
from the ideal-plasma regime at a high temperature and low density toward
the Fermi degenerate regime. This decrease in pressure is due primarily to
the Coulomb interactions just discussed.

3.3 Thermodynamics of Ionizing Plasmas

We finally know enough to develop a thermodynamic description of ionizing,
high-energy-density plasmas. Before proceeding, it may help to summarize
what we know from the previous sections. We know that the electrons are
strongly degenerate under some conditions, but otherwise behave like an ideal
gas throughout most of the parameter space of concern to us. We know this
because we have evaluated their behavior as fermions, and not from tradi-
tional plasma physics arguments (which do not apply as this is a nonideal
plasma). However, the treatment of electrons as fermions does not include
their Coulomb interactions, which must be included in the free energy and
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which lead to a reduced pressure. We have found that, typically, the ions
carry most of the internal energy until they have become fully stripped, and
that most elements are not fully stripped under typical conditions. We know
that the ionic charges are shielded locally, so that the ions typically have little
direct influence on one another except through the overall energy of compres-
sion. We have not considered a number of effects that have a small impact
on the internal energy of the plasma, including the fact that the electrons
cluster to some extent near the ions, the quantum-mechanical exchange en-
ergy between the electrons, and the spin–spin electron interactions. We will
systematically apply the results just obtained below, after we discuss the
problem of what to do when γ as defined previously is not constant. This will
prepare us to consider the thermodynamic properties of ionizing plasmas, in
Sect. 3.3.2.

3.3.1 Generalized Polytropic Indices

Both ionizing and radiating plasmas, unfortunately, have pressures and in-
ternal energies that change in complex ways until after the plasma is fully
ionized or completely radiation dominated. As a result, the assumption of
constant polytropic index is a poor one for such systems. In this case, the
question is whether there is any fairly simple way to treat the behavior of
the system that might still allow simple models to be developed. Fortunately,
one is able to do so, and several approaches are worked out in the literature.
The best choice depends on the application. Here we follow Mihalas and
Mihalas, identifying three generalized polytropic indices for specific contexts.
First, one may need to express ε as a function of p and ρ, so that the mo-
mentum and energy equations involve only pressure. In this case the effective
polytropic index is as defined in (3.3),

γ = 1 +
p

ρε
. (3.55)

In this case γ is variable in principle. However, for the shock wave ap-
plications of Chap. 4, in which the fluid is assumed to be uniform on either
side of an abrupt transition, this value of γ is very useful. For sound-wave
applications, the derivation in Chap. 2 makes it clear that the relevant index
is

γs =
(

∂lnp

∂lnρ

)
s

. (3.56)

On the other hand, for heat-transport applications, including radiative
heat transport, one desires to relate temperature to the other parameters. In
this case, we shall see that the index one needs is

γ3 = 1 +
(

∂lnT

∂lnρ

)
s

. (3.57)
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If γ as defined by (3.55) is constant, then γ = γs = γ3. Finding useful
expressions for these quantities, and in particular a useful equation for heat
transport, takes one into the realm of thermodynamic functions. It is easy to
get lost in the forest where one seemingly can take the partial derivative of
anything with respect to everything. Our job here is not to visit all the trees
in this forest, but rather to develop specific equations that we will use later.
In particular, we will seek the generalization of (2.14), which was

(
∂

∂t
+ u · ∇

)
p − c2

s

(
∂

∂t
+ u · ∇

)
ρ = 0, (3.58)

with a source term on the right-hand side that will account for heat transport.
Remarkably, aside from some patience all the fundamental information

we need to do this is a pair of equations from the first and second laws of
thermodynamics,

dε − p

ρ2
dρ = dq = Tds, (3.59)

where dε, dq, and ds are the specific internal energy, heat input, and entropy,
respectively, and two mathematical relations, specifically

(
∂a

∂b

)
c

= 1
/(

∂b

∂a

)
c

, (3.60)

and (
∂a

∂b

)
c

(
∂b

∂c

)
a

(
∂c

∂a

)
b

= −1. (3.61)

As is usual in thermodynamic calculations, at any given moment we ex-
press the thermodynamic functions in terms of two independent variables
chosen from the three quantities ρ, p, and T. We proceed at first by express-
ing ε as ε(p, ρ); so from (3.59) we find

Tds = dq =
(

∂ε

∂p

)
ρ

dp +

[(
∂ε

∂ρ

)
p

− p

ρ2

]
dρ. (3.62)

We also have, as ds is an exact differential,

dq = Tds = T

(
∂s

∂p

)
ρ

dp + T

(
∂s

∂ρ

)
p

dρ. (3.63)

The specific heats involve the use of T and ρ or T and p as the thermodynamic
variables. Equation (3.63) implies that the specific heat at constant volume
is

cV =
(

dq

dT

)
ρ

=
(

∂ε

∂T

)
ρ

, (3.64)

while the specific heat at constant pressure is found by writing ε as ε(T, ρ) in
(3.59) and then differentiating, to obtain
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cp =
(

dq

dT

)
p

=
(

∂ε

∂T

)
ρ

+
[(

∂ε

∂ρ

)
T

− p

ρ2

](
∂ρ

∂T

)
p

. (3.65)

We can use these definitions to evaluate the coefficients in (3.62). Multi-
plying (3.65) by (∂T/∂ρ)p, and using the definition of cV , one finds

(
∂ε

∂ρ

)
p

=
(

∂ε

∂T

)
ρ

(
∂T

∂ρ

)
p

+
(

∂ε

∂ρ

)
T

= cp

(
∂T

∂ρ

)
p

+
p

ρ2
, (3.66)

while from the chain rule(
∂ε

∂p

)
ρ

=
(

∂ε

∂T

)
ρ

(
∂T

∂p

)
ρ

= cV

(
∂T

∂p

)
ρ

. (3.67)

This then gives for the heat input per (3.62)

dq = cV

(
∂T

∂p

)
ρ

dp + cp

(
∂T

∂ρ

)
p

dρ = Tds. (3.68)

To simplify this further note that

cp

cV
= −

(
∂p

∂ρ

)
s

(
∂ρ

∂T

)
p

(
∂T

∂p

)
ρ

=
(

∂p

∂ρ

)
s

(
∂ρ

∂p

)
T

, (3.69)

obtained by substituting from (3.66) and (3.67) into (3.62) and taking
(∂p/∂ρ)s. Then (3.68) becomes

dq = cV

(
∂T

∂p

)
ρ

[
dp +

(
∂p

∂ρ

)
s

(
∂ρ

∂p

)
T

(
∂p

∂T

)
ρ

(
∂T

∂ρ

)
p

dρ

]
, or (3.70)

or

dq = cV

(
∂T

∂p

)
ρ

[
dp −

(
∂p

∂ρ

)
s

dρ

]
, (3.71)

using (3.61). This is the form we were seeking. The quantity in square brackets
has the form of (2.14), as desired, with the isentropic sound speed given, from
(3.69) and (3.65), by

(
∂p

∂ρ

)
s

=
cp

cV

(
∂p

∂ρ

)
T

=
(

∂p

∂ρ

)
T

− 1
cV

[(
∂ε

∂ρ

)
T

− p

ρ2

](
∂p

∂T

)
ρ

= γs
p

ρ
,

(3.72)
thus defining γs. This expression for the sound speed is readily evaluated
from expressions for p and ε, as is the overall factor that multiplies the square
brackets in (3.71). Note that when one converts to an absolute expression for
the heat input, one will need to multiply (3.71) by ρ. One can similarly use
(3.62) and (3.63), along with an expansion of Tds as a function of T and ρ,
to determine that



84 3 Properties of High-Energy-Density Plasmas

(γ3 − 1)−1 = ρcV

(
∂T

∂p

)
ρ

. (3.73)

This is worth knowing in order to interpret a number of the equations in
Mihalas and Mihalas. In addition, note that so long as (∂p/∂ρ)T = p/ρ and
(∂ε/∂ρ)T = 0, one has γs = γ3. This is the case in the following section but
not for the radiating plasmas considered in Chap. 7. We now have the tools
necessary to describe the behavior of an arbitrary plasma, so long as we know
its pressure and internal energy as a function of density and temperature.
We take up this problem next. Following that, in Sect. 3.3.2, we evaluate the
thermodynamic parameters.

Homework 3.8

Derive (3.73) from relations (3.60) to (3.64).

3.3.2 Pressure, Energy, and Their Consequences

We are now prepared to discuss the specific thermodynamic properties of
ionizing gases, and to lay the groundwork we will need to deal with radiating
gases in Chap. 7. We can represent the electron contributions using (3.51)
to (3.54). We will see that these will work poorly when the electrons become
Fermi degenerate, and we know that pressure ionization may increase Z at
temperatures below some value when the ion density exceeds 1024 cm−3. In
most cases, the electrons dominate the pressure and the kinetic energy. We
can take the ion contribution to the pressure, pi, and specific kinetic energy,
εik, to be

pi =
ρkBTi

Amp
(3.74)

and
εik =

3
2

kBTi

Amp
, (3.75)

knowing that the Coulomb binding energy associated with close packing of
ions has been included in the electron formulae. In addition, in the context of
our convention that the initial material state is a low (or zero) but positive
energy state, the ions also contribute energies of ionization and excitation.
We ignore excitation here, for reasons discussed near the start of Sect. 3.2,
and once again use a hydrogenic model, describing the internal energy of the
ions as

εii =
R

Amp
=

kBEH

Amp

Z∑
k=0

k2 =
kBEH

6Amp
Z(1 + Z)(1 + 2Z), (3.76)

where the maximum allowed value of Z is Znuc and we define R as the internal
energy per ion.
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Homework 3.9

The value of R used here ignores the internal energy in excited states (as well
as the energy lost by radiation during ionization, which would properly have
to be treated by more general equations). Again assuming hydrogenic ions,
estimate what fraction of the internal energy is present in excited states, and
how this varies with Z.

Given the above results for the ion contributions we can give the total
pressure and energy, in the ionizing regime and the fully stripped regime, for
Te = Ti, as follows:

p = 1.6 × 10−12niTe

(
1 + 0.63

√
Te − 2.76 × 10−8n

1/3
i

)
(3.77)

and

ρε = 1.6 × 10−12ni

×
[
1.43

√
Te + 4.20Te + T 3/2

e

(
1.3 − 0.315T 3/2

e ln
[

ni

1023Te

])]
, (3.78)

or
p = 1.6 × 10−12ni

(
Te(1 + Znuc) − 6.96 × 10−8n

1/3
i Z2

nuc

)
(3.79)

and

ρε = 2.4 × 10−12ni

(
825 + Te(1 + Znuc) − 1.39 × 10−7n

1/3
i Z2

nuc

)
. (3.80)

These equations are in cgs units except that Te is in eV. Also note that
ni = ρ/(Amp). We will first explore the implications of the first two equations
for an element of high enough Z to keep ionizing. Then we will consider
carbon as an example of an element that can be fully stripped.

Considering a high-Z element, it is informative to compare the pressure
and energy from (3.77) and (3.78) with their ideal-gas equivalents, which are
p = ni(1 + Z)kBTe and ρε = (3/2)ni(1 + Z)kBTe, respectively. Figures 3.13
(a) and (b) show the ratio of the more-complete estimates in (3.77) and (3.78)
to these ideal-gas values. One can see that the model for the pressure fails
badly in the Fermi-degenerate region, which is no surprise. Otherwise, the
pressure across the space of Fig. 3.13 (a) is typically between 50% and 100%
of the ideal-gas value. Thus, the ideal-gas value is a factor-of-two estimate
for nondegenerate electrons, though it may overestimate the pressure some-
what. In contrast, Fig. 3.13 (b) shows that the internal energy is a multiple
of the ideal gas value, despite the decrease associated with heating new elec-
trons. The calculation here would indicate that the internal energy is about
five times the ideal-gas value. Quantitatively, this is larger than standard
calculations would produce, and certainly ionization energies of the outer
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Fig. 3.13. (a) The pressure for an ionizing high-Z element is shown, normalized to
the ideal gas pressure. The contours increase from the lower right, and are at 0, 0.1,
0.3, 0.5, and 0.99. (b) The internal energy density for an ionizing high-Z element is
shown, normalized to the ideal-gas value. The contours increase from right to left,
and are at 3, 5, and 6

electrons in high-Z elements are reduced compared to the hydrogenic val-
ues. The qualitative conclusion is accurate, however. The internal energy is
increased relative to the ideal-gas value.

With an increased internal energy and a decreased pressure, the value
of γ inferred from (3.55) must decrease. Figure 3.14 shows the values of γ
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Fig. 3.14. The value of γ inferred from (3.55) for an ionizing high-Z element is
shown. The contours show 1 (lower right), 1.1, and 1.15. The value never reaches
1.2
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Fig. 3.15. (a) The pressure for carbon is shown, normalized to the ideal-gas pres-
sure. The contours increase from the lower right, and are at 0.1, 0.5, and 0.99. (b)
The internal energy density for carbon is shown, normalized to the ideal-gas value.
The contours are labeled, and range from 1 to 4

obtained from (3.77) and (3.78). Here again, the quantitative value (∼ 1.15)
should not be taken too seriously but the qualitative point, that γ should be
reduced substantially compared to the ideal-gas value of 5/3, should be real.
Standard EOS evaluations for xenon (A = 130, Znuc = 54), for example, give
γ ∼ 1.2 to 1.3. We will see in Chap. 4 that this implies increased compression
by shocks.

Now consider carbon, an element with six electrons that can become fully
stripped at modest temperatures. Using our estimate that Z = 0.63

√
Te,

Carbon will ionize fully at Te = 91 eV. At higher temperatures, the inter-
nal energy still includes the energy of ionization, but this contribution does
not increase any further. To estimate the properties of carbon, we use 3.77
and 3.78 until Te =91 eV, then 3.79 and 3.80 at higher temperatures. This
produces Figs. 3.15 (a), (b), and 3.16. Carbon has a much smaller nuclear
charge than xenon, so the Coulomb binding effects are much smaller. The
main consequence, shown in Fig. 3.15 (a), is that the pressure is within 1% of
the ideal-gas pressure over most of the relevant parameter space. In contrast
to the relative uniformity of the pressure, the internal energy has a definite
structure, as Fig. 3.15 (b) shows. At temperatures where carbon is not fully
stripped, the ionization energy is a dominant factor and the internal energy
substantially exceeds the ideal-gas value. As ion density increases, though,
this effect becomes smaller. Then, once the temperature has increased enough
to fully strip the material, the internal energy rapidly decreases toward the
ideal-gas value.

This behavior leaves its footprint on the inferred γ, shown in Fig. 3.16.
At temperatures below 91 eV, one sees behavior very like that of Fig. 3.14.
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Fig. 3.16. The value of γ inferred from (3.55) for carbon is shown. The contours
are labeled, except for γ =1 and 1.1 and on the lower right

The inferred value of γ is generally between 1.15 and 1.2. Then, once the
element becomes fully stripped, γ begins to increase, although in this model
it does not reach the ideal-gas limit of 5/3 by even at a temperature of 1 keV.
This begins to become artificial, however, as radiation will begin to reduce γ
toward 4/3 by the time Te reaches 1 keV.

We can now proceed to infer other thermodynamic quantities from (3.77)
to (3.80). In particular, we can evaluate the specific heat at constant volume,
γs, and γ3. For the ionizing plasma case of (3.78), we find

cV =
1.6 × 10−12

Amp

(
4.2 + 0.715/

√
Te + 27.3

√
Te − 0.473

√
Teln[ni/Te]

)
,

(3.81)
while for the fully stripped case of (3.80), we have

cV =
2.4 × 10−12(1 + Znuc)

Amp
. (3.82)

We can then apply (3.72) and (3.73) to find γs and γ3. This produces rather
messy expressions, but they are readily evaluated by computer. Figures 3.17
and 3.18 show the results. We see that these indices are small (∼ 1.2), some-
what variable, and close in magnitude to γ in the ionizing regime. Figure 3.18,
plotted for carbon, shows that these two indices are very close to 5/3 through-
out the fully ionized regime.

This completes our discussion of specific models of equations of state. In
the following chapters, we will typically take γ = 4/3 or 5/3 for our examples.
We will not need to distinguish among the different polytropic indices until
we work with radiation hydrodynamics in Chap. 7. But it should be clear
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Fig. 3.17. Values of (a) γs and (b) γ3 in the ionizing regime. The curves are for
1019 cm−3 (solid), 1021 cm−3 (gray), 1023 cm−3 (dashed). The model fails at a low
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Fig. 3.18. Values of (a) γs and (b) γ3 in the fully stripped regime are shown, for
carbon. The curves are for 1019 cm−3 (solid), 1021 cm−3 (gray), 1023 cm−3 (dashed)

from the above that γ can be substantially less than 5/3, that these dense
plasmas are not ideal-gases, and that it is not so easy to know just what the
equation of state is. To close this chapter, the next section discusses tabular
equations of state.

3.3.3 The EOS Landscape

At this point it may be useful to summarize what we have learned about the
equation of state in high-energy-density systems. Figure 3.19 provides this
summary. The specific lines in the figure are drawn for an ionizing plasma,
assuming A = 2Znuc, but the relative orientation of the various elements in
this log–log space is not sensitive to these assumptions. At the upper left
is the ideal-plasma regime. Examples are hot enough coronal plasmas, as
for example in the laser-heated zone in front of a dense target, or the plasma
generated in z-pinches during their implosion (see Chap. 8). At the lower right
pressure ionization becomes important, as occurs when solids are sufficiently
compressed by shock waves, and the electrons are Fermi degenerate, which
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Fig. 3.19. The landscape of EOS for high-energy-density plasmas

determines the pressure needed to compress solid-density matter including
the fuel for inertial fusion.

In between these two limits is the realm of many experiments in the early
21st century. Here the matter is partly ionized but probably is not fully
stripped, the ions live in the privacy of their own ion spheres but represent
much of the internal energy in the system, and the electrons are a Fermi gas
whose pressure is reduced by Coulomb interactions.

3.4 Equations of State for Computations

The chapter thus far has made it evident that equations of state in the dense-
plasma regime are complicated. The appeal of using a polytropic index, at the
expense of detailed accuracy, is quite clear. Indeed, this will be our approach
throughout much of the text. But if one is to try to simulate these systems
with computers, then one would hope to be more accurate. It is evidently a
great challenge to accurately simulate the behavior of materials at high energy
density. One has Coulomb energy corrections, degenerate electrons, pressure
ionization, and continuum lowering, among other effects. But in addition,
to be fully accurate one would need to include in addition to several effects
that we mentioned but did not incorporate, such as the impact of bound
electrons. One would also need to handle the transitions between regimes
more accurately. But the actual problem is worse than this, because high-
energy-density matter nearly always evolves out of and is adjacent to matter
that is not at high energy density, but rather is in a solid or liquid state.
So realistic computations must also be able to account for these states of
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matter and for their transition to hotter and perhaps denser conditions. A
particularly difficult example at this writing is that of the behavior of the
wires in z-pinch plasmas (see Chap. 8). These begin as solids, ablate and
(perhaps) explode, creating the material that the z-pinch accelerates inward.
Modeling this dynamics is a severe challenge.

In this section we discuss two approaches to this problem. The first is the
Thomas–Fermi model and its extension to QEOS. The second is the use of
EOS tables.

3.4.1 The Thomas–Fermi Model and QEOS

We first discuss the Thomas–Fermi model and lament its simple complexity.
It is highly unfortunate that this model requires serious numerics for its use,
because otherwise it would be the model of choice for quasi-analytic analysis
in the ion–sphere regime. Based on a few very simple relations, the Thomas–
Fermi model accurately includes the effects of ionization, excitation, Fermi-
degeneracy, Coulomb interactions, self-consistent electron density structure,
and to some extent ion–ion coupling. In various versions it may also include
various quantum-mechanical effects such as those of shell structure. There is
a nice summary of the Thomas–Fermi model in Salzman and more detail in
Eliezer, Ghatak, and Hora.

The Thomas–Fermi model is a self-consistent combination of the ion–
sphere model and the treatment of the electrons as fermions. The key to its
power is that it demands that the electrostatic interaction of the electrons as
fermions and the nucleus be self-consistent within this context. It naturally
accommodates, in a classical context, the increase in electrostatic energy
associated with increasing density or temperature. This allows one to ignore
ionization and excitation as separate processes. They are accounted for, on
average, by the expansion of the heated electrons or the lowering of the
continuum as conditions change. The model can be formulated, in a simple
form, as follows. It assumes spherical symmetry.

The electric potential, Φ(r), is given by the Poisson equation,

∇2Φ(r) = 4πene(r) − 4πZnuceδ(r), (3.83)

with the boundary condition that ∂Φ/∂r = 0 at the boundary of the ion
sphere, r = Ro, which follows from the net charge neutrality of each ion
sphere. The electron density is given by the generalization of (3.15) to include
a varying potential energy,

ne(r) =
8π

h3

∫ ∞

0

χ2
edχe

exp[(−µ − eΦ(r) + Ee)/(kBTe)] + 1

=
4π(2mekBTe)3/2

h3

∫ ∞

0

√
xdx

exp[x − (µ + eΦ(r))/(kBTe)] + 1
. (3.84)
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Thus, the nature of electrons as fermions is accounted for. The net neu-
trality of each ion sphere sets a constraint on the density,

Znuc = 4π

∫ Ro

0

ne(r)r2dr, (3.85)

which determines the chemical potential. These three equations are all that
must be solved to describe the system. Once computational mathematics pro-
grams evolve beyond root finding to profile finding, this model may become
simple to implement.

Now, supposing we have solved the above equations, we consider how the
results may be used. The potential is only defined in the above to within an
arbitrary constant, although the choice of this constant will affect the value
of µ. It is conventional to choose Φ = 0 at the boundary of the sphere. As
a result, the potential throughout the sphere becomes increasingly positive
as the density increases. This is how this model captures the effects of ion
interactions. The charge state is calculated as

Z=
4π

3
R3

one(Ro), (3.86)

which amounts to assuming that the free electrons flow freely between ions
and thus establish the density at the ion sphere boundary.

Some other thermodynamic quantities are as follows. The electron pres-
sure is

pe(r) =
8π(2me)3/2(kBTe)5/2

3h3

∫ ∞

0

x3/2dx

exp[x − µ/(kBTe)] + 1
, (3.87)

and the electron kinetic energy in each ion sphere is given by

Ke =
4π(2me)3/2(kBTe)5/2

h3

×
∫ Ro

0

∫ ∞

0

x3/2dx

exp[x − (µ + eΦ(r))/(kBTe)] + 1
dr. (3.88)

This is not, however, the entire energy, because the Coulomb energy of
attraction remains to be accounted for. This can be calculated directly, with
the interaction energy of the electrons and the nucleus, per atom, being Uen

while the energy per atom of the interactions among the electrons is Uee. One
has

Uen = −4πZ2
nuce

2

∫ Ro

0

n(r)rdr (3.89)

and

Uee =
e2

2

∫ Ro

0

∫ Ro

0

n(r)n(r′)
|r − r′| d3rd3r′. (3.90)

With these definitions, the total specific internal energy is
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ε = (Ke + Uen + Uee)/(Amp). (3.91)

To avoid potential confusion, we should note that the zero of the energy
scale here for the electrostatic energies is not consistent with the conventions
used in all the other discussions in this book. In those other discussions,
the implicit point of view is that a state of zero energy and pressure is an
unbound neutral gas nominally at zero temperature (but without quantum
effects). At higher temperatures, positive energy is invested to ionize it. At
high densities, the Coulomb interactions of the ionized gas provide some
binding energy and reduce the energy input that would otherwise be required.
In contrast, the state of zero energy in a conventional Thomas–Fermi model
has all the particles dispersed to infinity. To convert the Thomas–Fermi result
to the standard scale, one would have to add the ionization energy necessary
to totally strip the atom in vacuum to the quantity in parentheses in (3.60).
This would matter if, for example, one were evaluating an effective polytropic
index as a means of comparing models.

Finally, there are a class of computer models known as QEOS models,
which stands for quotidian equation of state, where quotidian means “every-
day” or “routinely usable”. The Thomas–Fermi model is often incorporated
into these (see for example the description in More et al). Such models are
likely to include additional terms or equations intended to account for the
solid, liquid, and gaseous states and for the transitions between them. They
can be a useful way to bridge the wide range of parameters that simulations
must deal with.

3.4.2 Tabular Equations of State

Another approach to describing materials for simulations is to use a tabular
EOS. The idea behind a tabular EOS is that one can work with experimental
data, molecular dynamics simulations, and the best possible models. From
them one can construct a table giving two of the thermodynamic variables
(ρ, p, ε, and T ) as a function of the other two. As is true of all the models we
have discussed, this is necessarily done in equilibrium. Then a computer code
can interpolate from the tables to find the properties it needs with adequate
accuracy.

One challenging aspect of constructing such a table is the need for ther-
modynamic consistency. The table will show how some thermodynamic quan-
tities vary when others are held constant. These variations must be thermo-
dynamically consistent. As one does work on the material or adds heat to
it, the changes of state that result must be consistent with the first law of
thermodynamics. If this were not the case, then the computer code using
the table would mysteriously create or absorb energy in an unphysical way.
Achieving thermodynamic consistency in practice, while merging models that
cover adjacent regimes, can be very difficult. One can check for thermody-
namic consistency by applying the first law of thermodynamics to the table.
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Fig. 3.20. For polyethelene (C1H1) on the left and xenon (A = 131, Z = 54) on the
right, these figures show the inferred γ from the SESAME table. The lower curve
is at 0.1 g/cm3 density, while the upper curve is at solid density. Credit: Carolyn
Kuranz

One way to do this is to evaluate the local deviation from the first law of
thermodynamics. Landau and Lifshitz show in Vol. 5 that one can write the
first law of thermodynamics as d(ρε)/dV + p− T (dp/dT ) = 0. One can eval-
uate this quantity throughout a candidate EOS table and display the results
as curves or a contour plot.

The most widely used EOS tables are the SESAME tables, available from
the Los Alamos National Laboratories. These tabulate specific pressure (pres-
sure per unit density) and specific energy as functions of density and temper-
ature, over several orders of magnitude in density and in temperature. We
show two examples in Fig. 3.20. In each case, we have used the equation of
state to plot γ. The range of temperatures in the table is shown. The densities
shown are solid density (dashed) and 0.1 g/cm3, which are relevant to labora-
tory work in high-energy-density physics. One sees first that the behavior at
low temperatures is quite different. This reflects the presumed development
of a gaseous state (and perhaps even clusters) at low densities, with many
degrees of freedom, which forces γ close to 1. In contrast, the solid becomes
more ordered as temperature decreases. From traditional thermodynamics,
one would expect γ to approach 3 at low temperatures if the solid forms a
lattice with tightly bound planes. In the tables, γ sometimes exceeds 3 at low
temperatures.

At the highest temperatures, the materials seem to approach γ = 5/3,
which would correspond to a fully stripped ideal-gas. We comment more on
this below. At intermediate temperatures, between a few eV and 100 eV for
polyethelene and a few eV and 1000 eV for xenon, γ is reduced. This is as
expected from the previous discussion in this chapter. Indeed, the result for
xenon is not far above the value we inferred for an ionizing, high-Z material.
The value of γ for polyethylene, on the other hand, is not so far below 5/3.
One might be skeptical as to whether this decrease is in fact large enough.
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These figures also provide one example of the limitations of these tables.
If the high-temperature states (above 1 keV) were truly in equilibrium, as is
assumed, then the presence of the radiation field would be driving γ to 4/3.
So these tables ignore the radiation field. The problem is that they have to
make some specific assumptions, though in this case they do not assume true
equilibrium. Real systems do vary greatly with regard to the coupling of the
radiation field and the matter. There is no way that one table can account
for this. Any given computer code may or may not handle it well.

There are other problems with the use of EOS tables in particular, and
equilibrium models in general, in simulations of real systems. Real systems
are almost never in equilibrium. They are often in steady state, or nearly
in steady state, but not in equilibrium. A good example is a plasma that
expands from a hot surface but is not actively heated. The expanding plasma
cools, and after a time its properties slowly evolve. Even so, on the scale of
tens of ns that often applies, the ions and electrons may not recombine and
the plasma certainly will not reach its equilibrium state. The EOS table, on
the other hand, presumes the plasma is instantaneously in equilibrium. Thus,
if it reaches a condensation temperature, the table will make it condense, no
matter how unrealistic this may be. This, and theoretical equilibrium phase
changes in general, can be a source of abrupt density changes in simulations
that are completely unreal. There are times when an ideal-gas model with
fixed γ provides a much more realistic approach to simulating a time-varying
system. The main point is that one must pay attention, think about what
one sees, and not assume that the code reveals truth.

In addition, you may have noticed that some of the equations above would
produce regimes where the pressure from a given model became negative. This
happens with the models used for the EOS tables as well. In some cases, this
is sensible. For example, the only realistic way to incorporate tension in a
material, in the context of a hydrodynamic model, is by adding negative terms
to the pressure. If the material is tightly enough bound and cold enough, it
may be sensible in this sense to treat the pressure as negative. However,
the existence of negative pressure regions in EOS tables can create serious
problems when simulating real, nonequilibrium systems. In the example of
the previous paragraph, for example, the plasma expanding from a surface
may have a temperature and density that would correspond to a condensed
state with tension in equilibrium, yet in actual fact may be more accurately
treated as an ideal-gas. In some contexts, it is sensible to modify the EOS
tables to destroy the tension regimes and maintain positive pressure. When
the EOS table works well, it will do a better job of reproducing the dynamics
than any simpler model can. But it can not be counted on to always work
well. It is very often sensible to compare simulations using EOS tables for
various similar materials and also using a fixed γ to help determine which
aspects of the observed dynamics are due to the specifics of the EOS table.
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Finally, tables do not typically exist for novel materials, such as low-
density foams. These materials are not microscopically uniform. They are
unlikely to behave like a uniform, low-density material. Indeed, in experi-
ments to date the uniform-density models fail to accurately predict phenom-
ena such as shock-wave propagation in such foams. Whether in the end new
tables or some other approach proves the best for working with them remains
to be seen.

3.5 Equations of State in the Laboratory
and in Astrophysics

A moment’s thought will show that equation of state (EOS) properties are
quite important in astrophysics. In gravitationally bound objects, such as
planets, white-dwarf stars, or neutron stars, the interior pressure is deter-
mined primarily by gravity. However, to know the density, and hence the
volume of the material in any given pressure range one must know the equa-
tion of state. Direct astronomical measurements can determine the mass,
and sometimes the size, of such objects, and may be able to learn about the
surface composition from spectroscopy. But there is usually neither direct
nor indirect information relating to the interior. (An exception is the Sun,
for which seismology is possible and productive, producing data that greatly
constrain the EOS.)

Assuming that one knows the EOS, one can construct a model of a planet
in which the known mass of the planet is distributed in radius as gravitational
pressure and the EOS dictate, based on assumptions about what the com-
position of the planet is. Uncertainties in the EOS make this more difficult.
In the case of Jupiter, for example, it is an interesting question whether an
entire planet of its size and mass might be composed of hydrogen or whether
there must be an ice and rock core. This certainly has implications for theo-
ries of planet formation. With sufficient knowledge of the hydrogen EOS, one
will be able to answer this question. At the turn of the 21st century, such
knowledge was insufficient.

In addition, the EOS affects one’s ability to understand magnetic fields,
as we discussed briefly with reference to Fig. 1.3. Planetary magnetic fields
are produced by interior currents, known as dynamos. The theory of plane-
tary dynamos unfortunately requires complex three-dimensional calculations.
Nonetheless, the possibilities for magnetic field generation are constrained
by the locations where the planetary interior is conducting, and this is con-
strained by the EOS. Here again Jupiter provides an interesting way to frame
the puzzle. Jupiter has an extremely strong magnetic field, producing very-
large-scale effects within the solar system. At the surface of Jupiter, hydrogen
is an insulator. The nature of the hydrogen EOS will determine how close
to the surface of Jupiter currents can flow and what volume of the planet
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can participate in the dynamo. This will constrain the possibilities for the
production of Jupiter’s magnetic field.

3.5.1 The Astrophysical Context for EOS

To illustrate the importance of EOS, consider Jupiter in more detail. Fig-
ure 1.3 shows a schematic of its interior (for more discussion, see Guillot
et al.). Jupiter has an outer envelope of dielectric molecular H2, believed to
transition to metallic atomic hydrogen at a radius of 0.75RJ and pressure of
p ∼ 2 Mbar, and ending in an ice–rock core at a core pressure of ∼40 Mbar.
The mass of Jupiter is MJ ∼ 10−3MS , (where MS is the mass of the sun) and
its intrinsic radius is RJ = 7.2 × 104 km. Model calculations for the interior
of Jupiter are shown as temperature–pressure (T − p) profiles as a function
of age in Fig. 3.21. Profiles for the brown dwarf Gl229B are also shown in
this figure. Under these conditions, molecular hydrogen (H2) dissociates to
atomic hydrogen and ionizes deeper in the mantel, changing from a dielectric
to a conductor. The pressure and temperature in the mantle of Jupiter near
the surface are in the range of 1–3 Mbar at temperatures of a fraction of an
eV. Deeper in the interior, the pressure and temperature increase, rising to
40 Mbar at a couple of eV at the center. (The corresponding numbers for
the brown dwarf Gl 229 are similar in the mantel, but it has four orders of
magnitude higher pressures in the core, pcore ∼ 105 Mbar.)

Fig. 3.21. Temperature–pressure profiles in Jupiter and brown dwarf GI 229B, for
various ages, from models in Hubbard et al. (1997)
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One of the key questions about the interior of Jupiter is whether there is a
sharp boundary between the molecular hydrogen mantle and the monatomic
hydrogen core, caused by a first-order plasma phase transition. This has sig-
nificance for the exact internal structure, as the discontinuities caused by such
a phase transition tend to inhibit convective heat transport, modifying the
thermal profile of the planetary interior. This also affects the degree and rate
of gravitational energy-release due to sedimentation of He and heavier ele-
ments. Jupiter and Saturn’s atmospheres are observed to contain less helium
than is believed to have been present at their formation. This is thought to be
due to a H–He phase separation. The presence of a helium-poor outer region,
and helium-rich inner region is important, both because it has implications
for the amount of heavier elements contained deeper in the interior of the
planet, and also because of the gravitational energy released as heat during
helium sedimentation. Helium sedimentation is required to explain Saturn’s
intrinsic heat flux, and may also be significant in Jupiter. The important point
in the present context is that all of the detailed issues of hydrogen behavior
are quite uncertain at present. The nature of the transition from molecular
to monatomic hydrogen, the existence of a metallic phase, the possibility of
a H–He phase separation, and other factors are not known.

The EOS of elements heavier than H and He, relevant to Earth-like plan-
ets, is even more complex at ultrahigh pressures. To illustrate this, we show
in Fig. 3.22 a plot of a number of different theoretical models for the behavior
of Al at very-high pressures and compressions, p > 10 Mbar, ρ/ρo > 3. These
models calculate the shock Hugoniot, which is the locus of the points in pres-
sure and density that can be reached from a single initial condition by means

Fig. 3.22. Various theoretical models of the shock Hugoniot of Al, as described
in the text. Note the considerable uncertainty, which only experiments can resolve.
Adapted from Avrorin et al. (1987)
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of shock waves of varying strength. The various models (see Avrorin et al.
and Trunin) exhibit significant differences. The simplest and most widely
used of the models is the statistical Thomas–Fermi model with quantum
corrections (TFQC), shown by the solid curve. This model does not include
atomic shell structure, but rather treats the electron states as a continuum.
The self-consistent field (SCF), Hartree–Fock–Slater (HFS), and INFERNO
models treat the electron shells quantum mechanically, but differ in their
handling of close-packed levels corresponding to energy bands. The semiclas-
sical equation of state (SCES) model treats both the discrete electron shells
and the energy bands semiclassically. The ACTEX model is an ionization
equilibrium plasma model which uses effective electron–ion potentials fitted
to experimental spectroscopic data. These models typically include the nu-
clear component using the ideal-gas approximation. An exception is a Monte
Carlo treatment of the thermal motion of the nuclei implemented in one of
the versions of the semiclassical equation of state model (SCES).

The oscillations in the theoretical pressure versus compression curves
shown in Fig. 3.22 result from the pressure ionization of the K- and L-shell
electrons of Al. At pressures of 100–500 Mbar, ionization of the L-shell elec-
trons occurs as the high compression forces neighboring atoms sufficiently
close together to disrupt the n = 2 electron orbital. When the shock places
the material in a state where these electrons are becoming free, more of the
energy flowing through the shock must go into internal energy. This leads
to a larger density increase, exactly as we discuss in Sect. 4.1. Hence, at the
onset of pressure ionization of a new shell in a model, the postshock density
increases more rapidly with postshock pressure, behavior known as a “softer”
EOS. This pressure-ionization effect on the EOS is qualitatively similar to
that due to molecular dissociation of N2 and D2, which has been experimen-
tally observed at lower pressures (see Nellis). Once ionization from the shell is
complete, the effect is a “hardening” of the EOS, as the fraction of the energy
flowing through the shock that is converted to internal energy decreases. This
is why, above ∼1 Gbar, some of the p−ρ curves turn back toward lower com-
pression. A similar softening–hardening oscillation is predicted at pressures
of 3–5 Gbar due to ionization of the K-shell electrons, though the magnitude
of the effect is smaller due to the lower number of K electrons. How real
such oscillations in the Hugoniot are is unclear at this writing. If the actual
process of liberating new electrons develops more gradually than it does in
the model, this may smooth out the response and avoid the oscillation.

3.5.2 Connecting EOS from the Laboratory to Astrophysics

The EOS describes the equilibrium properties of any large aggregation of
atoms of a given type. Even microscopic quantities of matter typically include
enormous numbers of atoms. As a result, measurements using aggregations of
matter that are very small on a human scale can provide results which apply
directly to aggregations of matter on a planetary or stellar scale. In this sense,
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it is straightforward to make a laboratory measurement that applies directly
to astrophysics.

Unfortunately, however, laboratory measurements can only achieve a lim-
ited range of pressures and densities by comparison with those existing in
astrophysical systems. It would be desirable to be able to scale the equation
of state in pressure and density, so that laboratory measurements could be
applied to a wider range of astrophysical conditions. This is possible but un-
necessary in the case of simple equations of state, such as an ideal-gas or a
radiation-dominated system. In more-complex cases, however, the dynamics
of the material is specific to the material conditions. The chemical structure
of a material is not easily scaled to other conditions, and processes such as
dissociation and ionization occur only at specific energies. Thus, laboratory
measurements can only address astrophysical issues in EOS at pressures they
can actually achieve.

Given the technologies of the early 21st century, it seems likely that the
pressures employed for EOS studies during this period will be in the range of
1 to less than 100 Mbars. These are suitable for addressing issues in planetary
equations of state. One can expect this to be the primary focus of such studies.

3.6 Experiments to Measure Equations of State

This final section is somewhat problematic. On the one hand, it seems natural
to discuss measurements of EOS in the chapter on EOS. On the other hand,
knowledge from Chap. 4, Chap. 8, and other areas is necessary to really
understand how these measurements work. In the end, the author elected to
put this section here where it would be easiest to find. If you are new to this
field, then you will need to read other parts of the book before you will be
able to make much sense of the details in what follows.

Experimental measurements of EOS have been an active area of research
for many years. Much of this research has used flyer plates (see Chap. 4)
to create shock waves with known postshock (“particle”) velocities. This en-
abled the EOS along the shock Hugoniot (defined with reference to Fig. 3.22)
to be inferred. These experiments typically used either gas guns or rail guns
to launch the flyer plates, and were limited to pressures below 1 Mbar prior
to roughly the turn of the century. Hydrogen was a very active area of study
in such experiments, because of its application to the interiors of gas giant
planets (see Nellis et al.). Some experiments were done using nuclear weapons
to launch flyer plates at a higher velocities, producing higher pressures. These
experiments were in the high-energy-density regime, but were certainly not
“laboratory” experiments in the usual sense. Equation-of-state experiments
at a high energy density can be accomplished in the laboratory using a num-
ber of techniques. We discuss some of these here.
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3.6.1 Direct Flyer-Plate Measurements

If one can produce a cold flyer plate of a given material, one has a great
advantage for measuring the EOS of that material. To do so, one collides the
flyer plate with another layer of the same material. One then knows, as dis-
cussed in Sect. 4.1.5, that the postshock fluid velocity is half the initial flyer
plate velocity, and one knows that it is constant until after a shock emerges
from the flyer plate or the impacted layer. One can measure the flyer plate
velocity and the collision time optically. One then determines the shock veloc-
ity by measuring the time of emergence of the shock from the impacted layer
of material. This can be done optically or by more-sophisticated techniques.
Thus one obtains a direct and simultaneous measurement of the shock and
postshock velocities, and is able to infer density and pressure as discussed in
Sect. 4.1.2. Because Aluminum is a very practical material for flyer plates,
the EOS of Aluminum is now very well known.

3.6.2 Impedance Matching

Once one has a material with a known EOS, one can use this to advantage in
determining the EOS of other materials. This technique is commonly known
as impedance matching, although it actually depends on measuring the dif-
ference in the degree to which two materials impede the shock. The analysis
used in impedance matching is as follows, with reference to Fig. 3.23. One
begins by producing a known and steady shock, with a known postshock fluid
velocity, up1, in a first material, material A. It is essential that the shock be
steady to very high (∼ 1%) accuracy, otherwise one finds large errors in the
resulting EOS. One then allows this shock to enter a layer of the sample to
be measured, of material B. This produces a transmitted shock through the
sample and either a reflected shock or a rarefaction in the first material. One
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measures the shock velocity, usB , in the second material, initially at pres-
sure pB1 (often negligible). One knows the density of this material, ρBo, so
one knows that its postshock pressure, pB2, lies along a line given by (4.9),
which implies pB2 = pB1 + ρBousBup3, in which up3 is the (not yet known)
postshock fluid velocity of material B in the laboratory frame. Note that pB2

is an increasing function of up3.
As discussed in Sect. 4.1.6, one also knows that up2 = up3 and that

pA2 = pB2, in which up2 and that pA2 are the fluid velocity and pressure,
respectively, in material A at the interface with material B while the shock
crosses material B. Given sufficient knowledge of the equation of state of
material A, one can plot a curve giving pA2 as a function of up2 = up3.
One finds that pA2 is a decreasing function of up3, because a decrease of
up3 corresponds to an increase in the velocity at which the reflected shock
separates from the interface, and thus to a higher reflected-shock pressure.
In the event that the reflected wave is a rarefaction rather than a shock,
it remains the case that pA2 is a decreasing function of up3, as one can
verify by reviewing Sect. 4.2. The net result is that the curves for pA2 and
pB2 cross at only one point (actually an area whose size is determined by
the uncertainties). Because pA2 = pB2, this point determines both pB2 and
up3, giving us the EOS at one point. EOS results are often plotted in a
space of pressure versus density. The postshock density is related to up3 by
ρ/ρBo = (1−up3/usB)−1. The entire ensemble of such p−ρ points, produced
using compression by a steady-state shock, is referred to as the principal
Hugoniot or the shock Hugoniot.

One way to apply the initial pressure to material A, so that one can know
its value with high accuracy, is to make material A be Al and to apply the
pressure by using an Al flyer plate to strike it. This has been accomplished us-
ing magnetically launched flyer plates from pulsed power machines, discussed
in Sect. 8.3.3. Figure 3.24 shows a drawing of the experimental system used

Fig. 3.24. Flyer-plate driven impedance matching experiment. From Knudson et al.
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(see Knudson et al.) to determine the EOS of D2 by this method, at pressures
above 1 Mbar. The Al flyer plate impacted a “drive plate”, also of Al, produc-
ing an interface velocity of half the flyer-plate velocity and a shock pressure
(pA1) known from the Al EOS. The flyer plate was thick enough to sustain
this pressure throughout the experiment. When the shock in the Al reached
the D2, it drove a transmitted shock through the D2 (and a rarefaction into
the Al). The diagnostics measured the emergence of the transmitted shock
after it had propagated through one of two thicknesses of D2, thus giving
usB , which with the density of D2 defines the slope of the curve for pB2 in
Fig. 3.23. From this the authors obtained the equation of state, to a sufficient
accuracy to exclude some models.

An alternative way to apply the pressure to material A is to use a laser
or other radiation source to do so. In this case the initial shock velocity in
material A is not as well known, so one must also measure it. Figure 3.25
shows a measurement of the EOS of Copper by this method. A steady shock
wave was driven through a stepped aluminum plate using a pressure source
(in this case from laser ablation; see Chap. 8). A sample of Cu abuts part
of the surface of the thinner step. The optical emission produced upon the
emergence of the shock from each region is detected using an optical streak
camera. Such data are shown in Fig. 3.25b. What matters is the time dif-
ference between the signal in the middle (from the thin Al step) and the
signals through the two thicker layers. An experimental complication is that
the edges of the samples affect the shock propagation (slowing it down from
the edges inward). This limits how thick one can make the samples, which
limits the accuracy of the measurement.

The emergence of the shock is detected from both the thin and the thick
Aluminum steps. This determines the shock velocity in the Al, from which
the known Al EOS implies the postshock fluid velocity and the pressure
pA1 in the Al. The time of emergence of the shock from the Cu sample
then determines the shock velocity in the sample, usB . Then one applies
the analysis illustrated in Fig. 3.23 to find the pressure and postshock fluid
velocity in the Cu, shown in part Fig. 3.25c.

3.6.3 Other Techniques

Several other techniques have been demonstrated in recent years at this writ-
ing. Here we provide a summary and a few early references. The first of
these involves the measurement of the reflected shocks in the sample mate-
rial (Mostovych et al. 2001). In a system like that shown in Fig. 3.24, the
shock wave reflects after it traverses the D2. By measuring the properties of
the reflected shock, or of later reflect ions, one can obtain a more accurate
test of EOS models than one can by measuring a single shock.
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Fig. 3.25. Laser-driven impedance-matching experiment. (a) Sketch. (b) Spatial
profile of emission with time increasing to right. (c) Inferred EOS of Cu. Parts (b)
and (c) are from Benuzzi et al.

As a second alternative, techniques have been developed for shockless
compression of samples, opening up new terrain on the plot of pressure versus
density. Such isentropic compression experiments (ICE) were first developed
on a pulsed power facility (Asay et al. 1999). In this case, slowly increasing
magnetic pressure was used. This allowed one to measure the time variation
of the velocity of an (unshocked) surface. Such measurements have for exam-
ple observed the fcc to hcp phase transition in Fe, showing that this technique
can be used to study the kinetic, time-resolved evolution of a phase transi-
tion. One can attempt similar experiments using a laser as the energy source
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(Edwards et al. 2003), by creating a flow of material that gently accumulates
against the surface of a sample.

A third technique is possible if the shock in a transparent material is
strong enough to induce pressure ionization at the shock front. Then a probe
laser can be reflected directly off the shock front (not the interface) (Celliers
et al. 2000). Converting the reflected signal into an interferogram, via a tech-
nique called VISAR (Barker and Hollenback 1972), allows the shock velocity
to be measured along with shock reflectivity. The reflectivity can in turn be
used to infer the conductivity of the shocked material, thereby determining
whether the dielectric-to-metallic transition has occurred.

Fourth, one can measure shock breakout without a streak camera, using
a chirped laser pulse (Benuzzi-Mounaix et al. 1999). The chirp, produced
by passing a broadband laser pulse through a long fiber optic, sets a one-
to-one correspondence between spectral component (λ) and time, namely,
tsbo = a + bλsbo. Using this chirped pulse as the probe on the rear surface
of the target, and imaging the reflected pulse into a static spectrometer, one
can obtain with a high time resolution the shock breakout time by noting the
discontinuity in the spectrum.

Fifth, one can measure the solid-state shock compression of moderately
strong shocks (p < 1 Mbar) for single crystal samples using time-resolved
Bragg diffraction (Loveridge-Smith et al. 2001). As the lattice is shocked, the
lattice spacing (2d) gets smaller, and the position of the Bragg peak shifts
according to Bragg’s law. This directly gives the compression. By simultane-
ously diffracting off orthogonal lattice planes, one can observe the 3D crystal
response in the compressed state, that is, the relaxation from a shocked 1D
to a compressed 3D state.

Sixth, in a completely different regime, one can use ultrashort pulse
(∼100 fs) lasers to probe the EOS of pressure-ionized matter at solid density,
in the absence of any hydrodynamic motion or expansion. The laser pulses
are so brief that the samples have no time to hydrodynamically expand, and
one is probing the plasma behavior at ambient density. This technique has
been demonstrated on a carbon sample (Nantel et al. 1998).



4 Shocks and Rarefactions

The word “shock” is used very widely in common experience. One is shocked
by an unexpected event; a wounded victim goes into shock; and one shocks
a material by suddenly cooling it. A “shock wave” is a sudden transition in
the properties of a fluid medium, involving a difference in flow velocity across
a narrow (ideally, abrupt) transition. In high-energy-density physics, nearly
any experiment involves at least one shock wave. Such shock waves may be
produced by applying pressure to a surface or by creating a collision between
two materials. In astrophysics, nearly every sudden event produces a shock
wave. Yet in common experience one encounters very few shock waves. We
hear thunder after lightning, which is a long-term consequence of the shock
wave produced by the lightning channel, but as we shall see below one would
hope never to directly experience this shock wave. Most of us hear sonic
booms infrequently, but they are the only shock wave of human origin we
typically encounter.

We have more direct experience with rarefactions or “rarefaction waves,”
in which a fluid begins to move, expanding and becoming less dense, with the
edge of the moving region propagating into an initial body of fluid. Household
drafts may be due to rarefactions, which can occur in a house, for example,
when a gust of wind drops the pressure at an open door, by the Bernoulli ef-
fect. Rarefactions also have real practical uses, notably in refrigeration where
they are used to produce expansion cooling. It is also true that nearly every
high-energy-density experiment involves at least one rarefaction wave.

Moreover, most high-energy-density experiments involve at least one in-
terface, where the density (and perhaps the equation of state) changes. When-
ever a shock wave or a rarefaction wave reaches an interface, there are trans-
mitted and reflected waves in response. In each of these two directions, these
waves might be either shock waves or rarefaction waves, so that there are
four possible responses. Which of these four occurs depends on the details.
One can find systematic discussions of this in books on shock physics. As
we proceed to consider various cases, we will encounter specific examples. It
should be clear that shock waves, rarefaction waves, and their interactions
merit a serious examination, which we undertake in this chapter.
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Fig. 4.1. An image of the Tycho supernova remnant. Credit: National Aeronautics
and Space Administration, Chadra X-ray Center, Smithsonian Center for Astro-
physics

4.1 Shock Waves

Figure 4.1 shows an image of the supernova remnant known as Tycho. The
remnant shown in the image has sharp edges, where spectral measurements
show that the temperature reaches 20 million degrees. This is one of many
examples of an astrophysical shock. The magnetic field in such a shock is
not dynamically important, except that it localizes the particles as discussed
in Chap. 11. For this reason, a laboratory experiment can hope to produce
dynamics similar to those of this shock. (There are caveats – it is possible
that the dynamics of the shock in the remnant causes the magnetic field to
grow, and it is also possible that cosmic ray acceleration at the shock has an
effect on the shock itself. Both are active areas of research at this writing.) In
contrast, the weaker shock waves produced by the sun are very much affected
by the magnetic field. We will not take up magnetized shocks here, leaving
this subject for books on space plasma physics.

Even the simpler, unmagnetized shock waves are at first glance mysteri-
ous. Why would a fluid decide to abruptly change its properties? When we
make music louder, the energy flux of the sound waves carrying energy to
our ears increases. Why does the energy flux of sound waves not just increase
as necessary to transport as much energy as is needed? The fundamental
answer is that sound waves move at the sound speed, and that the largest
pressure modulation they can transport is of order the initial pressure of
the fluid. This pressure is of order ρc2

s, so the largest energy flux the sound
waves could imaginably carry is of order ρc3

s. But one can readily force a
fluid to carry more energy than this, either by rapidly moving its boundary
or by releasing energy within it. For example, the pressure in a singly ionized
plasma at a temperature of 1 eV and a density of 1 g/cm3 is of order a mil-
lion atmospheres (1 Mbar). In high-energy-density experiments, much larger
pressures are easy to obtain. The plasma cannot respond to such pressures
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by radiating sound waves. Instead, a shock wave forms. We discuss its basic
properties in this section.

4.1.1 Jump Conditions

The shock wave does three things. First, it carries energy forward at the shock
velocity, which is supersonic. Second, it heats and accelerates the medium as
it passes, so that the fluid behind the shock carries kinetic energy and thermal
energy (these are equal in strong shocks, in the frame of reference in which
the upstream fluid is at rest, known as the laboratory frame). Third, the shock
wave heats the fluid behind the shock so that the motion of the shock wave
relative to the heated fluid is subsonic. As a result, changes in the source of
the energy are communicated to the shock front at the (new, higher) sound
speed. For the original fluid, though, the arrival of the disturbance comes as
a shock. Figure 4.2 shows a schematic diagram of a shock wave, in the frame
of reference in which the shock is at rest, known as the shock frame. We will
work consistently from a viewpoint in which the shock moves from left to
right so that in the shock frame the fluid flows from right to left.

Upstream,
unshocked

Shock (at rest)Shock (at rest)

Downstream,
shocked

Position in shock frame
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Fig. 4.2. Diagram of an isolated, steady shock, in a reference frame that moves
with the shock. Here u1 and u2 are < 0 and we define the shock velocity as us = −u1

in this reference frame

Establishing a discontinuity does not in any way relieve the system from
the conservation of mass, momentum, and energy, however. To explore this,
we begin with the Euler equations in conservative form (with a scalar pressure
and explicit internal energy terms):

Continuity
∂ρ

∂t
= −∇ · (ρu), (4.1)

Momentum
∂

∂t
(ρu) = −∇ · (ρuu) −∇p, and (4.2)

Energy
∂

∂t

(
ρu2

2
+ ρε

)
= −∇ ·

[
ρu

(
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u2

2

)
+ pu

]
. (4.3)
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Now consider a planar disturbance and integrate any one of these equa-
tions across a small region that may include an abrupt change in parameters.
In the notation of Sect. 2.1 for a general equation in conservative form, we
will have ∫ x2

x1

∂

∂t
ρQdx′ = −

∫ x2

x1

∂

∂x
ΓQ(x′)dx′ = ΓQ(x2) − ΓQ(x1). (4.4)

The integral on the left approaches zero as x2 − x1 becomes infinitesimal,
but the fluxes ΓQ need not. Instead, in the limit that x2 − x1 → 0, one has
ΓQ(x2) = ΓQ(x1). This analysis evidently applies to a fixed location within
one’s coordinate system, and this is part of the importance of the shock
frame, in which the shock location remains fixed at some x (typically x = 0).
Applying (4.4) to (4.1)–(4.3), one finds the jump conditions for a shock wave,
which are

ρ1u1 = ρ2u2, (4.5)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2, and (4.6)[

ρ1u1

(
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u2
1

2

)
+ p1u1

]
=

[
ρ2u2

(
ε2 +

u2
2

2

)
+ p2u2

]
, (4.7)

in the event that the motion is one-dimensional. More generally, for shock
jump conditions we need integrate in the direction of propagation of the
shock wave. The two vector quantities, u and ∇p, may or may not have
components transverse to this direction. If all we care about is a single shock
wave interacting with a planar interface in a planar system, then we go into
the shock frame by choosing a reference frame that is moving in the transverse
direction, so as to eliminate the transverse components of u. This, however,
is not always feasible in practice. We discuss shocks with finite transverse
fluid velocity, known as oblique shocks, in Sect. 4.1.5.

In a fluid described by the Euler equations, the shock jump must be
infinitesimal in width. When one introduces additional phenomena that are
always present at some level in actual fluids, such as viscosity, then the shock
transition becomes gradual. However, so long as viscosity or other effects are
only important near the shock front, then in steady state the jump conditions
apply equally well to locations that are far enough from the shock front.
Shocks that involve radiation are discussed in Chap. 7. Equations (4.5)–(4.7)
can be manipulated to find relations that are convenient in a given context.
We consider some of these relations in the next section.

Before proceeding, though, note that there is a seemingly paradoxical
aspect to our description of shocks so far. On the one hand, we described a
shock wave as something that heats and compresses the medium that flows
into it. On the other hand, (4.5)–(4.7) are symmetric in the exchange of
the indices. From their point of view the matter flowing into a discontinuity
could be heated and compressed, or alternatively could be cooled and made
less dense (rarefied). An abrupt transition in which matter was cooled and
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rarefied would be described as a rarefaction shock. From the point of view
of the conservation equations, a rarefaction shock could exist. However, it is
forbidden by the Second Law of Thermodynamics, as we will see in Sect. 4.1.4.

Homework 4.1

Add a gravitational force density and gravitational potential energy to (4.2)
and (4.3) and derive the modified jump conditions.

Homework 4.2

Suppose that during the shock transition significant energy is lost by radia-
tion. Write down the modified jump conditions.

4.1.2 The Shock Hugoniot and Equations of State

A shock wave can place a material in a new state, whose properties depend,
for example, on the amount of internal energy the material requires at a given
pressure and density. By varying the initial density, pressure, and velocity of
the material, one can access a continuous sequence of final states. One of the
primary methods used to determine the equation of state involves measure-
ments using shock waves. These measurements determine points along the
Rankine–Hugoniot relation, which is traditionally identified as the function
p(p1, 1/ ρ1, 1/ ρ2). The inverse of the density is the specific volume, often
written as V = 1/ρ. The use of the postshock (downstream) density is an
arbitrary choice. One can use any of the postshock parameters, and indeed
one sees Rankine–Hugoniot curves plotted in various ways. (Figures 3.22 and
3.25 show examples.) Let us consider how measurements can determine the
Rankine–Hugoniot relation. This relation is also often called the shock Hugo-
niot, even though Rankine’s work (in 1870) came 17 years before Hugoniot’s
(in 1887).

One often can manage to measure the shock velocity and the postshock
fluid velocity. The shock velocity can be determined, for example, by mea-
suring when the shock emerges from varying thicknesses of shocked material.
This can often be done using emission from the surface, which is strongly
heated by the shock wave. Measurements of the postshock fluid velocity use
targets in which the shock wave crosses an interface whose motion can be
measured, for example, using the Doppler shift of light reflected from it or
measuring its shadow with x-ray radiography.

Such measurements are typically done in the inertial frame of the labo-
ratory where the upstream fluid is at rest. In this case, the postshock fluid
velocity, up, that one measures is the difference between the incoming and
outgoing velocities in the shock frame, shown in Fig. 4.2. Thus up = u1 − u2

or u2 = u1 − up. Then from (4.5) and (4.6) we can find
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Fig. 4.3. A useful practical application of (4.9). Here the independent variable is
the postshock fluid velocity in the lab frame, up, in km/s, the ordinate is postshock
pressure in Mbars, and the curve is for ρ1u1 = 30 g cm−3 km s−1

ρ2

ρ1
= 1 +

up

u1 − up
and (4.8)

p2 − p1 = ρ1u1 (u1 − u2) = ρ1u1up. (4.9)

It is a very neat trick to determine the thermodynamic state of the fluid
from two measurements (of u1 and up), but this is the power of shock Hugo-
niot measurements. However, determining up is often not easy. We discussed
some of the experimental approaches to shock Hugoniot measurements in
Sect. 3.6. Figure 4.3 illustrates (4.9), showing how measurements of u1 and
up determine p2 − p1. Researchers doing shock Hugoniot measurements with
flyer plates often work with this equation using graphs like that of Fig. 4.3a,
which allow one to think directly in terms of the measured quantities.

4.1.3 Useful Shock Relations

The jump conditions are sometimes useful as they stand, but there are also
useful alternative solutions of these equations. There is an upstream fluid,
within which the distance from any fluid element to the shock decreases
with time, and which we will designate by the subscript 1. There is also a
downstream fluid, within which the distance from any fluid element to the
shock increases with time, and which we will designate by the subscript 2. The
most useful equations relate specific properties of the upstream fluid to those
of the downstream fluid and the upstream Mach number, Mu. This Mach
number is defined as the ratio of the rate at which the upstream material
and the shock approach one another to the sound speed in the upstream
material. The rate at which the upstream material and the shock approach
one another is often called the shock velocity, which is also the velocity of
an isolated shock when the upstream fluid is at rest in the inertial frame of
reference of the laboratory. We will designate this as us, which will equal
|u1| in the simple case we now discuss. However, when one analyzes complex
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systems with several shocks, one must think carefully to properly identify the
upstream Mach number for each one.

To obtain useful solutions of (4.5)–(4.7), we work in the shock frame. In
the (one-dimensional) shock frame, one has three equations and four vari-
ables in the upstream state, so one needs an equation of state to relate ε
to p. It is most useful to assume the fluid to be a polytropic gas so that
ρε = p/(γ − 1). Thus, in terms of the various polytropic indices discussed
in Chap. 3 we are working with the shock gamma. This one term in the
energy equation is the source of all the factors involving γ that appear in
the following. However, for high-energy-density physics we should note that
the polytropic index sometimes differs greatly across a shock. We may, for
example, start with a cold, highly-ordered crystal for which γ approaches 3
and shock it into an ionizing, plasma state for which γ ∼ 4/3. The equations
(4.5–4.7) still apply in such a case, with γ evaluated appropriately on each
side of the interface. In what follows, we provide both the traditional results
obtained when γ is taken to be unchanging (and is not subscripted) and also
results in which γ is subscripted and applies separately to the fluid on the
two sides of the interface.

Thus, the velocity u1 is the shock velocity, and the upstream Mach num-
ber is Mu = −u1/cs1 = us/cs1, which for a polytropic gas is us

√
ρ1/(γ1p1).

Solving these equations for the ratio of the pressures, one can show that

p2

p1
=

ρ2(γ + 1) − ρ1(γ − 1)
ρ1(γ + 1) − ρ2(γ − 1)

or (4.10)
p2

p1
=

[
ρ2(γ1 + 1) − ρ1(γ1 − 1)
ρ1(γ2 + 1) − ρ2(γ2 − 1)

]
(γ2 − 1)
(γ1 − 1)

.

Figure 4.4a shows this pressure ratio as a function of the density ratio ρ2/ρ1.
Alternatively, if one does the algebra by hand, for constant γ, it is easier to
relate the pressures to the specific volumes (the inverse of density) as

p2

p1
=

V1(γ + 1) − V2(γ − 1)
V2(γ + 1) − V1(γ − 1)

. (4.11)

Note that the postshock pressure implied by these two equations diverges
when the denominator becomes zero at a specific density ratio. One can
rearrange (4.10) to find the density ratio in terms of the pressures, which is

ρ2

ρ1
=

p2(γ + 1) + p1(γ − 1)
p1(γ + 1) + p2(γ − 1)

or (4.12)
ρ2

ρ1
=

[
p2(γ2 + 1) + p1(γ2 − 1)
p1(γ1 + 1) + p2(γ1 − 1)

]
(γ1 − 1)
(γ2 − 1)

.
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This makes it very clear that as p2 becomes  p1, the density approaches a
fixed density ratio given by

ρ2

ρ1
=

(γ + 1)
(γ − 1)

. (4.13)

This density ratio is the physical limit that can be produced by a single
shock in a polytropic gas, and only the postshock value of γ enters. Shocks
encountered in high-energy-density physics often have density ratios near this
limit, and thus are strong shocks as defined shortly. Low atomic number ma-
terials, subject to strong enough shocks, may behave this way with γ ∼ 5/3.
Thus, the density ratio ρ2/ρ1 may be 4 to 1. One may encounter differ-
ences if the internal energy of the shocked material is a significant fraction
of the thermal energy density, as for example in materials that are ionizing
as discussed in Chap. 3. In this case, the jump conditions [specifically (4.6)
and (4.7)] imply that u2 must be smaller than it would be otherwise – the
increased internal energy comes from the kinetic and thermal energies. As a
result, (4.5) implies that ρ2 must be larger than it would be otherwise. (In
some cases, radiation lost during ionization can have a similar effect.) There
is still a limiting density ratio, but it is affected by the properties of the mate-
rial. Xenon in particular is a gas that both absorbs a lot of ionization energy
and radiates strongly under typical experimental conditions. Accordingly, a
strong shock in xenon produces a larger density jump than is produced in a
lower-Z gas such as nitrogen. The way that this enters the mathematics is
that the value of γ is smaller in such a material, just as we saw in Chap. 3. In
terms of an effective polytropic index, xenon typically would have γ ∼ 1.2 to
1.3 at densities above atmospheric density. At lower densities, weakly ionized
xenon can store a great deal of energy in excited states. If one accounts for
this by adjusting γ, then γ can be driven down below approximately 1.1.

Returning to (4.12), the traditional approach is to find useful expressions
involving Mu, for example, by substituting for p2 from (4.9). We then can
obtain for the density ratio

ρ2

ρ1
=

M2
u(γ + 1)

M2
u(γ − 1) + 2

. (4.14)

This ratio exhibits the behavior we expect, tending to the value of 4.13 as
Mu becomes large. In general, the limit in which Mu is large and only terms
in the largest power of Mu need to be kept is referred to as the strong shock
limit. In a similar way, we find the pressure ratio

p2

p1
=

2γM2
u − (γ − 1)
(γ + 1)

, (4.15)

which increases indefinitely as Mu increases.
Unfortunately, in real high-energy-density systems Mu is often very

poorly known. This is because the upstream temperature might be room
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temperature, at which the system is typically prepared, a significantly smaller
temperature through cooling in vacuum, or a significantly higher tempera-
ture because of small levels of heating by radiation or electrons in advance of
the shock. The uncertainty in Mu can easily be a factor of several. However,
the stronger the shock the less this matters. One can show this by working
with (4.5), (4.6), and (4.10), dividing the pressures by ρ1u

2
s. Then one can

define

S =

√
1 +

(
γ2p1

ρ1u2
s

)2

+
2p1(γ1 − γ2

2)
ρ1u2

s(γ1 − 1)
. (4.16)

Note that S approaches 1 as shock velocity increases. (For γ1 = γ2, S =
1 − γ2p1/(ρ1u

2
s).) This allows one to write the density ratio as

ρ2

ρ1
=


 (γ2 + S) + γ2p1

ρ1u2
s

(γ2 − 1) + 2 γ1p1
ρ1u2

s

(γ2−1)
(γ1−1)


 . (4.17)

The corresponding density ratio is shown for various values of γ1 and γ2

in Fig. 4.4a. While the eventual density ratio reached in a strong shock is
not affected by γ1, the ratio of ρ1u

2
s/p1 required to approach this value is

affected. The downstream pressure can similarly be written as

p2 =
2

(γ + 1)
ρ1u

2
s

[
1 − (γ − 1)p1

2ρ1u2
s

]

or

p2 =
ρ1u

2
s

(γ2 + S) + γ2p1
ρ1u2

s

[
1 + S

(
1 +

p1

ρ1u2
s

)
+

p1

ρ1u2
s

(
2(γ1 − γ2)
(γ1 − 1)

+
γ2p1

ρ1u2
s

)]
.

(4.18)
The first form is useful for quick estimates assuming a single value for γ.

Even more useful is the realization that 2/(γ+1) is of order 1 so for strong
shocks p2 ∼ ρ1u

2
s, which is easy to remember and to evaluate. Figure 4.4b

shows the dependence of p2/(ρ1u
2
s) on ρ1u

2
s/p1.

One can proceed to obtain a similar expression for the temperature, tak-
ing p2 = (Z2 + 1)kBT2ρ2/(Amp), where the electrons are assumed to fully
equilibrate with the ions and not to be degenerate. One finds

kBT2 =
Amp

(1 + Z2)
u2

s

2(γ2 − 1)(
(γ2 + S) + γ2p1

ρ1u2
s

)2

(
1 +

2γ1p1

(γ1 − 1)ρ1u2
s

)

×
[

(1 + S)
2

+
p1

ρ1u2
s

(
S

2
+

(γ1 − γ2)
(γ1 − 1)

)
+

γ2

2

(
p1

ρ1u2
s

)2
]

. (4.19)

Here Z2 is the average ionization of the postshock state. In the strong
shock limit we find
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Fig. 4.4. (a) The ratio of postshock to preshock density depends as shown on the
ratio of ρ1u

2
1 to preshock pressure, from (4.17). Here γ2 = 4/3. The values of γ1 are 3

(black curve), 4/3, (gray curve), and 1.1 (dashed curve). (b) The ratio of postshock
pressure to ρ1u

2
1 depends as shown on the ratio of ρ1u

2
1 to preshock pressure, from

(4.18). This ratio asymptotes to 2/( γ+1). Here γ2 = 5/3. The values of γ1 are 3
(black curve), 4/3, (gray curve), and 1.1 (dashed curve)

kBT2 =
Amp

(1 + Z2)
u2

s

2(γ2 − 1)
(γ2 + 1)2

. (4.20)

In shocks with weak collisionality, because of low density or high tempera-
ture, the immediate postshock temperature of the ions can be found by setting
Z2 = 0 and γ2 = 5/3 in this equation. This also applies to shocks in atomic
neutral gasses, which is why one may encounter kBT2 = (3/16)Ampu

2
s in

various places as a standard expression. However, in a highly ionized plasma
with strong collisional coupling of electrons and ions, it is evident that this
standard expression can greatly overestimate the temperature.

Homework 4.3

Determine from energy arguments how to generalize (4.20) for a two-species
plasma.

Strong shocks have some additional properties that are worthwhile to
know. As always, the velocity ratio is the inverse of the density ratio, in this
limit being

u2

u1
=

(γ − 1)
(γ + 1)

. (4.21)

From this one can find the postshock particle velocity, up, in the lab frame
(in which the upstream fluid is at rest; see the discussion near (4.8)). This is

up = us + u2 =
2

(γ + 1)
us, (4.22)

which is (3/4)us for γ = 5/3 and (6/7) us for γ = 4/3. So the postshock fluid
velocity is approximately 80% of the shock velocity in typical materials. It
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is easy to show that the postshock fluid velocity becomes closer to the shock
velocity as the density jump increases. If we examine the postshock pressure
p2 in the strong-shock limit, we can substitute for ρ1 and us to find

p2 = (γ − 1)
ρ2u

2
p

2
, (4.23)

so one can see that, in a frame of reference with a stationary upstream fluid,
a strong shock in a polytropic gas produces a postshock fluid in which the
kinetic and internal energies are equal [because ρε = p/(γ−1)]. Using (4.23),
we can look again at some of the velocities in the strong shock limit. The
sound speed in the shocked fluid is

√
γp2/ρ2 =

√
γ(γ − 1)/2× up, which for

γ = 5/3 is
√

5/9up. Thus, in the laboratory frame (and for γ < 2) the flow is
supersonic, as the sound speed is less than up. However, the source of pressure
that sustains the shock must move at up, and the distance between it and the
shock increases at speed u2, which can easily be shown to be (γ − 1)/2× up.
This is (1/3)up for γ = 5/3. Thus the separation of the pressure source from
the shock is subsonic. This last statement is completely equivalent to saying
that, in the shock frame, the downstream fluid moves subsonically.

Homework 4.4

Appendix B shows a derivation of (4.10)–(4.15). For γ1 = γ2, derive (4.18)
and (4.20). Using a computational mathematics program is suggested.

Homework 4.5

Derive from (4.10) and (4.12) a general expression for T2, valid for weak and
strong shocks, for γ1 = γ2. Express the result in physically clear parameters,
so the relation among the terms is evident. Check your result by finding it
as a limit of (4.19) and by finding (4.20) as a limit from it.

We can also look at some typical parameters. A high-energy-density ex-
periment may produce a shock wave in a plastic material having ρ1 =
1g/cm3

, A = 6.5, andZ = 3.5 using a pressure of 50 Mbars (i.e., 5 × 1013

dynes/cm2). The plastic behaves like a polytropic gas with γ ∼ 4/3, so the
shocked density is ρ2 ∼ 7 g/cm3. The shock velocity, from (4.18), is approxi-
mately 80 km/s (8×106 cm/s), so the shock will traverse a 100 µm thick layer
in about 1.2 ns. The postshock temperature, from (4.20), is approximately
25 eV. For comparison, consider the shock in the interstellar medium pro-
duced by a supernova remnant such as Tycho. The velocity is ≥ 1,000 km/s
(faster in younger remnants) and ρ1 ∼ 1 amu/cm3 ∼ 10−24 g/cm3. Thus
p2 ∼ 10−8 dynes/cm2. This seems small, but the postshock temperature is
≥1 keV, so the resulting plasma is quite hot. However, even for the velocities
approximately 10 times higher that are present in very young supernova rem-
nants, the temperature is not near relativistic values. Thus, except for the
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cosmic rays produced at the shock, nonrelativistic theories and experiments
can address the behavior of such systems.

4.1.4 Entropy Changes Across Shocks

While mass, momentum, and energy are conserved across shock transitions,
entropy is not. This should not come as a surprise to anyone who has studied
statistical or thermal physics, as one is increasing the temperature of the fluid
in a nonadiabatic transition. Here we determine and discuss the change in
entropy across the shock transition.

Using (2.11) for the specific entropy and (4.12), one can find the difference
in entropy across the shock wave to be

s2 − s1 = cV ln
[
p2

p1

(
ρ1

ρ2

)γ]
. (4.24)

Thus, in an adiabatic transition that keeps p/ργ constant, the entropy does
not increase. Shocks increase entropy because they are irreversible, non-
adiabatic transitions. For single strong shocks, the argument of the logarithm
is dominated by p2, as the density ratio varies only over a limited range. Tak-
ing the strong shock limit, we find

s2 − s1 = cV ln
[
p2

p1

(
γ − 1
γ + 1

)γ]
∼ cV

[
ln

(
p2

p1

)
− 2.2

]
, (4.25)

in which the final equality is obtained by setting γ = 5/3 and evaluating p2

in Mbars and p1 relative to 30 kbars, with s and cV in cgs units. Noting once
again that in a fully ionized plasma both electrons and ions carry heat, one
has

cV =
(Z + 1)kB

Amp(γ − 1)
=

(Z + 1)
A(γ − 1)

9.57 × 107 J/(keV g), (4.26)

expressed to accommodate temperature in keV. As we will see, the entropy
in an inertial fusion capsule needs to be kept below about 4× 108 J/(keV g).
Since the ratio of pressures is >1,000 in this case, compression for inertial
fusion cannot occur by means of a single shock.

Homework 4.6

Evaluate the entropy variation of (4.24) as the Mach number approaches 1.

It may seem strange to the reader that entropy is generated by shock
waves, when we have shown that shock waves are consistent with the fun-
damental equations for mass, momentum, and energy in the fluid, because
these same equations produced (2.1.3), which we showed in Chap. 2 to express
the conservation of entropy. In other words, if the conservation of entropy is
consistent with and derived from the equations that include the presence of
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shocks, why is entropy not conserved across shocks? The solution to this puz-
zle is that shocks are in fact dissipative structures whose details cannot be
described by (4.1)–(4.3). From the point of view of these three equations, the
shock transition can be taken to be a thin layer of zero thickness, because it
does not alter the mass, momentum, or energy fluxes in the flow. However,
the shock does convert kinetic energy to heat, and thus is an entropy source.
If we were to describe the action of the shock in detail, we would need to
add terms to the momentum and energy equations to account for the changes
in the fluid. When we then used these equations to obtain an equation for
the entropy, we would be left with an entropy source term, and this source
term would not have a limit of zero as the thickness of the shock transition
approached zero.

Now suppose that instead of using a single strong shock to achieve a
desired value of p2/p1, which we write here as pfinal/pinit, we use n shocks.
Each of these will produce pressure ratio Rp = (pfinal/pinit)1/n and a density
ratio Rρ. The density ratio produced by each shock may or may not approach
( γ+1)/( γ−1), but the final density ratio ρfinal/ρinit will be much larger than
(γ+1)/(γ−1) for n > 1. The temperature will be correspondingly smaller, as
the pressure is the same yet the density is higher. Thus, the entropy increase
will be smaller for multiple shocks than for one shock. Specifically,

s2 − s1 = ncV ln
[
Rp

(
1

Rρ

)γ]
= cV ln

[
pfinal

pinit

(
1

Rρ

)nγ]
. (4.27)

Figure 4.5 shows the resulting entropy increase, using (4.12) to compute Rρ,
for a value of pfinal/pinit = 1, 000. One can see that only a few shocks are
needed to greatly reduce the total increase of entropy. The limit of a very
large number of shocks with progressively smaller individual pressure jumps,
as n → ∞, is an adiabatic compression, which produces no entropy increase.

The use of multiple shocks to apply the available pressure is thus an
important design tool. If one desires to achieve low entropy or high densities,
as one does, for example, in ICF, then one should use several shocks. If
one desires high temperature, as one does to produce fast ejecta, then one
should use a single shock. If one desires to more carefully tailor the density,
temperature, and entropy of a final state, then one can use multiple shocks
chosen for that purpose.

4.1.5 Oblique Shocks

We now return to the issue of oblique shocks, which we must analyze when
there is a reason to choose a shock frame with an upstream velocity compo-
nent transverse to the shock that is nonzero. This issue arose in the context
of (4.5)–(4.7), which are valid only for zero transverse velocity. Note that an
oblique shock may develop in more than one way. A shock can be launched as
an oblique shock, by something as simple as a tilted piston. Also, a shock can
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Fig. 4.5. The total increase in normalized specific entropy, (s2 − s1)/cv is shown
vs. the number of shocks, for an overall pressure increase of a factor of 1,000
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Fig. 4.6. Definitions for oblique shocks

become oblique by interacting with an interface. The geometric definitions
we need for this problem are shown in Fig. 4.6.

To deal with nonzero transverse velocity, we define the shock normal, a
unit vector n, which is normal to the shock front and in the direction of the
normal flow into the shock front (thus, n points from right to left in our
standard orientation). Then the component of u in the normal direction is
n(u · n) while the transverse component of u is u⊥ = (n × u) × n. Using
the subscript n for the normal direction, (4.1)–(4.3) give us the following
relations:

ρ1un1 = ρ2un2, (4.28)

ρ1u
2
n1 + p1 = ρ2u

2
n2 + p2, (4.29)

u⊥1 = u⊥2, and (4.30)

ρ1ε1 + p1 + ρ1
u2

n1

2
= ρ2ε2 + p2 + ρ2

u2
n2

2
. (4.31)
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Homework 4.7

Derive (4.28)–(4.31).

By comparison with the previous equations, one can see that we have
gained one important new piece of information: the transverse velocity is con-
served across the shock. Otherwise we have regained the previous equations
(or an equivalent one in (4.31)) with u replaced by un. It is not surprising
that the change in un is responsible for the changes in pressure and internal
energy.

A clear consequence of these equations is that the fluid velocity is bent
away from the normal as it crosses the shock. The normal velocity decreases
but the transverse velocity does not, and this is the consequence. We can
develop the mathematics for this situation as follows. Suppose that u1 · n =
u cos φ1, thus defining the angle of the incoming flow, φ1. Then the angle of
the outgoing flow can be found from

tanφ2 =
u⊥
un2

=
u⊥
un1

ρ2

ρ1
= tanφ1

ρ2

ρ1
, (4.32)

which for a polytropic gas becomes

tanφ2 = tanφ1
M2

nu(γ + 1)
M2

nu(γ − 1) + 2
, (4.33)

in which the upstream Mach number, calculated using un1, is Mnu.
One may in some cases need to know how much the flow is (or can be)

deflected by the shock, which is relevant, for example, to the supersonic
movement of bodies through fluids. For this purpose we seek ψ defined by
u1 · u2 = u1u2 cos ψ. By expressing the velocities in terms of their normal
and tangential components, then dividing by u1u2, one can show

cosψ = cosφ2 [cosφ1 + sinφ1tanφ2] , (4.34)

from which via (4.32) we have

cosψ =
[cosφ1 + sinφ1tanφ1(ρ2/ρ1)]√

1 + tan2φ1(ρ2/ρ1)2
. (4.35)

An interesting implication of (4.35) is that there is a maximum possible
angle of deflection that can be produced by a shock. Figure 4.7 shows the
dependence of ψ on φ1 for several specific density ratios. One can see that the
maximum angle of deflection depends on the density ratio across the shock. If
a supersonic object is too blunt, so that it attempts to deflect the incoming
material by more than this angle, then a bow show forms in front of the
object, heating the material so that its flow around the object is subsonic.
Figure 4.8 illustrates this case. These two figures are most useful for strong
shocks with well-known density ratios. For weaker shocks in polytropic gases



122 4 Shocks and Rarefactions

0 20 40 60 80
0

20

40

60

80

Incident Angle on Shock φ1 (deg)

D
ev

ia
ti

o
n 

o
f 

flo
w

 v
ec

to
r 

ψ
 (d

eg
) 

Fig. 4.7. Flow deflection vs. incident angle for a density ratio from bottom to top
of 2, 4, 7, and 14

n u1

u2

S
ho

ck

φ1

φ2
ψ

nφ1
n

Supersonic
object

Fig. 4.8. Schematic of object and resulting shocks

one could substitute from (4.33), noting that the upstream Mach number
also depends on angle of incidence. This can be put into a standard form
known as the shock polar, discussed in Landau and Lifshitz and many other
texts on fluid dynamics. We will have an interest in the small-angle limit of
(4.35) when we consider shock stability in Chap. 5. Assuming that φ1 is small
enough that −(φ2

1/2)(ρ2/ρ1)2 remains small, this is ψ = φ1(ρ2/ρ1 − 1).

Homework 4.8

Derive (4.34) and (4.35).

4.1.6 Shocks and Interfaces, Flyer Plates

Understanding the basic properties of an isolated shock is an important fun-
damental building block. There are cases, such as the edge of a supernova
remnant or the initial response of a target to laser ablation, in which the
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(a) Before shock reaches interface. (b) After shock reaches interface

dynamics is essentially single-shock dynamics. There are many more cases,
however, in which the dynamics is produced by the interaction of shock waves,
interfaces, and other phenomena. This occurs, for example, when the shock
wave in a supernova remnant encounters a molecular cloud or other dense
obstacle, and also in experiments that use shock reverberation to compress
and heat a material. The first of these that we discuss is the interaction of a
shock wave (or in general, an incoming fluid with specific properties) with an
interface at which the density increases. In general, this leads to a “reflected”
shock in the initial fluid and a “transmitted” shock in the denser fluid. This is
an example of the one possible response when a shock reaches an interface –
two shocks are produced. Figure 4.9 shows a schematic of such an interaction.
We discuss it further here. Other cases are discussed in Sect. 4.4.

The introduction of the second material and the interaction greatly com-
plicates our bookkeeping. As is shown in Fig. 4.9, we designate the unshocked
first fluid as state 0, the shocked fluid as state 1, the state of the reflected
shock as state 2, the state of the transmitted shock as state 3, and the un-
shocked second fluid as state 4. We have little interest in the properties of
state 0, except in whatever way they influence state 1. In addition, the ma-
terial in state 4 would expand to the left unless this material is a solid (the
typical case) or po = p4. Our goal is to calculate the properties of the re-
flected and transmitted shocks, given the properties of the fluids and the
initial shock. We can take advantage of two conditions in this calculation.
These are p2 = p3 and u2 = u3. That is, the pressure and velocity are both
continuous across the density interface. If this were not the case, one would
produce additional waves (or voids) at the interface in the postshock state,
which is not consistent with our definition of the shocks as discontinuous,
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localized transitions in fluid properties. To develop an analytic treatment of
this behavior, we will designate the polytropic index of the first fluid by γ1

and that of the second fluid by γ4.
Our approach here will be fairly general, which will give us results that

can be applied to a number of specific cases. Some simpler cases, such as the
reflection of a shock from a rigid wall or the behavior of an ideal flyer plate,
are left as homework problems. In the case of an incoming shock as shown in
Fig. 4.9a, one can find ρ1, u1, and p1 from (4.5), (4.14), and (4.15) and the
properties of state 0. Alternatively, Fig. 4.9b also may describe the interaction
between an incoming block of solid material (a flyer plate) that strikes a
second block of solid material. In this case, the properties of region 1 will not
be determined by shock relations. As an extension of this analysis, one can
use Fig. 4.9b to approximately describe the interaction of two colliding fluids
with more general properties, if it makes sense after some initial transient to
ignore the behavior of their leading edges. This may, for example, occur in
experiments that produce a flyer plate that is in the plasma state. The net
effect is that we start with the properties of state 1, in which the ratio of
p1 to ρ1u

2
1 will depend on the way in which the interaction develops. In any

event we have the following equations:

ρ1

ρ2
=

M2
12(γ1 + 1)

M2
12(γ1 − 1) + 2

, (4.36)

p1

p2
=

2γ1M
2
12 − (γ1 − 1)
(γ1 + 1)

, (4.37)

ρ3

ρ4
=

M2
34(γ4 + 1)

M2
34(γ4 − 1) + 2

, (4.38)

p3

p4
=

2γ4M
2
34 − (γ4 − 1)
(γ4 + 1)

, (4.39)

usT − u3 = u′
3 = usT ρ4/ρ3, (4.40)

u1 − usR = us12, (4.41)

u2 − usR = u′
2 = us12ρ1/ρ2, (4.42)

p2 = p3, (4.43)

u2 = u3, (4.44)

in which M12 = us12/cs1 where cs1 =
√

γ1p1/ρ1, M34 = usT /cs4 where
cs4 =

√
γ4p4/ρ4, the upstream velocity in the reflected shock frame is us12,

the postshock fluid velocity in the reflected shock frame is u′
2, the postshock

fluid velocity in the transmitted shock frame is u′
3, and the reflected and

transmitted shock velocities in the lab frame are usR and usT , respectively.
The known quantities in these nine equations are ρ1, ρ4, p1, p4, u1, u4, γ1, γ4.

The unknowns are ρ2, ρ3, p2, p3, u2, u3, us12, usR, and usT , so the set of equa-
tions is closed if complex.
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Homework 4.9

Derive (4.42). This requires thinking about which frame of reference one is
working in, a key element in all such problems.

Homework 4.10

Determine the equations and derive the behavior of the simpler case in which
a shock is incident on a stationary wall. Let state 0 be the state of the
unshocked fluid, state 1 be that of the once-shocked fluid, and state 2 be the
state of the reshocked fluid produced when the shock reflects from the wall.

One can, with some work, solve (4.36)–(4.44). One approach is to solve
for the various quantities in terms of u2, the postshock fluid velocity in both
materials, and then to obtain an equation for u2 itself. This is productive since
most aspects of the shock in one material do not depend on the properties of
other material This produces the following eight (4.45)–(4.52) in addition to
(4.44):

0 = 16γ1p1 +

[√
16c2

s1 + (γ1 + 1)2(u1 − u2)2

(γ1 + 1)2(u1 − u2)2
− 1

][
4(γ1 + 1)(p1 − p4)

− (γ1 + 1)(γ4 + 1)ρ4u
2
2

(
1 +

√
1 − 16c2

s4

(γ4 + 1)2u2
2

)]
, (4.45)

ρ2 =
ρ1

[
4c2

s1 +(u1−u2)
(
(γ1 +1)(u1−u2)+

√
16c2

s1 +(γ1 +1)2(u1−u2)2
)]

2 [(γ1−1)(u1−u2)2 +2c2
s1]

,

(4.46)

p2 =
p1

γ1 + 1

[
(−γ1 + 1) +

2γ1ρ
2
2(u1 − u2)2

c2
s1(ρ1 − ρ2)2

]
, (4.47)

ρ3 =
(γ4 + 1)ρ4

(
(γ4 + 1)u2 +

√
16c2

s4 + (γ4 + 1)2u2
2

)2

[
32c2

s4 + (γ4 − 1)
(
(γ4 + 1)u2 +

√
16c2

s4 + (γ4 + 1)2u2
2

)2 ] , (4.48)

p3 =
p4

(γ4 + 1)

[
(−γ4 + 1) +

γ4

8c2
s4

(
(γ4 + 1)u2 +

√
16c2

s4 + (γ4 + 1)2u2
2

)2
]

,

(4.49)

us12 =
ρ2(u1 − u2)

ρ2 − ρ1
, (4.50)

usT =
1
4

(
(γ4 + 1)u2 +

√
16c2

s4 + (γ4 + 1)2u2
2

)
, (4.51)

and
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usR =
ρ2u2 − ρ1u1

ρ2 − ρ1
. (4.52)

The first of these equations (4.45) is an implicit equation for u2 in terms of
known quantities. It can be converted to a polynomial equation in u2, whose
order depends on the assumptions. The second (4.1.44) determines ρ2 based
on u2 and known quantities. The remaining equations determine the other
unknowns based on ρ2, u2, and known quantities. A convenient and meaning-
ful normalization is to divide velocities by u1, densities by ρ1, and pressures
by ρ1u

2
1, since these quantities determine the dynamics. These equations may

appear complicated, but this is mainly because of the numerous parameters
that must be specified to define the system. We will show results for two
examples.

The first example is that of reflected and transmitted shocks, produced
when a first shock is incident on an interface where the density is greater
than (γ1 + 1)ρ1/(γ4 + 1) ∼ ρ1. Thus, ρ1, u1, and p1 are produced by a
shock, so that p1 = (γ − 1)ρ1u

2
1/2. Figure 4.10 shows how the normalized

interface velocity, u2/u1, varies with the density ratio ρ4/ρ1. One sees that
the normalized velocity is quite close to 1/

√
ρ4/ρ1. This is sensible. Once

the density beyond the interface is a few times ρ1, the incoming plasma is
nearly stopped and the pressure on the interface is approximately constant
and approximately equals ρ1u

2
1. For fixed pressure, the transmitted shock

velocity scales inversely with the square root of the density. So this is what
one sees.

The transmitted shock velocity is (γ4 + 1)/2 times u2, which is shown
in the figure. This is a simple relation because the upstream fluid for this
shock is at rest in the lab frame. The reflected shock is more interesting.
Its velocity is shown in Fig. 4.11. The velocity and direction of the reflected
shock shows a strong dependence on γ. If the material being impacted is
sufficiently compressible and low enough in density, then the momentum of
the incoming fluid is sufficient to push the interface forward faster than the
reflected shock retreats from it. In this case the reflected shock continues
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Fig. 4.10. The dependence of the normalized interface velocity on the density ratio
when a shock encounters an interface. The two solid curves are for γ = 4/3 (lower)
and γ = 5/3 (upper). The gray curve shows 1/

√
ρ4/ρ1



4.1 Shock Waves 127

20 40 60 80 100

 –0.4

 –0.2

0

0.2

Density ratio (ρ4/ρ1)R
ef

le
ct

ed
 s

ho
ck

 (u
sR

/u
1)

Fig. 4.11. The velocity of the reflected shock decreases as the density ratio in-
creases. The lower curves is for γ = 5/3 and the upper curve is for γ = 4/3

to move forward in the lab frame. On the other hand, if the material being
struck is sufficiently incompressible or sufficiently dense, then the reflected
shock will recoil from the interface in the lab frame. The limiting reflected
shock velocities are −u1/3 for γ = 4/3 and −2u1/3 for γ = 5/3. This can
be a useful limit, for example, to estimate how thick a wall one may need to
contain a shocked material in an experiment. One can use shock reflections
in measuring EOS. One measures the time it takes for the reflected shock to
return to the downstream surface, known as the time for shock reverberation.
This time is sensitive primarily to the compression produced by the initial
shock.

In addition, this case is relevant to interaction of the forward shock in a
supernova remnant with a molecular cloud. Figure 4.12 shows an image of
such a collision. The spherical object is the remnant, and the figure shows
both x-rays and radio emission produced by its interaction with the cloud.
Leaving aside the clumpiness of the cloud, we can take γ to be 5/3 for both
the interstellar medium and the cloud. Typical densities for the interstellar

Fig. 4.12. Interaction of a supernova remnant (the spherical object to the lower
left) and a molecular cloud (the elongated object above). The figure shows a
grayscale image of the x-ray emission, overlaid with a contour image of the ra-
dio emission. Credit: D. Burrows of Penn State and T. Landecker of the Dominion
Radio Astronomy Observatory
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medium and the cloud are 2.5 cm−3 and 104 cm−3, respectively, so that the
forward shock in the remnant has a density of 10 cm−3. We will estimate its
velocity as 1000 km/s; it could be somewhat larger. Given these numbers, we
would find the shock transmitted into the cloud to move at about 40 km/s
while the reflected shock moves at 330 km/s back into the remnant. Given
the comparable scale of these two objects in the image, it is clear that the
entire remnant might be affected before the transmitted shock has traversed
much of the cloud.

The second limit we will consider explicitly is the flyer-plate problem. The
ideal flyer plate is a cold, planar material moving at a high velocity. An ideal
flyer plate, by cleanly striking the surface of a target material, can create
a very uniform and well-characterized shock in the target material. Flyer
plates are used extensively to obtain equation of state data along the shock
Hugoniot. Very often the flyer plate does not directly impact the sample to
be studied, but instead impacts a fixed Aluminum layer, through which the
resulting shock propagates to reach the sample. In this case ρ4/ρ1 = 1. As we
mentioned above, the equations developed here can apply to the collision of a
flyer plate with a target material if we choose p1 appropriately. Ideally p1 ∼ 0.
Figure 4.13 shows the resulting dependence of u2/u1 on the initial pressure
in the flyer plate. As the pressure becomes small, u2 approaches 0.5 u1. This
limited result is straightforward to obtain from the original equations, which
is left as an exercise. In addition, so long as p1 is small, the interaction of
the incident flyer plate with a material at any density produces reflected
and transmitted shocks. (We discuss the behavior when p1 is not small when
treating rarefactions at interfaces, below.) In this case one can simplify (4.45)
to find that

u2

u1
=

1

1 +
√

ρ4(γ4+1)
ρ1(γ1+1)

, (4.53)

Homework 4.11

For the simpler case in which p1 = p4 = 0, ρ1 = ρ4, andγ1 = γ4 = γ, which is
not a bad approximation for many flyer plate collisions, solve (4.44)–(4.1.50)
to find the pressure and velocity of the shocked material.

4.2 Rarefaction Waves

A rarefaction is a decrease in density and pressure caused by expansion of a
material. A rarefaction wave occurs when the onset of the expansion propa-
gates through the material from one edge. Thus, for example, when the laser
pulse that is creating pressure and plasma on the surface of an object ceases,
the dense plasma expands outward. The corresponding decrease in pressure
propagates into the object at the sound speed, and is accompanied by an
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Fig. 4.13. The dependence of u2/u1 on the normalized initial pressure of a flyer
plate

outward flow of material and a corresponding density decrease. As another
example, when a shock wave emerges from an object into a region of lower
density, the high pressure produced by the shock wave causes material to ac-
celerate forward from the object. As we will see, the flow of material outward
into the rarefaction begins at a point that propagates inward into the mater-
ial at the sound speed. In shock physics this behavior is known as the release
of the shocked material. In high-energy-density physics or astrophysics it is
often described as shock breakout.

In this section, we will first consider an idealized problem – the isothermal
rarefaction – that is a useful model in many cases. This problem will also serve
as our introduction to self-similar solutions, an important technique in many
hydrodynamic problems.

4.2.1 The Planar Isothermal Rarefaction and Self-Similar Analysis

There are cases in which a plasma expands from a planar surface at constant
temperature. This requires a continuous supply of heat, to counteract expan-
sion cooling, and so can happen only when the Peclet number (Chap. 2) is
small or when the heating is rather magical. A very common example is the
expansion of the low-density, laser-heated plasma from the irradiated sur-
face of a laser target. But there are also other cases when the plasma does
not cool too quickly and the very simple isothermal model can be used as a
good first estimate. Figure 4.14 shows a sketch of the initial condition for this

Vacuum

Heat flow

Density

Expansion

Fig. 4.14. Sketch of initial condition for isothermal rarefaction



130 4 Shocks and Rarefactions

expansion. Our physical system at t = 0 has warm, dense matter of uniform
density ρo to the left of a boundary at which the density drops abruptly to
zero, and heat flows into or through our system as necessary to keep the
temperature constant. To analyze the expansion of this system, we begin
by rearranging the continuity and momentum equations, (2.1) and (2.2), to
obtain

(
∂ ln ρ

∂t
+ u · ∇ ln ρ

)
= −∇ · u, and (4.54)

(
∂u

∂t
+ u · ∇u

)
= −∂p

∂ρ

)
T

∇ ln ρ, (4.55)

in which the partial derivative is taken at constant temperature because the
expansion is isothermal by definition. For polytropic fluids, we can recognize
this derivative as the square of the sound speed, cs, from Sect. 2.1, except that
in this case it is an isothermal sound speed as opposed to an isentropic one.
Heat flows outward in an isothermal rarefaction. Note the common structure
of these two equations. They can be made identical by dividing the first by cs

and the second by c2
s, and by considering a one-dimensional, planar expansion

to obtain (
∂ ln ρ

cs∂t
+ M

∂ ln ρ

∂x

)
= −∂M

∂x
, and (4.56)

(
∂M

cs∂t
+ M

∂M

∂x

)
= −∂ ln ρ

∂x
, (4.57)

in which M = u/cs. Note that here cs is the isothermal sound speed, con-
sistent with our assumptions. Thus cs = ∂p/∂ρ)T , which is p/ρ for an ideal
gas. The structure of the convective derivative suggests that some variable
that couples space and time may be a key to describing the behavior of these
equations. The solution we will discuss is a similarity solution. Many systems
produce a time-invariant shape that can be described by some function f(ξ),
in which ξ is a similarity variable that in some way combines space and time.
In this case, the functions M and ln ρ are initially expressed in the variables x
and t. We convert to a coordinate system, using ξ and t′, in which ξ = x/(cst)
and t′ = t. For some general function g(ξ, t′), we have by the chain rule

∂g(ξ, t′)
∂t

=
∂g

∂ξ

∂ξ

∂t
+

∂g

∂t′
∂t′

∂t
(4.58)

for time derivatives and a similar expression for the spatial derivatives. Of
course, ∂t′/∂x = 0 and ∂t′/∂t = 1. However, the tricky point is that we
are seeking a solution in which all the time dependence is included in the
dependence on ξ so that ∂g/∂t′ = 0. Later in the chapter, we will see that
one can take a more systematic approach to finding a similarity solution, and
to determining whether or not one can be found. In this case we apply our
definition of ξ to (4.56) and (4.57), to obtain
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(M − ξ)
∂ ln ρ

∂ξ
= −∂M

∂ξ
, and (4.59)

(M − ξ)
∂M

∂ξ
= −∂ ln ρ

∂ξ
. (4.60)

These equations have the fairly obvious solution

M = 1 + ξ = 1 +
x

cst
and (4.61)

ρ = ρoe
−(1+ξ) = ρoe

−(1+x/(cst)), (4.62)

with the condition x ≥ −cst imposed by the conservation of mass. This so-
lution has several features worth mentioning. First, it has a linear velocity
profile and an exponential density profile. Linear velocity profiles are com-
mon to many free expansions, which is not surprising as the distance any
unforced parcel of fluid will travel is its speed times the time. The exponen-
tial density profile reflects the specifics of this case; we will see others soon.
Second, profiles are often characterized by a scale length, L, typically de-
fined as (d ln ρ/dx)−1, which is the distance over which an exponential profile
decreases by a factor of e or a linear profile decreases to 0. A potentially in-
dependent definition of L is the distance over which the velocity changes by
cs (thus L = (dM/dx)−1). In this case by either definition one finds L = cst.
Thus, the scale length is the distance an acoustic wave would travel. It is also
the distance over which the initial material has begun to flow outward. Third,
the density stays constant at the original interface as the expansion proceeds.
The value of the density there is ρoe

−1. When an isolated dense block of ma-
terial expands, ρo is the initial density of the material. In other expansions,
such as those produced by laser heating, the electron density profile may tend
to be exponential below the density at which the laser heating is strongest,
but to have a different shape at higher density. In this case one would replace
ρoe

−1 in (4.62) by the density below which the profile is exponential.

Homework 4.12

Show that the conservation of mass in fact requires x ≥ −cst in (4.61)
and (4.62).

One can also find isothermal models of cylindrical or spherical self-similar
expansions in the specialized literature. However, these do not produce simple
solutions. They also have rather limited applicability, as diverging expansions
cool much more strongly than planar ones, so that the isothermal assump-
tion is more readily violated. So instead of pursuing them here, we turn to
adiabatic expansions, in which there is no heating and no heat transport.
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4.2.2 Riemann Invariants

Adiabatic expansions, or rarefactions, are common to many laboratory and
astrophysical systems. Releases of energy, as when a shock wave emerges from
a dense material layer or an exploding star, produce expansions. The flow of
material, whether emerging from a channel in an experiment or emerging
from a star to form a planetary nebula, produces an expansion. The cessa-
tion of pressure when a radiation source, whether a laser or a z-pinch or a
star, becomes less powerful is followed by an expansion toward the source.
Thus, expansions have broad relevance. To derive their behavior, one must
first take a detour through some further fluid mechanics, which we begin here.
It will turn out that there are two quantities, known as Riemann invariants,
that (for isentropic flows) do not change along specific trajectories, known as
characteristics. These invariants permit the calculation of adiabatic rarefac-
tions, as we will see. Adiabatic processes, which may involve mechanical work
but not the flow of heat, are also isentropic. Thus, they are fully described
by the Euler equations. (But see also the discussion of the leading edge of
expansions at the end of this section.)

A general disturbance in the properties of a moving fluid can affect the
rest of fluid in two ways. It can generate sound waves, which move at the
sound speed relative to the fluid flow, or it can generate local changes in
properties (such as composition) that flow with the fluid at its velocity u. Of
course, a general disturbance produces sound waves that move in all possible
directions. It requires very special conditions to produce sound waves mov-
ing in a restricted range of directions. The trajectories of such sonic or fluid
disturbances are known as characteristics. The position vector of a charac-
teristic, x, changes for fluid disturbances, as

dx

dt
= u (4.63)

and for sonic disturbances as

dx

dt
= u + csk̂, (4.64)

in which k̂ is a unit vector defining a direction of propagation and in which
the fluid velocity u, the sound speed cs, and k̂ depend, in general, on x
and t. The trajectory defined by (4.63) is known as the Co characteristic.
The trajectories defined by (4.64) when k̂ is aligned with or opposed to
the x−axis are known as C+ and C−, respectively. As we will see, it helps
visualize and understand planar rarefactions to plot the evolution of the fluid
with position along the abscissa and time along the ordinate. Then a surface
moving at constant velocity is a straight line.

We now develop the equations of motion into a form relevant to propaga-
tion along characteristics. First recall that in general the derivative of some
function f(x, t) along a specific trajectory defined by dx/dt = w is



4.2 Rarefaction Waves 133

(
df

dt

)
w

=
∂f

∂t
+ w · ∇f. (4.65)

Finding equations of motion that connect with characteristics turns out
to be easiest working with pressure rather than density so we take

dρ =
(

∂ρ

∂p

)
S

dp =
dp

c2
s

, (4.66)

where the derivative is taken at constant entropy. Then (2.1) and (2.2) become

1
ρcs

∂p

∂t
+

1
ρcs

u · ∇p = −cs∇ · u and (4.67)

∂u

∂t
+ u · ∇u = −∇p

ρ
. (4.68)

To seek potential behavior along trajectories, we multiply (4.68) by a unit
vector k̂ (which could be a direction of sonic propagation), add the equations,
and seek an equation in the form of (4.65) to obtain

k̂ ·
[
∂u

∂t
+

(
u + csk̂

)
· ∇u

]
+

1
ρcs

[
∂p

∂t
+

(
u + csk̂

)
· ∇p

]

= −cs

[
−∇ · u + k̂ ·

(
k̂ · ∇

)
u
]
.

(4.69)

Here the quantity in the leftmost square brackets is the vector generalization
of 4.2.12, with ∇u being the tensor with element (i,j ) equal to (xi)uj , written
in dyadic notation. We can recognize that the two square brackets on the left-
hand side contain derivatives of the functions u and p along the trajectory
given by (4.64), if k̂ is a direction of sonic propagation. In other words, we
can write (4.69) as

k̂ ·
(

du

dt

)
u+csk̂

+
1

ρcs

(
dp

dt

)
u+csk̂

= −cs

[
−∇ · u + k̂ ·

(
k̂ · ∇

)
u
]
. (4.70)

One might have hoped to find here general three-dimensional invariants of
the flow with very broad applicability, which would have required that the
right-hand side be identically zero. However, there are special cases for which
one does find invariants. They include planar, one-dimensional flow, which is
all we will consider from this point forward. In this case we have

du +
dp

ρcs
= 0 along the C+ trajectory

dx

dt
= u + cs, (4.71)

and by taking the difference of equations 4.67 and 4.68 we also find

du − dp

ρcs
= 0 along the C− trajectory

dx

dt
= u − cs (4.72)
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These two equations, upon integration, yield the Riemann invariants J+ and
J−, usually written as

J+ = u +
∫

dp

ρcs
and J− = u −

∫
dp

ρcs
. (4.73)

Here the integral is the indefinite integral. In effect, it is evaluated only at
a specific point of interest. By integrating either (4.2.18) or (4.2.19) from an
arbitrary starting point to two distinct but arbitrary final points and then
subtracting the two results, one can show that the value of J+ and J− thus
defined must be constant. The meaning of these equations and of the fact
that these are invariants is that they remain constant along the trajectories,
and can thus be used to help find the properties of the flow. Note that neither
ρ nor cs can be removed from the integral, as both in general are functions
of the pressure. The important application of (4.73) is to polytropic gases. In
this case one finds

J+ = u +
2cs

γ − 1
and J− = u − 2cs

γ − 1
. (4.74)

Homework 4.13

Obtain (4.74) from (4.73).

To obtain useful information from the Riemann invariants, there are cer-
tain properties one must understand. First of all, recalling that we are dis-
cussing only planar isentropic flows, once one has specified an initial state
of the fluid, only u and one other quantity are needed to specify completely
any other state of the fluid. The second quantity can be density, pressure,
sound speed, or any combination of these, such as the

∫
p/(ρcs) in J+ or

J−. Because of this, it is also true that J+ and J−also completely specify
the state of the fluid. Thus, if you can follow C+ and C− characteristics to
specify J+ and J− at their intersection, then you can infer the properties of
the fluid there.

We generally plot the characteristics in a space of x along the horizontal
axis and t along the vertical axis, as in Fig. 4.15. Consider (4.71) and (4.72)
for the characteristics. When both u and cs are constant, the characteristics
are straight lines. Along C+, for example, we know that J+ is constant, yet
both J+ and J− depend on similar variables. A change in slope of C+ requires
that either u or cs changes. Since J+ is constant, this means that J− must
change in order for the slope to change. This has a very useful implication: If
one Riemann invariant is constant over some region, then the characteristics
for the other Riemann invariant as they cross this region are straight lines.
We will see how these two properties can be used in describing the planar
adiabatic rarefaction.

Next suppose that either C+ or C− starts where u = 0, and, for a poly-
tropic gas, cs = co. Then ask, what is the largest speed that the fluid can
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x−x

U
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edge
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Trailing
edge

Fig. 4.15. Trajectories of the characteristics in a planar adiabatic rarefaction. C−
characteristics are thin solid lines; C+ characteristics are dashed lines

flow? This will occur where the internal energy becomes zero. This is no sur-
prise – the limiting speed of a fluid must be the speed it reaches when it has
no internal energy so all its energy is kinetic energy. For a polytropic gas,
one finds the maximum speed to be 2co/(γ − 1), which is 3co for γ = 5/3.
This is a very useful estimate. It is, for example, the limiting speed when one
material expands against a second material of much lower density.

An example of this phenomenon is found in the design of experiments. It
is common to create a shock wave or a blast wave that produces a rarefaction
when it reaches a second material layer of very low density. As we discuss
further below, the rarefaction drives a shock wave into the second material.
Intuitively, one would expect the driven shock wave to become faster when
the density of the second material is reduced. In practice, this often is not
the case. If the density of the second material is low enough, then the leading
edge of the rarefaction is moving close to the maximum possible speed. In
this regime, changing the density of the low-density material has little impact
on the speed of the shock driven into it.

Homework 4.14

Sketch the C+ and C− characteristics in a fluid flowing uniformly with ve-
locity u.

On the other hand, any high-energy-density fluid is a plasma, and this
single-fluid description does not accurately describe the leading edge of a
freely expanding plasma. The behavior of the leading edge of a freely ex-
panding plasma is much closer to the behavior of an isothermal rarefaction,
because as the density decreases the electrons are able to transport heat
throughout the expanding plasma. The dynamical behavior is that the fast,
light electrons try to rush out ahead of the ions, establishing an electric field
that accelerates the ions. Thus, the electrons progressively give their energy
to the electric field, which gives it to the ions. The electrons get more energy
from heating by the ions and from the new electrons reaching low enough den-
sity to transport heat readily. The ions are accelerated by their own pressure
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and by the electric field, and also lose some of their internal energy to electron
heating. From the perspective of two-fluid theory as discussed in Chap. 2, the
electric field is eE = kBTed[ln ne]/dx. The limitation on the acceleration of
the leading edge is a kinetic one. The electric field keeps nearly all of the elec-
trons in the hot plasma. They reflect at some density and return to the denser
region. (This behavior can be visualized as the electrons attempting to climb
a long potential hill – most of them roll back down.) Only the most energetic
electrons reach the leading edge of the expansion, where interactions with
the surrounding gas can cool them and can help shield the potential of the
plasma. An accurate analysis of this problem does not exist; it would require
an entertaining foray into collisional kinetic theory. But one would roughly
anticipate that the leading edge will form where ne ∼ ngas, the gas density.
Using a typical value of ngas ∼ 1010 cm−3 and a maximum density ne ∼ 1023

cm−3, one finds that the plasma potential in electron volts is roughly 30 kBTe,
with kB in J per unit temperature (for example, 1.6 × 10−19 J/eV). This is
consistent with measurements.

4.2.3 Planar Adiabatic Rarefactions

We are now ready to analyze the planar adiabatic rarefaction. We imagine
that there is an initial, semi-infinite, uniform fluid to the left of the origin,
bounded on the right by a piston. At time t = 0, the piston instantaneously
accelerates to a velocity U. (We could consider gradual accelerations of the
piston, but this has little importance for our long-term applications of this
conceptual model.) We desire to find the profiles of the fluid parameters that
result in time and in space.

Figure 4.15 shows such a rarefaction, with position along the abscissa
and time along the ordinate. In the figure, the thick line to the right shows
the velocity U at which a piston is withdrawing from its initial position at
x = 0. (The fluid is uniform to the left of the origin at t = 0.) The line
labeled “Piston” is the boundary of the fluid; it is not a characteristic. Now
consider the region to the left of the origin, which has uniform properties at
t = 0. To the left of the thick line labeled “trailing edge,” the C+ and C−
characteristics that intersect at any point originate from initial points whose
properties are identical. Thus, both J+ and J− are the same as they were at
t = 0. In this region, the properties of the fluid are unchanged.

Indeed, changes in the fluid properties can occur only through the arrival
of other values of J−, from points where x ≥ 0. The earliest this can occur is
along the C− characteristic from the origin that is the line labeled “trailing
edge.” This is the tail of the rarefaction wave. One often sees such a feature
propagate through a region that has first been shocked or otherwise heated,
when the edge of the region is allowed to expand. This wave propagates at
the sound speed of the initial medium. The C+ characteristics that reach the
edge of the rarefaction wave continue across the system toward the right,
everywhere the fluid goes. As a result, because J+ is constant along x ≤ 0
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at t = 0, J+ is constant everywhere. This implies as well that all the C−
characteristics are straight lines. For the case of a polytropic gas, one has
J+ = 2co/(γ − 1) so at any location one has

J+ = u +
2cs

γ − 1
=

2co

γ − 1
, from which (4.75)

cs = co −
γ − 1

2
u. (4.76)

This tells us how the sound speed (and thus temperature) varies through
the rarefaction. As u increases the medium cools – this is the anticipated
expansion cooling. Next consider the fluid properties at the piston. Since u is
fixed there, as U, determining either J+ or J− determines the state of the fluid.
The C+ characteristics propagate from the initial state to the piston, so J+

is known. Knowing J+ and U, one can then find J− for the C− characteristics
leaving the piston. For the case of a polytropic gas, one has

J− = U − 2cs

γ − 1
= 2U − 2co

γ − 1
, (4.77)

using (4.76). Because J+ is constant, the C− characteristics emerging from
the piston are straight lines with

dx

dt
= U −

(
co −

γ − 1
2

U

)
=

γ + 1
2

U − co. (4.78)

Along these characteristics, J+ and J− are both constant, so the state of the
fluid is constant. This portion of the fluid moves with the piston at velocity
U and has sound speed

cs = co −
γ − 1

2
U. (4.79)

This region with constant fluid properties is bounded on the left by the
thick line labeled “leading edge,” which is the front end of the region of
expansion. What remains is to describe the region between the leading edge
and the trailing edge. The C− characteristics form a fan of straight lines
emanating from the origin. This is sometimes known as a rarefaction fan.
The rarefaction wave is centered, which refers to the fact that one set of
characteristics emerges from a common point. Equation (4.76) gives cs as a
function of u. As a result, the equations for the C− characteristics are

dx

dt
= u − cs =

γ + 1
2

u − co = const. (4.80)

We can integrate this equation and rearrange it to find an equation for u:

u =
2

γ + 1
2
(

co +
x

t

)
. (4.81)
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For the polytropic gas, we now have a complete description of the fluid be-
cause

ρ

ρo
=

(
cs

co

)2/(γ−1)

and
p

po
=

(
cs

co

)2γ/(γ−1)

, which become (4.82)

ρ

ρo
=

(
1 − (γ − 1)u

2co

)2/(γ−1)

and
p

po
=

(
1 − (γ − 1)u

2co

)2γ/(γ−1)

, or

(4.83)
ρ

ρo
=

(
2

γ + 1
− γ − 1

γ + 1
x

cot

)2/(γ−1)

and (4.84)

p

po
=

(
2

γ + 1
− γ − 1

γ + 1
x

cot

)2γ/(γ−1)

, for (4.85)

−cot ≤ x ≤ γ + 1
2

Ut − cot ≤
2

γ − 1
cot . (4.86)

These profiles are illustrated in Fig. 4.16. One can observe that density and
pressure reach their initial values at x = −cot and reach their steady values
near the piston when u = U . (With the specific choice of parameters in
Fig. 4.16, this occurs at x = cot. This is not a general result.) In addition, the
density pressure and velocity are constant at x = 0. In (4.86), the limits on x
are imposed by the trailing edge on the left and the leading edge on the right,
with the upper limit reached when U reaches the maximum value the fluid
can accommodate, 2co/(γ−1). At this point the leading edge equals the path
of the piston. If the piston withdraws faster than that, it will pull away from
the expanding fluid. This case is equivalent to a free adiabatic rarefaction,
which is described by (4.2.22) and (4.2.27)–(4.2.32), with U = 2co/(γ − 1) in
the final equation.
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Fig. 4.16. Density (gray), pressure (black), and velocity (dashed) profiles in a
planar adiabatic rarefaction, normalized to the ρo, po, and U, respectively. Here
γ = 5/3, cot = 1, andU = 1.5co
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Homework 4.15

Plot the minimum density and pressure in the rarefaction as a function of
U. Discuss the meaning of the plots. Reasonable normalizations are recom-
mended.

Now instead of a piston, suppose that there is a zero-pressure, lower-
density material to the right of the initial interface, which has density ρr

and polytropic index γr. A strong shock will be driven into this material,
at some velocity us, with postshock velocity ur, producing a pressure pr =
(γr − 1)ρru

2
r/2. The motion of the interface then acts like the piston, so the

rarefaction in the denser material will proceed as described above, for a value
of ur = U that is self-consistent, so that pr is equal to the pressure at the
piston in the description above.

Adiabatic rarefactions often are produced when shock waves reach an
interface where the density drops. This occurs several times during the ex-
plosion of a star, with the added complication that the shock wave is a blast
wave (discussed in the next section). It happens frequently in experiments as
well. We will apply the above equations to this case when we consider the
behavior of a shock at a density drop in Sect. 4.4.1.

4.3 Blast Waves

A uniform shock wave can come to an end in two ways. The previous section
discussed one of them: the shock wave can reach a lower-density medium
and a rarefaction wave can propagate backward into the shocked material.
This section discusses the other one: the source of pressure can end, allowing a
rarefaction wave to propagate forward and overtake the shock. This forms the
structure illustrated in Fig. 4.17. In the figure, the first two curves show the
nearly steady shock produced by the pressure of laser ablation (Chap. 8). The
curves are not completely flat because, in the simulation and perhaps in a real
system, the pressure produced by the laser does evolve with time. The later
three curves, all after the end of the laser pulse, show the rarefaction wave
developing on the left edge of the structure and soon overtaking the shock to
form a blast wave. (A word on semantics is in order here. This definition of
a blast wave as the structure formed when a rarefaction overtakes a shock is
fairly common in the astrophysical literature, and is the one we will use. In the
shock physics literature, the term blast wave is more coften restricted to such
structures produced by spherical expansions from a point explosion, while
other cases would be described as “waves produced by impulsive loading,” or
perhaps as “planar blast waves.”)

Blast waves are very common because releases of energy are of limited
duration. On a small scale, processes such as solar flares release energy, caus-
ing blast waves to form in the solar wind. In some systems, hydrogen can
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Fig. 4.17. Simulated evolution of a blast wave from a shock wave. Here laser
irradiation from the left drives a nearly steady shock wave for 1 ns, after which the
rarefaction from the front surface overtakes the shock wave to form a blast wave.
The curves show the profile at 0.6, 0.8, 1.2, 1.4, and 1.6 ns after the start of the
laser pulse

accumulate on the surface of a neutron star, leading to occasional nuclear ex-
plosions known as “astrophysical flashes.” Such flashes will drive blast waves
through the surrounding material. Stellar explosions at first drive shocks, not
blast waves. But eventually, when the interior pressure is much reduced and
the accumulated interstellar material exceeds the mass of the star, super-
nova remnants develop a blast-wave structure which they retain for much of
their evolution. One can think of many other cases, such as the interaction
of jets with clouds, in which blast waves are produced. The most common
blast wave in the Earth environment is produced by lightning, which briefly
deposits energy within the lightning channel.

Planar blast waves are often useful in high-energy-density experiments.
They can drive Rayleigh–Taylor instabilities at interfaces, as is discussed in
Chap. 5. In addition, they can be used as timescale converters. One may,
for example, have a laser that can provide power most effectively for 1 ns
(or a Z pinch that can do so for 10 ns), but need to deliver energy over a
longer timescale to some object. By forming a blast wave and then letting it
propagate, one creates a store of energy. With time and distance, the blast
wave carries more mass at lower velocity. If it is then allowed to release that
energy, for example, by encountering a lower-density medium, it can drive
further hydrodynamics for a much longer period than the duration of the
initial energy source.

4.3.1 Energy Conservation in Blast Waves

Because most of the material in a blast wave is near the shock, it is useful and
informative to see what one can infer from energy and momentum conserva-
tion. Consider again Fig. 4.17. We will discuss the spherical case. Spherical
blast waves are often known as Sedov–Taylor (or Taylor–Sedov) blast waves
as Sedov and Taylor, along with von Neumann, were the first to discuss their
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behavior. There is an initial shock transition, followed by a rarefaction. The
shock is nearly always a strong shock, and thus converts half the incoming
energy (in the lab frame) into kinetic energy and half into thermal energy.
However, the source of energy in the problem is the energy behind the shock.
The total mass in the blast wave is the amount of mass that has been swept
up by the shock. If the mass density ρ of the external medium is constant
and the shock radius is R, then the total mass within a spherical blast wave
is M = 4πρR3/3. In cases where very little energy has been lost by radiation
or heat conduction, the energy within the blast wave is approximately

E = M

(
2

γ + 1

)2

Ṙ2, (4.87)

in which we assume the material is a polytropic gas to obtain the fluid velocity
in terms of the shock velocity Ṙ. The important result does not depend on this
assumption. Equation (4.87) remains valid despite the conversion of thermal
energy to kinetic energy in the rarefaction, but does assume that all the
matter has been accelerated by the shock wave at its present velocity. In
other words, it assumes that the change in shock velocity is slow. Conserving
energy, we obtain

dM

dt
Ṙ2 = −M2Ṙ

d2R

dt2
, (4.88)

in which dM/dt = 4πρR2Ṙ, so

3Ṙ2 = −2R
d2R

dt2
. (4.89)

If one seeks a power-law solution of the form R = Rot
α, in which Ro and

α are constants, one finds α = 2/5. The Sedov–Taylor blast wave thus has a
radius that increases in proportion to t2/5.

Homework 4.16

Show that this type of analysis produces α = 1/2 for cylindrical blast waves
and α = 2/3 for planar blast waves.

If an energy-conserving blast wave is able to propagate far enough, which
happens, for example, with blast waves from lightning, then the shock wave
becomes a weak shock wave and eventually a disturbance that propagates at
the local sound speed. This case is discussed in more detail in Zeldovich and
Raizer. An estimate of the radius at which this will occur can be found by
setting the explosion energy Ex per unit volume equal to the thermal energy.
For a spherical explosion, this occurs when r ∼ (3Ex/(8po))1/3, where po

is the initial pressure. Thus, for a typical supernova, which deposits about
1051 ergs in exploding stellar material, and a typical interstellar pressure
of 1.6 picodynes (1 cm−3 and 1 eV), one finds a radius of 6 × 1020 cm,
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or about 600 light years. For a cylindrical explosion, where Ex is now the
energy per unit length, one finds r ∼

√
Ex/(9po). For lightning, which has

Ex ∼ 105 J/m = 1010 ergs/cm, one finds r ∼ 33 cm. One can see that one
could not experience the shock wave produced by lightning at a safe distance
from the lightning itself.

To examine momentum conservation in a blast wave, it is tempting to take
the same approach and to set the derivative of MṘ equal to 0. However, this is
not generally valid. While the conversion of thermal energy to kinetic energy
in the rarefaction does not affect the overall energy balance, the production
of momentum in the rarefaction does affect the momentum balance. While
outward momentum is added to the newly shocked matter, inward momentum
is generated by the rarefaction. In consequence, momentum conservation is
more difficult to calculate and does not generate much insight into the global
evolution of an energy-conserving blast wave.

However, momentum conservation is sometimes important because radia-
tive energy losses are not always negligible. There are circumstances in which
a blast wave enters a strongly radiating phase, so that it no longer conserves
energy. All supernova remnants eventually enter this phase, when they be-
come slow enough that the postshock material cools rapidly by radiation (see
Chap. 7). The thermal energy produced by the shock is radiated away, so the
energy remaining in the system steadily decreases. At the same time, there
is little thermal energy to drive a rarefaction so the shocked material tends
to become a dense shell moving with the shock. The pressure of this shell
must equal the ram pressure of the incoming material, so as it loses energy
by radiation it becomes quite dense and cool. At the same time, its velocity
approaches the shock velocity in the frame of the unshocked matter. (In the
shock frame, the very dense material that has been shocked and then cooled
can move only very slowly away from the shock.) Such a system is often
described as a momentum-conserving snowplow.

The time evolution of a momentum-conserving snowplow can be found
by setting the derivative of MṘ equal to 0. The approach to the solution
is identical to that used for the conservation of energy. For the spherical
case, one finds α = 1/4 for this case. Thus, spherical momentum-conserving
snowplows expand with R ∝ t1/4.

Homework 4.17

Find the coefficients α for cylindrical and planar momentum-conserving snow-
plows.

4.3.2 A General Discussion of Self-Similar Motions

We have dealt previously in this chapter with two types of rarefaction that
are self-similar. In the case of the isothermal rarefaction we identified a sim-
ilarity variable, then we made an explicit though, simple transformation of
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our equations. In the case of the adiabatic rarefaction, we solved for the be-
havior using Riemann invariants, though, if you look again at the solutions,
they are self-similar with similarity variable x/(cot). In general, self-similar
solutions have shapes in space that are independent of time, with a spatial
scale, R(t), that is a function of time. Thus, the generally useful similarity
variable, which traces out the shape of the fluid parameters, is ξ = r/R.

We consider the possibility of self-similar motions in systems whose evo-
lution is symmetric (planar, cylindrical, or spherical). These motions are de-
scribed by the corresponding versions of (2.1), (2.2), and (2.14), which are

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

(
∂u

∂r
+

su

r

)
= 0, (4.90)

∂u

∂t
+ u

∂u

∂r
+

1
ρ

∂p

∂r
= 0, and (4.91)

∂p

∂t
+ u

∂p

∂r
− c2

s

(
∂ρ

∂t
+ u

∂ρ

∂r

)
= 0, (4.92)

in which s = 0, 1, and 2, respectively, for planar, cylindrical, and spherical
symmetry. Observe that so long as the EOS that relates sound speed to den-
sity and pressure is a function of these quantities and numeric parameters
(such as γ), these equations contain only variables). We will use a polytropic
equation of state, as is already assumed in (4.92). The parameters having
numerical values with physical dimensions (such as a density of 1 g/cm3)
enter through the boundary conditions and initial conditions that are nec-
essary to solve these equations for some specific case. The general problem
of similarity transformations, in which a scaling of some variables leads to
identical equations using scaled variables, is discussed briefly in Chap. 10
and at length in Zeldovich and Raizer. Here we are concerned with finding
self-similar solutions, in which there is a single variable ξ that describes the
shape of the solution for all time and all space.

The key to finding a self-similar solution to these equations is to transform
them to ordinary differential equations involving dimensionless functions of
ξ that represent the shape of the fluid variables. We will work with density,
velocity, and pressure. Alternatively, we could use the sound speed instead
of the pressure. To reduce (4.90)–(4.92) to self-similar form, we must express
each of u, ρ, and p as the product of a dimensionless function ξ, a function of
R, and other necessary parameters. This turns out to require that we specify
an initial condition for either density or pressure. Here we work with density,
which is the most common case. We take

u = ṘU(ξ), ρ = ρo(r, t)Ω(ξ), and p = ρo(r, t)Ṙ2P (ξ), (4.93)

in which the overdot represents a time derivative and the initial density ρo

is in general a function of both space and time. Recognizing that
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∂h(ξ)
∂t

= −ξ
Ṙ

R
h′(ξ) and

∂h(ξ)
∂r

=
1
R

h′(ξ), (4.94)

in which the ′ designates the derivative with respect to ξ, we can obtain after
some algebra the following equations, in which ρ′o is the spatial derivative of
ρo,

ρ̇o

ρo

R

Ṙ
Ω(ξ) +

ρ′oR

ρo
U(ξ)Ω(ξ) + [U(ξ) − ξ]Ω′(ξ)

+Ω(ξ)U ′(ξ) +
sU(ξ)Ω(ξ)

ξ
= 0,

(4.95)

ρ′oR

ρo
P (ξ) +

RR̈

Ṙ2
U(ξ)Ω(ξ) + [U(ξ) − ξ]U ′(ξ)Ω(ξ) + P ′(ξ) = 0, and (4.96)

ρ̇o

ρo

R

Ṙ
(1 − γ) P (ξ) +

ρ′oR

ρo
U(ξ) (1 − γ) P (ξ) + 2

RR̈

Ṙ2
P (ξ)

+ (U(ξ) − ξ)
(

P ′(ξ) − γP (ξ)
Ω′(ξ)
Ω(ξ)

)
= 0.

(4.97)

Homework 4.18

Derive (4.95)–(4.97).

We note that here we have implicitly assumed that velocity, density, and
pressure have no remaining dependence on time in our transformation from
variables (r, t) to (ξ, t′) (see Sect. 4.2.1). This in the end imposes a restric-
tion on the number of constraints imposed by any other boundary or initial
conditions.

In (4.95)–(4.97), we have obtained three ordinary differential equations,
with explicit dependences on time and space in some terms. These depen-
dences must also cancel out if the evolution is to be self-similar. Consider first
(4.96). This equation depends only on time and on ξ, and the dependence
on time cancels out if R is a power law in time or an exponential with an
argument that is linear in time. Here we will emphasize power-law solutions,
and so we will take

R = Rot
α, (4.98)

in which Ro is the position at time t = 1. (In some practical applications,
it can be useful to specify a starting time, and so to replace t with t/to in
this equation.) This is sufficient to remove all the time dependences from
(4.95)–(4.97) except those involving the density. If the density has a time
dependence, one can see that self-similar behavior can follow only if the de-
pendence of ρo and R is the same type of function. They can both be power-
law dependences, for example, and any difference in the exponent will just
produce a constant factor in the equations. If the time dependence of ρo does
not have the same functional form as R, then the system will not exhibit a
self-similar evolution. In other words, its shape will change with time.
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In order for the spatial dependence to drop out of (4.95), the quantity
ρ′oR/ρo must have a constant value. This will occur if ρo is a power law
function of position, so that

ρo(r) = ρ̂rδ = ρ̂ξδRδ and (4.99)

ρ′o(r)R
ρo

=
ρ′o(ξ)
ρoR

R =
δ

ξ
. (4.100)

Thus, any power-law dependences of ρo on r and t are consistent with a self-
similar evolution involving a scale R that is a power of t. However, the time
dependence of R is part of the time dependence of ρo, so if ρo is ∝ tβ overall,
one must have ρ̂ ∝ t(β−αδ). At times, self-similar solutions can be found in two
adjacent regions, for example in which ρo may have two different dependences
on space and time. What is required is that one be able to specify boundary
conditions that connect the two regions. This is the case, for example, in the
treatment of the structure of young supernova remnants by Chevalier (1982).

At this point we have identified the conditions under which a hydrody-
namic system will exhibit self-similar evolution. While the notion of a self-
similar evolution has obvious mathematical elegance, the practically oriented
reader may wonder why we care, and whether such solutions are ever use-
ful, and how to know when one may work. We do care, because there are in
the end many problems that satisfy, or approximate, the conditions for self-
similar evolution. This means that self-similar models are often very useful
in the approximate description of how a system evolves. For example, good
experiment design is very often based on simple physical reasoning, and self-
similar models are an important tool for the experiment designer. They also
provide a useful conceptual framework to discuss (and to estimate) how a
system will evolve. This makes it worthwhile to know when they may work,
which we discuss next.

To obtain (4.95)–(4.97) in a self-similar form, we must specify an initial
density (or pressure) and are restricted to certain types of functional depen-
dences in space and time, as just discussed. This amounts to having specified
a single parameter with physical dimensions. If this is all that is specified,
then one has a self-similar problem. An example is the propagation of a shock
wave through a fluid whose density decreases as a power law in space and
has a specified initial profile. This occurs, for example, when a shock wave
emerges from a star. This specific case is treated by Zeldovich and Raizer,
when they discuss this type of self-similar problem. In this case, one must
solve the equations numerically to determine the value of the parameter α.
Curiously, the “impulsive loading” problem (the planar blast wave problem),
discussed thoroughly there, is in this second category, even though it seems
to have two parameters. The estimate of α = 2/3, obtained in a homework
problem in the previous section on the assumption that all the mass is near
the shock, is only an upper limit because the mass is in fact distributed to
minus infinity. (The lower limit is α = 1/2, and for γ = 5/3, α = 0.611.) The
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open boundary creates special problems, because beyond it the acceleration
is large enough to cause a divergence of the energy integral in the self-similar
solution. The solution to this problem is that there is always a small initial
quantity of mass to which the self-similar solution does not apply, and that
this mass contains only finite energy.

If the specification of the system includes a second parameter with phys-
ical dimensions, such as a total energy, then one has self-similar behavior
of the type discussed by Sedov. The definition of ξ must be related to the
known properties of the system, since these establish the relation between r
and t in the actual physical system. For example, more energy will lead to
faster motions, corresponding to larger values of Ṙ, so if energy is specified
then this must be included in the definition of R and hence ξ. One can de-
fine R to within a constant by creating a dimensionless combination of the
known physical quantities, r, and t. This must be constant for r = R, and
so can be solved to find the dependence of R on time (i.e., α) and on the
specified physical quantities. The constant, unknown coefficient can then be
specified during the solution of the problem. We carry out this exercise for
the spherical blast wave, in the following section.

If the specification of the system includes a third parameter with physical
dimensions, such as the location of an interface in a blast-wave problem, then
the evolution is not self-similar. The solution of (4.95)–(4.97) permits only
one additional parameter to be defined, whether as a boundary condition, an
initial condition, or an integral property of the system. Once this constraint is
imposed on the solution, there remain no further undefined variables. Adding
an additional constraint causes the self-similar problem to be overconstrained.
The system may still evolve to have a fixed shape in space and time, but it
will have distinct reference scales for r and for t. We discuss an example of
this in Chap. 10.

This makes it fairly easy to tell whether a similarity solution may apply
to a given problem. If the system is described by one or two dimensional
parameters and these are simple power laws (or perhaps exponentials) in
space and time, then a self-similar solution will exist. If there are more than
this, then there will be no self-similar solution.

4.3.3 The Sedov–Taylor Spherical Blast Wave

We now turn specifically to the problem of finding the profiles of the fluid
variables in a spherical blast wave. This is often known as the point explo-
sion problem, as self-similar solutions require one to assume that the energy
originated at an initial point (or line). Solutions found under this assumption
will apply only when the blast wave is far enough from the source that this
assumption becomes accurate. This problem can be solved analytically, as is
discussed by Sedov. The first numerical solution was reported by G. I. Taylor,
and von Neumann also contributed an early solution. Here we show how to
develop a set of ordinary differential equations in terms of an appropriate
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similarity variable. These equations can typically be integrated quite quickly
using a computational mathematics program.

The point explosion problem has only constraints having physical di-
mensions. There are the explosion energy, Ex, and the initial density of the
surrounding medium (assumed constant), ρo. The independent variables are
space r and time t. This allows us to carry out the procedure described in the
previous section. The ratio of Ex to ρo has units of length to the 5th power
divided by time squared, so we can obtain a dimensionless parameter from
these quantities. For a self-similar motion, we then have

(
Ext2

ρor5

)
= const, (4.101)

in the sense that the motion of any feature or point must keep this parameter
constant. For this problem it is convenient to consider the position of the
shock, R(t), for which

R =
1
Q

(
Ex

ρo

)1/5

t2/5, (4.102)

where Q is a constant to be determined later. Then we can use ξ = r/R as the
similarity variable and we see that α = 2/5. Note that we have determined
the scaling of the radius with time much more easily and exactly than we
did in the energy argument of Sect. 4.3.1. This is rather amazing, since we
needed only a little simple reasoning to do so. Note also that the shock
velocity is (2/5)(R/t). We could use the general transformation relations of
the previous section, but for convenience we will use instead transformations
that are specific to this system. This will be the basis of our transformation
of the equations of motion, writing

u =
2
5

R

t
U(ξ), ρ = ρoΩ(ξ), and p =

(
2
5

R

t

)2

ρoP (ξ). (4.103)

Here U, Ω, and P are dimensionless functions providing the shape of each
of the fluid variables. We then have for any function h(ξ),

∂h(ξ)
∂t

= h′(ξ)
∂ξ

∂t
= −

(
2
5

ξ

t

)
h′(ξ), and (4.104)

∂h(ξ)
∂r

= h′(ξ)
∂ξ

∂r
=

(
ξ

r

)
h′(ξ). (4.105)

Here the prime designates the derivative of the function with respect to its
argument. Using (4.103)–(4.105), the equations of motion become, after some
manipulation, and with the assumption that the fluid is a polytropic gas,

[U(ξ) − ξ]ξΩ′(ξ) + [ξU ′(ξ) + sU(ξ)]Ω(ξ) = 0, (4.106)
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−3
2
Ω(ξ)U(ξ) + [U(ξ) − ξ]Ω(ξ)U ′(ξ) + P ′(ξ) = 0, and (4.107)

−3Ω(ξ)P (ξ) + [U(ξ) − ξ][Ω(ξ)P ′(ξ) − γP (ξ)Ω′(ξ)] = 0. (4.108)

Here s = 2 for this spherical case. These are the ordinary differential equa-
tions we set out to obtain. Note that γ enters explicitly as a parameter in
these equations. Thus, the solution is not independent of the equation of
state. The numerical coefficients arise from the scaling of the dimensionless
parameter, and thus are specific to this problem.

Homework 4.19

Derive (4.106)–(4.108).

The boundary conditions required to integrate the equations are obtained
at the shock front, where

U(1) =
2

γ + 1
, Ω(1) =

γ + 1
γ − 1

, and P (1) =
2

γ + 1
. (4.109)

By numerically integrating (4.106)–(4.109), one finds the profiles of the three
dimensionless functions. These are shown in Fig. 4.18 for the spherical case
(s = 2) and for γ = 5/3. This value of γ is reasonable for nearly all astro-
physical systems and for some laboratory experiments. For explosions in air,
it would be better to take γ = 1.4 and for many laboratory experiments γ
could be as low as 4/3 or even less, as was discussed in Chap. 3. One sees that
nearly all the mass is concentrated near the shock (even more than it first
appears, when one realizes that the total mass per unit radius is proportional
to r2Ω).

The above equations are sufficient to give us the profile shapes, but not to
determine the quantity Q, which sets the absolute value of R at a given time.
Here is where we must make use of the second parameter having physical
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Fig. 4.18. Dimensionless profiles for the Sedov–Taylor blast wave. U (dashed),
Ω(black), and P (gray) are shown as a function of r/R. The amplitudes are nor-
malized to unity at the shock radius r − R
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dimensions, Ex. To find Q, one can evaluate the total energy in the self-
similar profile, which must equal the explosion energy Ex. The integral for
Ex is

Ex =
∫ R

0

(
p

γ − 1
+

ρu2

2

)
4πr2dr, (4.110)

from which one can show that

Q5 =
16π

25

∫ 1

0

(
P (ξ)
γ − 1

+
1
2
Ω(ξ)U2(ξ)

)
ξ2dξ. (4.111)

Evaluating this integral for the profiles shown in Fig. 4.18, which assumes
γ = 5/3, one finds Q = 0.868. This in turn lets us evaluate from (4.102) the
radius for actual cases. For a supernova remnant formed by the release of 1051

ergs into a medium with a density of 10−23 g/cm3, one finds R = 1.2t2/5, with
R in light years and t in years. Obviously this does not apply within 1 year,
and in fact hundreds to thousands of years are required to sweep up enough
mass that a point-explosion model is appropriate. As another example, a
laboratory blast wave experiment might release 100 J into a gas at a density
of 10 mg/cm3. In this case R = 11.1t2/5, with R in mm and t in µs.

Homework 4.20

Use a computational mathematics program to integrate these equations to
find and plot the profiles, and to evaluate Q, for a cylindrical case. Apply this
to find the behavior of a lightning channel produced by a deposited energy
of 1010 ergs/cm.

4.4 Phenomena at Interfaces

All of the discussion above, with the exception of the discussion of reflected
shocks, relates only to the behavior of an isolated hydrodynamic phenom-
enon in an unbounded medium. This is a necessary start, but the features of
interest in most physical systems arise from the interaction of hydrodynamic
phenomena with structure in the medium or with each other. Understanding
these effects is also needed to design clever experiments.

4.4.1 Shocks at Interfaces and Their Consequences

In Sect. 4.1.5, we discussed the generation of reflected and transmitted shocks
when a shock wave approaches an interface where the density increases. We
also discussed the flyer-plate case, described by the same mathematics, in
which a cold, moving material collides with another material. In general,
the material approaching (or creating) the interface has a velocity u1 and a
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pressure p1, and the pressure p1 can range from 0 to (γ − 1)ρ1u
2
1/2, which is

the limit obtained when the pressure was produced by a strong shock (and
is ρ1u

2
1/3 for γ = 5/3). Here we want to consider the more general case in

which a shock wave (or in general a moving slab of material) approaches an
interface beyond which there is material of arbitrary density, specified as ρ4

in the notation of Sect. 4.1.5, which we will use in this discussion.
This more general case is of interest in the laboratory and in astrophysi-

cal systems. In the laboratory, a radiation source can accelerate material in
addition to shocking it, as is discussed in Chap. 9. This can be useful in an
experiment if the goal is to make more energy available for the later evolution
of the system. Such an object – a shocked and accelerated slab – might be
described as a plasma flyer plate. In astrophysics, enduring radiation sources
can shock and accelerate the objects they irradiate. This is the case, for ex-
ample, in the star-forming region that includes the Eagle nebula, where the
bright young stars have shocked and are now accelerating the nearby mole-
cular clouds. When such an accelerated object encounters a stationary one,
which might be a clump at higher density or a cloud at lower density, then
on a global scale the kinds of interactions discussed here will ensue.

If ρ4 is small enough, we expect to see an adiabatic rarefaction when the
shock reaches the interface. Figure 4.19 illustrates the situation in the lab
frame. Let us apply the theory of Sect. 4.2.3 to this case. The new feature
here is that it is best to do the mathematics in the downstream frame, in
which the fluid downstream of the shock is at rest. We want to examine the
system at the precise moment when the shock has reached an interface where
the density decreases. In this frame, the expansion of the shocked matter
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follows identically (4.81)–(4.86). All the new aspects of this problem then
have to do with correctly specifying the properties of the upstream medium

In the downstream frame, at the moment the shock reaches the interface,
the new upstream material (of density ρ4) is moving toward the shocked ma-
terial at a velocity u1. The rarefaction then pushes shocked material forward
at a velocity U in the downstream frame, which is U + u1 in the lab frame.
Thus, U + u1 is the postshock fluid velocity of the upstream material in the
lab frame. This implies that the transmitted shock velocity, in the lab frame,
is (γ4 + 1)(U + u1)/2. We described the head of a centered rarefaction wave
as moving backward in the material, which it does do in a Lagrangian sense.
In the lab frame, however, the head of the rarefaction wave moves forward
at urw, which is

urw = u1

(
1 −

√
γ1(γ1 − 1)√

2

)
. (4.112)

Note that u1 can also be written 2us1/(γ+1). The pressure in the shocked
upstream medium, p3, based on (4.18), is

p3 =
γ4 + 1

2
ρ4(U + u1)2 . (4.113)

Matching this pressure is the value at the interface, pi. This can be found
from (4.83), evaluated at the piston, which with current variable definitions
is

pi = p1

(
1 − γ1 − 1

2
U

cs1

)2γ/(γ−1)

, (4.114)

in which cs1 is the sound speed in the initial shocked matter. One can find
U by setting p1 = p3. For any specific choice of γ, the resulting equation can
be converted to a polynomial equation for U. Figure 4.20 shows, for γ4 = 5/3
and for two values of γ1, how the resulting value of U/us1 depends on the
density ratio ρ4/ρo. Remember that this is in the downstream frame; in the
lab frame, U is increased by 2us1/(γ1 + 1).

Homework 4.21

Assuming that a strong shock reaches an interface beyond which the density
(ρ4) is 0.1 times the density of the shocked material to the left of the interface
(ρ1), solve for the profiles of the fluid parameters in the rarefaction that
results.

One can see in Fig. 4.20 that there is a limiting value of ρ4/ρo beyond
which U disappears on the plot. In terms of the mathematics just described,
U becomes negative, but this is not the physical solution. Instead, at this
point the response of the system is to produce a reflected shock rather than
a rarefaction. This can occur even if ρ4 < ρ1. The gray curve in Fig. 4.20
illustrates this case. To see how this occurs, consider that a reflected shock
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Fig. 4.20. Profiles of the normalized interface velocity in the downstream frame
when a shock encounters a density drop. The black curve shows γ1 = 5/3 and the
gray curve shows γ1 = 4/3, with γ4 = 5/3 in both cases

will form once the pressure in the shocked, low-density material exceeds p1.
Consider also that the postshock fluid velocity in the low-density material
decreases as ρ4 increases, and has a limiting value of u1 at the transition
from a rarefaction to a reflected shock. Thus, assuming the shock in the low-
density material to be a strong shock (so (4.23) applies), we would expect
this transition to occur when (γ4 − 1)ρ4u

2
1//2 = p1. In the specific case in

which p1 is produced by a strong shock in a stationary material (which then
approaches a stationary interface), one has p1 = (γ1−1)ρ1u

2
1//2, from which

one can obtain the threshold density for a reflected shock as

ρ4 =
(γ1 − 1)
(γ4 + 1)

ρ1 =
(γ1 + 1)
(γ4 + 1)

ρo. (4.115)

This is no surprise. It just says, for γ1 = γ4, that the transition occurs when
the ρ4/ρo at the interface exceeds 1, or in other words when the interface
changes from a density decrease to an increase. But on the other hand if
γ4 > γ1, then this transition will occur while there is still a density drop.

Consider also the more general case of a plasma flyer plate in which ma-
terial that has been shocked or otherwise heated is accelerated to a higher
velocity before it impacts a second material, creating an interface. In this case
p1 < (γ1 − 1)ρ1u

2
1/2. If we express this as p1 = fρ1u

2
1, where as discussed

above 0 < f < 1/3 for γ = 5/3, then the condition to produce a reflected
shock becomes

ρ4 =
2f

(γ4 + 1)
ρ1. (4.116)

Here we see that the transition from a rarefaction to a reflected shock can
occur at an arbitrarily low density, which depends on the properties and thus
the history of the incoming matter.
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Homework 4.22

Assuming that γ1 = γ4 (or not, if you wish), derive (4.116) from (4.44)–(4.52)
by letting p3 approach p1 as the definition of the transition to a rarefaction.
Hint: This one is not easy. Taking a limit will be necessary and the approach
to the solution will matter.

4.4.2 Overtaking Shocks

It is not uncommon to find shock waves produced in succession, whether by a
sequence of energy releases at the solar surface or by a sequence of irradiation
pulses in an experiment. If a second shock is stronger than a first shock, then
it moves more rapidly and will overtake the first one. The discussion so far
in this chapter makes the qualitative behavior of such systems fairly obvious.
We review it briefly here.

As the stronger second shock overtakes the first shock, there is a moment
when they coalesce. In Fig. 4.21, the left set of curves show the two shocks,
before the stronger one has overtaken the weaker one. The middle set of curves
shows them as they coalesce. At this instant, the total density jump is the
product of the density jump produced by each of the two shocks. However,
unless the two shocks are fairly weak, this density jump is not consistent
with a single shock. For example, if a shock with a density jump of 4-to-1
overtakes a shock with a density jump of 3-to-1, the resulting instantaneous
density jump is 12-to-1, which few materials can sustain. So what does the
system do?

One can see what happens by considering the moment of coalescence as
an initial condition, in which the postshock material has a certain density,
pressure, and velocity. What we have then is identical to the plasma-flyer-
plate problem with a low value of the density beyond the interface created
when the flyer plate reaches the object it collides with. The fact that the
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Fig. 4.21. Dynamics of overtaking shocks. Here a polyimide material of density 1.4
g/cm3 is driven at 10 Mbars for 1 ns and then is driven at 100 Mbars. The curves
show 10.5 ns, 12 ns, and 13.5 ns. The dashed gray curves are pressure
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density of the doubly shocked material, ρ1, is produced by two shocks guar-
antees that the unshocked density, ρ4, will be less than that given by (4.116).
As a result, there will be a rarefaction in the shocked material, and a strong
shock will be driven forward into the unshocked material. One can see this
shock and rarefaction in the rightmost curves in Fig. 4.21. Soon after the
rarefaction forms, the head of the rarefaction wave will return to the driven
surface where the pressure that drove the shocks was applied. We take up
next what happens then.

4.4.3 Reshocks in Rarefactions

The longer-term behavior of shocked layers of material is often very relevant
to systems of interest. As shock waves or rarefactions traverse a system, they
encounter interfaces or other waves and interact. This can be a complicating
factor in any system for which the study of a later interface is of interest.
Once more than one wave reaches the interface, its behavior becomes more
complex. It is tempting to form the conclusion that every wave always begets
a next wave, but this is not correct. In particular, when a rarefaction wave
crosses a system, it may or may not produce a subsequent wave. Suppose
specifically that a pressure source creates a shock wave in a layer of material,
as described in Sect. 4.1. Suppose further that when the shock wave reaches
the end of the layer, a rarefaction forms as described in Sect. 4.2 and 4.4.1.
The head of the rarefaction moves back through the shocked material, and
eventually reaches the initial surface. What happens then is illustrated in
Fig. 4.22.

In these simulations whose results are shown in the figure, a pressure of
30 Mbars drives a shock through C1H1 of density 1 g/cm3. This produces the
shock wave that moves up and to the right across the system. Once the shock
wave reaches zone 400 (the end of the system), a rarefaction wave returns
toward the driven surface. Consider first parts (a) and (b) of the figure. In
the simulation producing these results, the driving pressure is always present.
One can clearly see the rarefaction structure as a variation in density (shade
of gray) between the rarefaction wave and the top of the image. When the
rarefaction wave reaches the driven surface, a new shock is launched back
into the plasma. This is easy to understand as follows. The rarefaction wave
decreases the pressure of the shocked material. Even so, by assumption the
driving pressure does not change. Once the pressure in the material begins
to decrease at the driven interface, the interface will accelerate in response.
This will launch either a sound wave or a shock wave back into the material.
One cannot tell which from simple reasoning, but it turns out in this par-
ticular case that in response to the first rarefaction a second shock wave is
launched. In this specific system, there is no next wave, as the second shock
just travels down the density gradient to the end of the expanding plasma
where it disappears. If there were further layers of material, then the second
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Fig. 4.22. A grayscale display vs. Lagrangian zone and time can be an effective
way to see the waves in a hydrodynamic system. In the first row are (a) density and
(b) pressure for a reshock in a rarefaction, created by the continuous application of
a 30 Mbar pressure to a CH material at 1 g/cc. In the second row are (c) density and
(d) pressure for a system in which the driving pressure ends before the rarefaction
returns to the driving surface, so no reshock is produced. The jagged boundaries are
caused by the finite zone size and finite number of time outputs in the simulation

shock might produce further shock or rarefaction waves that would traverse
the plasma. When this happens, it is known as reverberation.

Homework 4.24

An entertaining aspect of this specific problem is that it is one case where
the traditional model in which shocks are driven by moving pistons does not
produce correct qualitative behavior. Consider a rarefaction as it approaches
a piston that is moving forward at a constant velocity. What will happen?

Consider now parts (c) and (d) of Fig. 4.22. In the simulation producing
these results, the driving pressure ends after 0.8 ns. One can see the shock and
the beginning of the rarefaction wave returning toward the driven surface.
However, there is a second rarefaction wave moving upward from the driven
surface, due to the expansion of this surface now that it is no longer driven.
When rarefaction waves meet, they do not produce further waves. There is
no source of pressure to produce a reshock in either rarefaction. Thus, if a
rarefaction approaches a surface that was driven but is no longer driven, for
example, because the radiation source has turned off, then there will be no
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further wave. The result in Fig. 4.22 is that the density and pressure of the
plasma decrease smoothly in space and time as the plasma expands and cools.

4.4.4 Blast Waves at Interfaces

We discussed above how common blast waves are in astrophysics, because
the originating event that produces a shock wave very often is short lived
compared to the lifetime of the shock. As a result, the rarefaction from the
source overtakes the shock and produces a blast wave. The blast wave then
may encounter interfaces where the density changes, in response to which
these interfaces will evolve. A very important application of this lies within
a Type II supernova, in which the blast wave generated near the core of the
star encounters density drops at the boundary between the C–O layer and
the He layer, and again at the boundary between the He layer and the H
layer. The density also decreases within each layer as radius increases, but
this turns out not to be essential to the behavior at the interface.

Figure 4.23 illustrates the behavior. When the blast wave reaches the
interface, the density drop at the interface cannot be sustained by a single
shock. Just as in the cases of the adiabatic rarefaction and of overtaking
shocks, a forward shock is driven into the low-density material. The surpris-
ing development is that a shock develops in the high-density material, despite
the fact that (4.115) is not satisfied. We can explain what this is and why it is
called a reverse shock by contrasting this case with the adiabatic rarefaction.
In the adiabatic rarefaction, there is an indefinite supply of density and pres-
sure behind the interface. In the adiabatic rarefaction, both the density and
pressure increase with distance behind the interface, until they eventually
reach their initial values. In contrast, in the blast-wave case, a rarefaction
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Fig. 4.23. Development of a reverse shock when a blast wave passes through an
interface. This case is produced in a simulation when a laser with an irradiance
of 4.2 × 1014 W/cm2 strikes a 150-µm-thick layer of polyimide, followed by a low-
density carbon layer
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does propagate backwards, causing the plasma behind the interface to ac-
celerate, but the pressure in the blast wave soon drops below the pressure
in the shocked low-density material in front of the interface. One then has
an expanding and accelerating flow of material that encounters the slower,
higher-pressure material near the original interface. A shock develops at this
transition. Thus, a reverse shock is a shock formed when a freely expand-
ing plasma encounters an obstacle. This is distinct from the reflected shock
formed when a shock wave crosses an interface. In the blast-wave case, the
blast wave creates its own obstacle through its interaction with the interface.

One can also see in Fig. 4.23 that the density decreases behind the forward
shock and behind the interface. This reflects the gradual expansion of the
region between the shocks in response to the pressure gradient that develops
as the system slows. This has the additional consequence that the forward
shock soon develops a blast-wave structure itself. However, the shape of this
structure may differ significantly from the shape of the initial blast wave. It
also may not soon be self-similar, as the distance from the interface introduces
an additional physical scale into the problem.

Systems in which blast waves encounter interfaces have been an impor-
tant area of activity in the early years of experimental astrophysics. This
has been motivated by instabilities in Type II supernovae, which we discuss
further in the next chapter, and by the question whether errors in calcu-
lations of their nonlinear evolution might explain some discrepancies with
data. Figure 4.24 shows results from a calculation of the explosion of a Type-
II supernova (1987A). The forward and reverse shocks are clearly evident.
Figure 4.25 shows data from an experiment in which these two features were
also produced. The experiment was a well-scaled reproduction of the super-
nova explosion for reasons discussed in Chap. 10. This particular experiment
was done to confirm that the correct one-dimensional behavior was achieved.
It lacked the initial perturbations that would have produced unstable struc-
tures.

Fig. 4.24. Result of a simulation of the explosion of SN 1987A. The forward
and reverse shocks are evident near the outer edges. The dramatic structures are
discussed in Chap. 5. Credit: Kifonidis et al. (2003)
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Fig. 4.25. Data from experiment sending a blast wave through an interface. Laser
irradiation produced a shock in a 150-µm-thick layer of dense plastic (1.41 g/cm3),
then ended allowing a blast wave to form. At the time of the image, the inter-
face between the plastic and 50 mg/cm3 foam has moved 650-µm and 2D effects,
producing curvature and rollups at the edges, are becoming important

4.4.5 Rarefactions at Interfaces

Rarefactions never proceed unimpeded forever. Whenever a rarefaction de-
velops in astrophysics, whether at the edge of a supernova when the blast
wave emerges from the star, at the edge of a molecular cloud when a shock
wave emerges from it, or somewhere else, the rarefaction encounters at mini-
mum the interstellar medium. In addition, it may encounter other objects as
it propagates. This produces a situation in which a flowing, expanding, cool
plasma produces an interface through its interaction with something. After
reading the prior section, it will come as no surprise that the interaction
produces a forward shock and a reverse shock.

Experiments can produce similar phenomena, by creating rarefactions
that encounter a layer of material. In general, this can be a way to produce
a high-Mach-number flow and then to let it interact. It also can have the
effect of converting a brief source of energy into a lower-pressure source of
much longer duration. Among recent applications of this technique have been
equation of state studies (see Chap. 3), experiments related to supernova rem-
nants (see below), experiments to produce jets, and designs of experiments
to study the long-term interactions of shocks and clumps.

The classic example of a rarefaction that encounters an interface is the
young supernova remnant. We can observe the explosion of a star for at
most a few years. In contrast, we can observe nearby supernova remnants
for centuries if not millennia. Supernova remnants are the observable struc-
tures that form through the interaction of the ejecta from a stellar explosion
with the surrounding (circumstellar) environment. They are widely believed
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to produce most of the Cosmic Rays that irradiate the Earth. Despite our
ability to observe a number of supernova remnants in considerable detail, the
structure and the evolution of supernova remnants pose many challenges to
our understanding.

The energy that creates the supernova remnant is the kinetic energy of
the exploding star, typically about 1051 ergs. An interesting feature is that
the “interface” that leads to the structure has neither a decrease nor an
increase of the density, but rather has an abrupt decrease in the density
gradient. The material emerging from most stellar explosions can be argued
to be self-similar (see Zeldovich and Raizer) and to have an inverse-power-law
dependence on radius and time. The profile is quite steep, with an exponent
of 8 or 9. The stellar ejecta undergo a homologous expansion, with velocity, v,
radial distance, r, and time, t, related by v = r/t. Expansion cooling reduces
the temperature of this material to a low value early on, so that nearly all
the energy of the ejecta is kinetic energy.

In contrast, the circumstellar density falls off much more slowly, as 1/r2 if
it is due to a prior stellar wind or perhaps more slowly if the star has been an
inactive white dwarf, as in the case of Type Ia explosions. When the rapidly
expanding ejecta from the star interact with the nearly stationary circumstel-
lar matter, forward and reverse shocks develop. This initially velocity of the
forward shock is of order 10,000 km/s. This first phase of supernova-remnant
evolution is the free-expansion (or “young-remnant”) phase. Ignoring clumps
and instabilities, the entire structure between the two shocks moves at a ve-
locity that is determined by the properties of the ejecta and the circumstellar
material.

The system involves initial densities that are power laws, and the expan-
sion velocity, which is x/t, introduces no additional scales, which suggests
that the evolution might be self-similar. In 1982, R.A. Chevalier showed that
it can be analyzed as two self-similar regions that are matched across the
contact surface. One can find three coupled equations for the self-similar evo-
lution of the density, the velocity, and the sound speed between the reverse
shock and the interface, and between the forward shock an the interface,
just as we discussed in Sect. 4.3.2. Here again, modern computational math-
ematics programs make the integration of these equations straightforward.
Figure 4.26 shows the density profile for parameters relevant to SN 1987A,
with the ejecta density scaling as r−9 and the circumstellar density scaling
as r−2.

It may seem strange to treat the supernova remnant as a hydrodynamic
object, because the average density of the circumstellar medium may be of
order 1 or 10 particles per cubic centimeters. The feature that permits a
hydrodynamic treatment is the presence of a magnetic field that is small
enough that it does not affect the dynamics yet large enough and structured
enough to confine the particles to a very small volume on the scale of the
entire supernova remnant. This turns out to be very much the case. The
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Fig. 4.26. Self-similar profile of density in a young supernova remnant, showing
forward and reverse shocks. The supernova ejecta come in from the left

primary uncertainty in the hydrodynamic treatment is the potential effect
on the hydrodynamics of a developing population of cosmic rays.

One example of an extremely young supernova remnant is the remnant
from SN 1987A (reviewed by Chevalier in 1993), shown in Figure 4.27. At only
150,000 light years, this object is far closer and thus far more diagnosable than
any other supernova of the modern era. The ring shown, and two larger rings
as well, are of unknown origin and provide an added element of excitement.
During the years after the explosion, the development of radio and x-ray
emission from this object were followed by the advent of visible emission at
“hot spots” as the stellar ejecta began to collide with the innermost ring.

Fig. 4.27. The supernova remnant from SN 1987A and a related experiment. (On
left) SN 1987A in 1997. The arrow on the image of SN1987A shows the hot spot
where interaction of the shocked matter and the ring had begun. The image of
SN 1987A is from the Hubble Space Telescope. It was created with support to
the Space Telescope Science Institute, operated by the Association of Universities
for Research in Astronomy, Inc., from NASA contract NAS5-26555, and is repro-
duced with permission from AURA/STScI. (On right) Schematic of the experiment.
The thickness of the plastic layer is 200 µm. The diameter of the foam cylinder is
700 µm



4.4 Phenomena at Interfaces 161

Laboratory experiments can help improve our understanding of some of
the mechanisms present in supernova remnants, and can help test the com-
putational models we build to interpret their behavior. The design of the
first such experiment, by the author and colleagues (Drake et al., 2000) is
also illustrated in Fig. 4.27. The arrows and labels in the figure identify the
correspondence between features in the experiment and those in SN 1987A.
These experiments were in a planar geometry, intended to simulate a small
segment of the overall supernova remnant expansion. The experiment began
when an intense x-ray flux, produced by laser heating of a gold hohlraum (see
Sect. 8.2), irradiated a 200-µm-thick layer of plastic. The x-rays ablated the
plastic, launching a strong shock wave through it, at a pressure of 5 × 1013

dynes/cm2 (50 Mbars). This was the analog of the initial blast wave pro-
duced by the SN explosion. This shock wave compressed, accelerated, and
heated the plastic. When the shock broke out of the plastic, the ejecta from
its rear expanded, accelerated, cooled, and decompressed across a 150-µm-
wide gap. In an actual supernova remnant, spherical expansion provides the
decompression (see McKee, 1974). Here the gap served an analogous function.
The ejecta then launched a forward shock into the ambient matter, in this
case a foam whose density was less than 1% of the density of the compressed
plastic layer. The ejecta stagnated against the (moving) contact surface with
the foam, which launched a reverse shock into the ejecta, just as occurs in a
supernova remnant.

Figure 4.28 shows the measured profile, obtained by x-ray radiography.
The forward shock and reverse shock are clearly established. This system is a
well-scaled model of the basic hydrodynamic structure of a young supernova
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Fig. 4.28. Data from an ejecta-driven shock experiment. The image shows the x-
ray transmission through the experimental system. One can clearly see the reverse
shock and forward shock. The curves show evaluations of the optical depth of the
system as a function of position from an initial surface. The spatial resolution is
limited, so the transitions in optical depth are smoothed out somewhat. From Drake
et al. (2000)
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remnant (see Chap. 10 regarding how to scale such systems). Specifically,
with reference to quantities defined in Chap. 2, in the supernova remnant and
the experiment, respectively, Re = 6 × 108 and 7 × 106, Pe = 107 and 104.
Radiative losses are unimportant in both systems. This basic experiment
design has subsequently been used to address instabilities in such systems
and their interaction with other structures.

The later evolution of the supernova remnant connects with other topics
in this book. Eventually, the mass of the accumulated circumstellar matter
exceeds the mass of the stellar ejecta. This is generally taken to mark the
(gradual) transition to the “Sedov–Taylor” phase. As this phase begins, the
reverse shock runs in to the center of the supernova remnant and dissipates,
after which the supernova remnant is believed to develop the characteris-
tic structure of the Sedov–Taylor blast wave discussed above. Throughout
the development of the supernova remnant, the shocked matter also radi-
ates energy. Radiative losses are in some cases important during the young-
supernova-remnant phase, but were not in SN 1987A. They are never im-
portant during the Sedov–Taylor phase, but eventually the remnant slows
down and cools enough that they become important (they pass through the
minimum of the “cooling function” discussed in Sect. 6.2.2). Once enough
cooling has occurred, the remnant becomes a momentum-driven snowplow
(Sect. 4.3.1) and the shell structure (now much thinner) may become unsta-
ble to thin-shell instabilities. The above is the one-dimensional story, but the
extent to which three-dimensional effects such as instabilities or interactions
with clumps may distort this picture is not entirely known. Not only super-
nova remnants but also other objects such as molecular clouds are observed
to be clumpy in general.

4.4.6 Oblique Shocks at Interfaces

To prepare for the discussion in the next chapter, we also need to consider the
behavior that develops when an oblique shock wave arrives at an interface,
where the density increases or decreases. One can see from the discussion
earlier in this chapter that in general the result will involve a transmitted
shock beyond the interface and a reflected wave propagating backwards (rel-
ative to the interface). The postshock contact surface will be between these,
with the sign of the angles (α and χ in Fig. 4.29) depending on the type
of reflected wave. The properties of the interface will determine whether the
reflected wave is a shock wave or a rarefaction wave. So long as the EOS is
the same on the two sides of the interface, the reflected wave will be a shock
when the density increases across the interface and a rarefaction when the
density drops. Figure 4.29 is a schematic of the essential geometry, assuming
the system to be uniform in the direction out of the page. We will label the
shocked or unshocked regions a, b, c, and d, as indicated on the subscripts
on the density ρ, and will use the subscript R for the region between the
contact surface and the reflected wave. So long as the pressure source driving
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Fig. 4.29. Sketch of behavior occurring when a shock approaches an oblique in-
terface. The angles shown are for a reflected rarefaction wave. For convenience, η
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the shock remains constant, and so long as the edges of the system have no
effect, the various waves will each have a constant velocity. As a result, they
will radiate in straight lines from the point where the shock and the inter-
face meet, and the fluid velocity will be independent of the distance from
this point. The entropy will be constant across each region of this system,
changing only at the shocks.

Following Section 109 of Landau and Lifshitz, we can observe that the
sensible way to analyze this system is in a cylindrical coordinate system
centered at the point where the shock meets the interface. We can make this
coordinate system be stationary by working in a frame in which u = ulab+uI ,
where uI is given by (us/ tan β)x̂−usŷ, with the x and y directions defined as
shown in Fig. 4.29. We define the azimuthal angle φ relative to the x-axis, as
usual. In this frame of reference, a point on the shock wave or the interface
moves radially inward with time, while a point on the transmitted shock
or the reflected wave moves radially outward. Assuming that uz is constant
everywhere, and based on the assumptions of the previous paragraph, the
derivatives in r and z are zero in this coordinate system while ur and uφ may
vary with φ. With these assumptions the momentum equation implies

∂ur

∂φ
− uφ = 0 and (4.117)

uφ
∂uφ

∂φ
+ uruφ = −1

ρ

∂p

∂φ
= −∂w

∂φ
, (4.118)

where dw = dp/ρ is the differential enthalpy at constant entropy, while the
continuity equation implies

(
ur +

∂uφ

∂φ

)
+

uφ

ρ

∂ρ

∂φ
= 0. (4.119)
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Homework 4.25

To obtain these results, one must evaluate the equations in cylindrical polar
coordinates. Beginning with the first two Euler equations, carry out this
evaluation.

By combining these equations, we can obtain some insight into the be-
havior. Equations (4.117) and (4.118) imply that

w +
1
2
(
u2

r + u2
φ

)
= constant, (4.120)

while these equations in combination with (4.119) imply that

(
ur +

∂uφ

∂φ

)(
1 −

u2
φ

c2
s

)
= 0 . (4.121)

Equation (4.120) connects the changes in velocity with changes in enthalpy as
one moves across the system. We will return to it. Equation (4.121) evidently
has three solutions. One of these solutions occurs when the argument of the
left parentheses is zero. This corresponds to uniform flow.

Homework 4.26

Thus, a property of uniform flow is that ur = −∂uφ/∂φ in any cylindri-
cal polar coordinate system. Landau and Lifshitz use a geometric argument
to demonstrate this. Instead, demonstrate this using a vectorial argument.
(Hint: Begin by taking dot products of unit vectors along r and φ with an
arbitrary velocity vector.)

The flow is uniform in regions a, b, c, and d, with discontinuities at the
boundaries between regions. The equations describing these parts of the flow
do not depend on the nature of the reflected wave. To simplify the mathe-
matics, we will assume the initial pressure in regions b and c to be negligible
and the entire system to have constant γ. Then in regions b and c the velocity
equals the velocity of our moving frame of reference,

ub = uc = uI =
us

sinβ
[cosβx̂ − sinβŷ] , (4.122)

while in region a we have ρa = ρb(γ + 1)/(γ − 1), and we use the results of
Sect. 4.1.5 for oblique shocks to find the postshock velocity, which is

ua =
us

sinβ

[
cosβx̂ −

(
γ + 1
γ − 1

)
sinβŷ

]
, and (4.123)

pa =
ρbu

2
s

γ + 1
. (4.124)
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In region d we have ρd = ρc(γ + 1)/(γ − 1), and the shock is also oblique
in the moving frame. One can show that

ud =
us

sinβ

[
γcosβ + cos(2α + β)

γ + 1

]
x̂

− us

sinβ

[
γsinβ − sin(2α + β)

γ + 1

]
ŷ

and (4.125)

pd =
ρcu

2
s

γ + 1
sin2(α + β)

sin2β
. (4.126)

The ratio of the component of ud normal to the surface of the forward
shock to the component parallel to this surface gives tan (α − χ), as it is
the radial flow away from the forward shock that establishes the downstream
boundary of region d. This gives

(
γ − 1
γ + 1

)
tan(α + β) = tan(α − χ). (4.127)

All of the above applies whether there is a reflected shock or a rarefaction.
We consider these possibilities in turn. In the case of the reflected shock,
the flow within the reflected shock is also uniform. The difference with the
planar case of Sect. 4.4.1 is that the transmitted and reflected shocks are
both oblique. The angles α and χ in Fig. 4.29 are both negative in this case,
but (4.125)–(4.127) still apply. For region R we have

uR =
us

(1 + γ)2sinβ
([γ(γ + 1)cosβ + γcos(β − 2η) + cos(β + 2η)] x̂

+ [−γ(γ − 1)sinβ + γsin(β − 2η) + sin(β + 2η)]ŷ), (4.128)

pR =
ρbu

2
s

γ − 1
[sin(β + η) − γsin(β − η)]2

(γ + 1)2sin2β
, and (4.129)

(
γ − 1
γ + 1

)
sin(β + η) − γsin(β − η)
cos(β + η) + γcos(β − η)

= tan(η + χ)). (4.130)

Given the known parameters, one can solve numerically for α and η by setting
pd = pR and setting equal the solutions of (4.127) and (4.130) for χ.

In the case of the reflected rarefaction wave, the flow is not uniform in
the region between the rarefaction wave and the contact surface. This region,
which we can call the rarefaction, is isentropic so p/c

2γ/(γ−1)
s and ρ/c

2/(γ−1)
s

are both constant. In the rarefaction one must replace (4.128) through (4.130)
with a description of the rarefaction. Within this region, ur is clearly positive
and the relevant solution of (4.121) has uφ = cs. If we designate the properties
at the head of the rarefaction wave as wa, ura, and ca, then we can write from
(4.120)

u2
r = u2

ra + c2
a − c2

s + 2 (wa − w) . (4.131)
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Substituting these two results into (4.119), rearranging, and integrating gives

φ + η =
∫ ρcs

ρaca

d(ρcs)
ρ
√

u2
ra + c2

a − c2
s + 2(wa − w)

. (4.132)

Here η is as shown in Fig. 4.29, and would correspond to −φo if we designated
the angle of the rarefaction wave as φo. For a polytropic gas, this can be
reduced to

φ + η =
√

γ + 1
γ − 1

∫ 1

cs/ca

dξ√
Q2 − ξ2

, in which (4.133)

Q2 = 1 +
γ − 1
γ + 1

u2
ra

c2
a

> 1 (4.134)

Note that Q depends on η, because

u2
ra

c2
a

=
(γ + 1)2

γ(γ − 1)
cos2(β − η)

sin2β
> 1 (4.135)

We can find the angle η by considering the behavior of the rarefaction
wave. In a planar system, the rarefaction wave flows away from the shocked
interface into the downstream system at the downstream sound speed. One
way to think of this is to realize that sound waves are launched in all directions
from the disturbed interface, and that in the planar geometry the leading edge
of their phase fronts initiates the rarefaction wave. Taking this same point of
view, we can say that sound waves propagate from any point on the interface
in the system of Fig. 4.29, beginning at the moment the shock reaches the
interface (taken as t = 0). The vector f describing their location is then

f =
(
uI + cak̂

)
t, (4.136)

in which k̂ is a unit vector in an arbitrary direction. Defining the angle of
this vector as φs, and expressing both ca and uI in terms of us, we can find
the following equation for angle of the rarefaction, η:

− tan η = Min


−γ+1

γ−1 sinβ +
√

γ
γ+1 sinβsinφs

cosβ +
√

γ
γ+1 sinβcosφs


 , (4.137)

where the minimum is found by varying φs. One typically finds φs ∼ 180 to
250 degrees. Figure 4.30 shows η vs. β.

Knowing η, (4.76) allows one to evaluate cs (and hence other quantities)
as a function of the angle φ in between the rarefaction wave and the contact
surface as

cs = coQsin
[
sin−1

(
1
Q

)
−

√
γ − 1
γ + 1

(φ + η)
]

. (4.138)
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Fig. 4.30. The angle of rarefaction produced by oblique interface turns out to
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At the contact surface, this gives an equation for χ, in terms of the sound
speed cend there:

χ + η =
√

γ + 1
γ − 1

[
sin−1

(
1
Q

)
− sin−1

(
cend/ca

Q

)]
, (4.139)

where the fact that the pressure in the rarefaction at the contact surface
equals pd gives

cend

ca
=

(
pd

pa

)(γ−1)/(2γ)

=
(

ρc

ρb

sin2(β + α)
sin2β

)(γ−1)/(2γ)

. (4.140)

Thus, (4.139) gives χ as a function of η (already known as described above)
and α. Equation (4.127) still gives χ as a function of α. This allows one to
obtain numerically a solution for α and χ.

This completes our description of the shock at an oblique interface. When
we consider rippled interfaces in Chap. 5, we will work with the small-angle
limits of the above equations.



5 Hydrodynamic Instabilities

Our discussion of the previous chapter focused on one-dimensional phenom-
ena, in which a physical system was structured as a function of linear or radial
distance, but by assumption was not structured in the other two dimensions.
Common experience tells us that this will rarely be a good assumption. We
see turbulent clouds and whirlwinds in the air and complex eddies in wa-
ter. We know of three-dimensional turbulent motions within the Earth and
within the Sun. For that matter, if we focus our attention, we can see amaz-
ing hydrodynamic phenomena every day in the bathroom sink. We know that
one can save fuel in cars and in airplanes by careful design that reduces the
energy delivered to turbulence in the air. In fact, our experiences and com-
mon knowledge would lead us to conclude that hydrodynamic fluids are more
often than not unstable and turbulent in some sense.

We might suppose, however, that all such effects are well understood,
because they have been studied in depth for more than a century. Surely
a series of brilliant humans, armed with modern mathematics and, more
recently, with powerful computers, working with phenomena that can very
readily be observed in nature or produced in laboratories, will have come
to understand this subject thoroughly. As it happens, this is not true. One
could nominate hydrodynamic instabilities and turbulence for an award in
the category of area of physics in which the least fundamental progress has
been made during the last century. There are, of course, positive outcomes
of the effort in this area. Much has been learned, much is being learned, and
what has been learned has often had real practical importance far beyond
any direct impact of the quest for the next quark. But one still must wonder
why this has been so difficult.

Much of the answer to this question can be found by contemplating the
first Euler equation – the continuity equation. This equation contains the
divergence of the product ρu, which makes it a nonlinear equation. It often
proves feasible in physics to deal with nonlinear terms in physical equations by
assuming that one of the variables is constant or by linearizing both variables.
Indeed, these approaches will provide some insight into the fundamental hy-
drodynamic instabilities as this chapter develops. In some physical systems,
the nonlinear terms drive waves that saturate themselves in ways that do
not affect the global dynamics of the system. In hydrodynamic systems, the
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variations in both density and velocity often become large and structured in
comparison with the initial values. The resulting dynamics are not tractable.
Even computer simulations cannot follow all of the behavior, as the finite size
of computer memory and run time imposes significant limits on the resolution
with which one can examine the dynamics.

Even so, gaining some understanding of hydrodynamic instabilities is fea-
sible. In particular, one can identify various circumstances that produce un-
stable behavior; these give us the instabilities with well-known names. One
can use linearized theory to evaluate the initial growth rate of the instabilities
when their amplitudes are small. We will pursue this for some instabilities
that are important to high-energy-density physics. The cases we will examine
all involve modulations of a system in only two dimensions. This is where one
finds the strong effects that tend to initiate the growth of unstable structures
in real fluids. As the modulations grow, they proceed to develop structure in
the third dimension, which sometimes sets the stage for secondary instabil-
ities that involve modulations of a system in three dimensions. In contrast
to the two-dimensional instabilities, which are few and ubiquitous, the three-
dimensional instabilities tend to be specific to a given detailed geometry. We
will leave their details to the specialized literature, but we will discuss their
consequence, which is a state of the fluid known as hydrodynamic turbulence.

We are about to begin, but first we have to consider some sad news. The
fluids of interest to us are compressible. They respond to pressure gradi-
ents in part by compressing. So our strong preference would be to analyze
potential instabilities for compressible fluids. Unfortunately, the mathemat-
ics involving compression rapidly becomes too complicated, making analytic
theories of limited use. Most practical studies of instabilities in compressible
systems involve hydrodynamic simulations, which can handle the compression
and perhaps even the nonlinear evolution of the instability. In applications,
this nonlinear evolution is often of most interest. In much of this chapter
we consider first the incompressible theory to develop some intuition for the
processes and to get a first estimate of their growth rates. Fortunately, the
incompressible theory has worked out better than one might have feared.
The instabilities in compressible systems behave very much like the incom-
pressible theory would suggest. One possible reason for this is that unstable
fluctuations that do not compress the fluid often grow faster than those that
do, perhaps because they spend no energy on compression. A caution for
applications of the incompressible results is that rarefactions in compressible
systems can stretch the unstable structures, creating the illusion of larger
unstable growth.

5.1 Introduction to the Rayleigh–Taylor Instability

The Rayleigh-Taylor instability causes the interpenetration of fluid regions
having different density. Figure 5.1 shows an example. These fluid regions
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may be two different materials, divided by an interface, or the same material
at two different average densities, with a density gradient between the regions.
The instability, which we will designate as the RT instability, is often said to
occur whenever a less-dense fluid supports a more-dense fluid against gravity.
A first generalization of this condition is to say that the RT instability occurs
whenever fluid regions that differ in density experience a pressure gradient
that opposes the density gradient. A second and broader generalization of
this condition is to say that an entropy mode occurs whenever the entropy
gradient is parallel to the pressure gradient (see Sect. 5.3).

Fig. 5.1. Growth and saturation of the Rayleigh–Taylor instability, observed by
acceleration of two fluids in a test facility. Credit: University of Arizona, Jeff Jacobs.

5.1.1 Buoyancy as a Driving Force

We will focus here primarily on the condition of opposed pressure and density
gradients. This condition is perhaps too general to be immediately clear,
but this is necessary to cover most cases of interest in high-energy-density
physics. When this condition for instability is satisfied, the system can reduce
its potential energy through the interpenetration of the two fluid regions. Our
approach to this instability will be to begin with some simple analysis for the
sake of improving our intuition about both buoyancy and acceleration. Then
we will proceed in the next section with a formal derivation of the unstable
behavior.

We begin with bubbles. We know that bubbles of air rise in water, and
can define analogies in other fluids. We can understand the upward force on
the bubble, as Archimedes did, by thinking about the force required to insert
the bubble into the water, thereby lifting the water surface. But this does
not give us any understanding of what really goes on in the bubble. So it is
natural to ask why, in detail, a bubble experiences a net upward force. We
could begin to think about this by considering the fluid momentum equation
in a fluid without viscosity,

ρ
∂

∂t
u + ρu · ∇u = −∇p −∇Ψ, (5.1)
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in which Ψ is the potential, equal to
∫

ρgdz for gravity. (We ignore surface
tension here, although that would not be justified for air bubbles in water.)
In steady state, the gradients of pressure and gravitational potential balance
one another, and indeed we often determine the pressure at some point by
thinking about the weight of the fluid above it. If we think only in the vertical
direction, it would seem that any distribution of matter could come to an
equilibrium, with as much pressure as is needed to balance gravity. Then
there would be no buoyancy (and no Rayleigh–Taylor instability either).

In a structured fluid under gravity, the weight of the matter above vari-
ous points will vary. If this determined the local pressure, then there would
be lateral pressure gradients in the fluid. But the fluid cannot sustain such
gradients. In a compressible fluid they would be relaxed through compres-
sion and sound waves. In the limit that the fluid becomes incompressible,
the pressure is instantaneously constant along surfaces of constant potential
energy (i.e., at the same height in a gravitational potential). This implies
that the pressure is determined by the average of the weight of the matter
above any such surface. In mathematical terms, if z defines an axis parallel
to the direction of the potential gradient, then

p =
1
A

∫
A

∫ zmax

z

−∂Ψ

∂z
dzdA =

−1
A

∫
A

∫ zmax

z

ρ(z, x, y)gdzdA, (5.2)

in which the area of the fluid over the (x, y) plane is A and zmax is a height
beyond which there is no influence on the location of interest, and the right-
most expression is specific to mass in a gravitational field. The corresponding
term in (5.1) is

−dp

dz
=

1
A

∫
A

∂Ψ

∂z
dA =

1
A

∫
A

ρ(z, x, y)gdA = ρg, (5.3)

which defines the average density as ρ. For the simple gravitational case, we
thus have

ρ
∂

∂t
u + ρu · ∇u = (ρ − ρ)g. (5.4)

Now we can see that the bubble, having ρ < ρ, experiences an upward force.
Also we see that the remaining fluid experiences a downward force. This
corresponds to the settling that must occur as the bubble moves higher. For
a small bubble in a fluid of density ρ2, ρ ≈ ρ2, and by integrating over
the bubble volume V one finds the standard result that the upward force is
(ρ2 − ρ)V . At this point we understand in detail why the bubble rises. To
understand the dynamics of the bubble as an entity, we would also have to
consider the work involved in displacing the fluid above the bubble and any
other forces such as surface tension. But (5.4) takes us far enough to address
RT instabilities, so we stop here for now.

The standard simple example of an RT instability is the evolution of a
system in which a denser fluid, such as water, is initially oriented above a



5.1 Introduction to the Rayleigh–Taylor Instability 173

less dense fluid, such as oil, in a gravitational field (whose direction defines
“above“). A standard demonstration uses a jar filled with oil and water, which
is quickly yet smoothly inverted. One can also find toys or desktop knick-
knacks that display the resulting dynamics. (For such demonstrations it does
matter that the motion which inverts the two fluids does not cause a change
of state of the fluid. Thus, one may observe that dark beer is less dense than
amber beer, but the attempt to invert a glass containing these two unmixed
fluids is likely to have comic consequences unrelated to RT.) Returning to our
reference situation, first note that the pressure increases toward the bottom of
this structure, because of the weight of the fluid above it. Thus, the pressure
gradient is downward. Second, by assumption the density gradient is upward.
Within any ripple at the interface between the two fluids, the less dense fluid
will feel an upward force while the more dense fluid will feel a downward
force. The result is that small ripples of the interface, always present because
of thermal noise, will grow. The comparison with the case of the bubble
makes it seem natural to describe the region of less-dense, rising fluid as the
bubble. This is standard jargon in discussions of RT. The denser material that
penetrates into the less dense fluid is known as the spike.

Homework 5.1

Consider a system with water above oil as just described. Suppose there is an
small, sinusoidal ripple on the surface. Find the vertical profile of the force
density between the lower and upper boundaries of the ripple for a region of
denser fluid and for a region of less-dense fluid. Discuss the comparison of
the two fluids and the shape of the force density profile.

The cases that arise in high-energy-density physics rarely involve gravity
as such. Instead, they tend to involve a low-density fluid that is pushing
against a higher density fluid, causing the acceleration or deceleration of the
higher density fluid. One example is that of hot air beginning to rise against
cooler, higher density air. An analogous case is that of a pulsar wind (a very
high temperature yet low-density fluid of positrons and electrons) accelerating
the denser matter surrounding the pulsar ahead of it. A second analogous
case is that of the low-density, laser-heated corona surrounding a laser-fusion
capsule pushing the denser capsule and accelerating it inward. In all these
cases the pressure is higher in the low-density fluid, so there is a pressure
gradient that opposes the density gradient. One way to see intuitively how
the instability works in this case is to realize that the inertia of any fluid will
cause it to resist being accelerated. The denser fluid has more inertia and the
interpenetration of the two fluids allows some of it to lag behind.

There is a counterintuitive aspect to such systems, though. The potential
energy is reduced when the denser fluid “falls” up the pressure gradient. In
the context of fluid dynamics, one tends to think that pressure gradients
cause the acceleration of material down the pressure gradient. This is true in
isolation, but here it is the behavior of each individual fluid parcel relative to
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the average behavior that matters. If one thinks of the position and velocity of
a fluid parcel relative to the position of an accelerating interface, one can see
that more energy must be invested to move ahead of the interface rather than
to stay with the interface, but less energy must be invested to lag behind.
Thus, in the context of a system with a steady, imposed acceleration of an
interface, the potential energy is proportional to the distance material has
moved ahead of the interface. This defines the analog of “up“ in this system.
The less dense fluid will feel a force, relative to the interface position, that is
in the direction of the acceleration, while the denser fluid will feel a force in
the opposite direction, causing it to lag behind.

A mathematically identical situation develops at a decelerating interface
when the densities are reversed. This occurs when denser matter has an initial
velocity, so it is moving into a region of less-dense matter. The compression
and heating of the less-dense matter, perhaps by a shock, establishes a pres-
sure gradient that acts to decelerate the denser matter, thus opposing the
density gradient. Examples occur in the laboratory when a blast wave exits
dense matter into less dense matter, as for example, at the interior surface
of an inertial-fusion capsule. Astrophysical cases abound, for example, at the
head of some astrophysical jets, where the denser material in the jet is deceler-
ated by the less-dense material in front of it. In these cases with a decelerating
interface, less energy is again invested to lag “behind” the interface, though
now this is accomplished by slowing down less than the interface does. Here
the interpenetration of the fluids reduces the potential energy of the matter
relative to that generated by the imposed deceleration of the interface.

Another example of a decelerating interface is found in supernovae. Fig-
ure 4.25 showed the results of a simulation of one particular supernova ex-
plosion (SN1987A). During supernova explosions the blast wave from the
explosion crosses the material interfaces in the star, where the density de-
creases more rapidly. The interface then decelerates, as the blast wave moves
outward and the velocity of the interface decreases (see Sect. 4.4.4). In the
process, a pressure gradient is established (again this is just part of the blast
wave) that points outward, opposing the inward density gradient at the in-
terface. In consequence RT develops at each interface, and in the nonlinear
phase spikes of dense material flow outward through the star. The regions
between the spikes, where less-dense material moves inward are the bubbles.

We can summarize the above mathematically by noting that the natural
frame of reference in which to examine RT growth is that of the interface.
This frame is typically accelerating relative to the frame of the laboratory.
In the frame of the laboratory, the acceleration of the interface might be
written as a = −∇p/ρ. In the frame of the interface, any modulations see
an average “gravitational” acceleration g in the opposite direction. Thus
g = ∇po/ρo, in which the subscript o designates the averaged values. This
completes our introductory contemplation. We now proceed to develop a
mathematical treatment of the linear phase of the RT instability.
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5.1.2 Fundamentals of the Fluid-Dynamics Description

In the present section, we take up the fluid-dynamics description of the RT
instability, in which we consider the behavior of the entire fluid in two di-
mensions. An alternative approach is the interface-dynamics description, in
which one analyzes only the behavior of an interface, ignoring the dynamics
elsewhere. Both are found in the literature. The interface dynamics descrip-
tion, being more limited, can be easier to formulate mathematically. However,
it is a dead-end approach. It does not permit the inclusion of other effects
such as viscosity or density gradients, and it does not generalize to allow for
changing properties of the plasma in the third dimension.

So we proceed with a fluid-dynamics description. We will end up finding
solutions for the RT modulations as surface waves, which are waves whose
influence on the medium decays as one moves away from the surface. We can
analyze the dynamics, using the fluid continuity and momentum equations.
For momentum, we will use (2.27). We take the radiation pressure, the elec-
tromagnetic forces, and the other forces to be negligible, but we will keep the
viscous force to explore the effects of viscosity. For comparison with other
literature, note that surface tension, treated for example in Chandrasekhar
would be one of the other forces in (2.27). We ignore this force because it has
no relevance to high-energy-density systems, which are too hot to allow the
molecular interactions that create it.

We define our fluid such that the initial unperturbed interface is in the
x–y plane. Our approach will be to linearize the fluid equations, so we take
the unperturbed pressure and density to be p = p(z) and ρ = ρ(z), respec-
tively, and we take the first-order perturbations in the same quantities to be
δp(x, y, z) and δρ(x, y, z). We work in a frame in which the interface is at
rest, so the zeroth-order velocity is 0 and we can take the first-order velocity
to be u(x, y, z). We assume the fluctuations to be incompressible, noting as
discussed above that this may not require that the fluid itself is incompress-
ible. This assumption is expressed as ∇ · u = 0, so the continuity equation
becomes convective:

∂δρ

∂t
+ u · ∇ρ = 0, (5.5)

and with our assumptions the linearized momentum equation becomes

ρ
∂u

∂t
= −∇δp + ∇ · σν − gδρẑ, (5.6)

in which ẑ is a unit vector in the z direction and the effective gravitational
acceleration, in a (noninertial) frame of reference in which the interface is
at rest, is g. This can be tricky to apply, as one may be inclined to assume
that g is in the direction of the acceleration in the frame of reference of
the laboratory. However, in the frame of reference of the interface, g points
toward the region of higher pressure, for reasons discussed at the end of the
previous subsection. Here as in Chap. 2 the viscosity tensor is given by σν ,
with elements
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σνij = ρν

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
+ ζδij

∂uk

∂xk
, (5.7)

in which y and z are x2 and x3, respectively, one sums over repeated indices,
and δij is the Kronecker delta function. Here the kinematic viscosity is ν
and the second coefficient of viscosity, which is not important here, is δ.
The term involving the viscosity tensor simplifies considerably (and the term
involving ζ vanishes), because ∂ui/∂xi = 0 from incompressibility. Also, it
is consistent with our assumptions that the only nonzero derivative of ν is
dν/dz(= dν/dx3). With these observations and assumptions, one has for the
k component of ∇ · σν ,

∇ · σν

)
k

= ρν∇2uk +
∂(ρν)
∂x3

(
∂uk

∂x3
+

∂u3

∂xk

)
. (5.8)

There are three very distinct directions in this problem, which are the
direction of gravity, the direction of the wavevector of a surface modulation,
and the direction perpendicular to these two. We will assume throughout that
the mean surface is perpendicular to the pressure gradient. We further assume
the surface modulations to be plane waves, expecting to express any actual
surface modulation as a sum over all the possible plane waves, which form
a complete basis set. Our goal is to find the evolution of an arbitrary plane
wave, assuming that it grows in time from a very small initial amplitude. We
define u as u = (u, v, w), which allows us to write the components of (5.6),
the incompressibility condition, and (5.5) as

ρ
∂u

∂t
= − ∂

∂x
δp + ρν∇2u +

∂(ρν)
∂z

(
∂u

∂z
+

∂w

∂x

)
, (5.9)

ρ
∂v

∂t
= − ∂

∂y
δp + ρν∇2v +

∂(ρν)
∂z

(
∂v

∂z
+

∂w

∂y

)
, (5.10)

ρ
∂w

∂t
= − ∂

∂z
δp + ρν∇2w +

∂(ρν)
∂z

(
2
∂w

∂z

)
− gδρ, (5.11)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, and (5.12)

∂

∂t
δρ = −w

∂ρ

∂z
. (5.13)

This is the set of equations that describes the linear phase of the RT in-
stability, including effects of viscosity or density gradients. We look for
waves that represent growing modulations of the surface, and thus in general
will have amplitudes with an unknown variation in z but proportional to
exp (ikxx + ikyy + nt) in x, y, and time t. Here kx and ky are the x and y
components of the wavevector (which we could have chosen to lie along one
of these axes) and n is the exponential growth rate. With these substitutions,
we get a new equation set:
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ρun = −ikxδp + ρν

(
∂2

∂z2
− k2

)
u +

∂(ρν)
∂z

(
∂u

∂z
+ ikxw

)
, (5.14)

ρvn = −ikyδp + ρν

(
∂2

∂z2
− k2

)
v +

∂(ρν)
∂z

(
∂v

∂z
+ ikyw

)
, (5.15)

ρwn = − ∂

∂z
δp + ρν

(
∂2

∂z2
− k2

)
w +

∂(ρν)
∂z

(
2
∂w

∂z

)
− gδρ, (5.16)

ikxu + ikyv = −∂w

∂z
, and (5.17)

nδρ = −w
∂ρ

∂z
. (5.18)

in which k2 = k2
x + k2

y.
We can reduce these equations from five to two through the following

steps. Multiply the first by −ikx and the second by−iky, then add the first
two equations and use the fourth equation to simplify them. Also use the
fifth equation to eliminate δρ from the third equation. This gives us

ρn
∂w

∂z
= −k2δp + ρν

(
∂2

∂z2
− k2

)
∂w

∂z
+

∂(ρν)
∂z

(
∂2

∂z2
+ k2

)
w and (5.19)

ρwn = − ∂

∂z
δp + ρν

(
∂2

∂z2
− k2

)
w +

∂(ρν)
∂z

(
2
∂w

∂z

)
+ w

g

n

∂ρ

∂z
. (5.20)

Recalling that ν(z) and ρ(z) are given as properties of the unperturbed
system, we can see that we need only to eliminate δp to have an equation for
w in terms of known parameters. Doing this, we obtain

∂

∂z

[
−ρn

∂w

∂z
+ ρν

(
∂2

∂z2
− k2

)
∂w

∂z
+

∂(ρν)
∂z

(
∂2

∂z2
+ k2

)
w

]

= k2

[
−ρnw + ρν

(
∂2

∂z2
− k2

)
w +

∂(ρν)
∂z

(
2
∂w

∂z

)
+ w

g

n

∂ρ

∂z

]
.

(5.21)

This equation, along with the previous ones and boundary conditions, pro-
vides the tools we need to investigate RT growth rates in the linear regime.
They apply within the fluid on each side of an interface.

The boundary conditions play an essential role in these instability calcula-
tions, justifying some effort to develop them. (In contrast, in a linear theory
we are not particularly concerned with initial conditions.) A first obvious
condition is that the fluids must remain in contact. This requires that w be
continuous across the interface. We can integrate or subtract the fundamental
equations across a boundary to find additional conditions. The integration is
similar to the analysis we did in Chap. 4 when considering shock transitions,
although the functions involved are more complex. It is worth pursing now,
as we will need to use the results.
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Consider the interface to be at z = 0, with regions designated by the
subscript 2 at z > 0 and by the subscript 1 at z < 0. Suppose that q(z)
is an arbitrary function that is continuous and differentiable everywhere.
Suppose f(z) and h(z) are arbitrary functions that are continuous and dif-
ferentiable everywhere except at the interface, so we can write, for example,
f(z) = f1(z)H(−z) + f2(z)H(z), in which H(z) is a Heavyside step func-
tion, equal to zero for z < 0 and to 1 for z > 0, and f1 and f2 are con-
tinuous, differentiable functions. The derivative of f(z), g(z) = df/dz, can
be written g(z) = g1(z)H(−z) + g2(z)H(z) + ∆fδ(z), in which δ(z) is the
Dirac delta function, g1 and g2 are continuous, differentiable functions, and
∆f = f2(0)−f1(0). We then take the limit of the integral over a small region
about the interface, as the width of the region goes to zero. Evidently this
will give zero unless the argument of the integrand includes a delta function.
Specifically

lim
ε→0

∫ ε

−ε

f(z)dz = lim
ε→0

[εf2(ε/2) − εf1(ε/2)] = 0,

lim
ε→0

∫ ε

−ε

(∂f(z)/∂z)dz = f2(0) − f1(0),

lim
ε→0

∫ ε

−ε

(∂2q(z)/∂z2)dz = lim
ε→0

[
∂q2

∂z
− ∂q1

∂z

]
=

[
∂q2

∂z
− ∂q1

∂z

]
z=0

,

lim
ε→0

∫ ε

−ε

q(z)
∂f(z)

∂z
dz = qs(f2 − f1)z=0 + lim

ε→0

∫ ε

−ε

ε
∂q

∂z

∂f

∂z
dz

= qs(f2 − f1)z=0,

lim
ε→0

∫ ε

−ε

f(z)
∂q(z)
∂z

dz = qs(f2 − f1)z=0 − lim
ε→0

∫ ε

−ε

q(z)
∂f

∂z
dz = 0, and

lim
ε→0

∫ ε

−ε

∂f(z)
∂z

h(z)dz = lim
ε→0

∫ ε

−ε

∆fδ(z) (h1(z)H(−z) + h2(z)H(z)) dz

= (f2(0) − f1(0))
(

h1(0) + h2(0)
2

)
.

(5.22)
Here the subscript z = 0 indicates that the quantities should be evaluated as
the interface is approached. Just as in the case of shock waves, the interface
may be treated as a mathematical discontinuity, although in microscopic
reality all physical quantities and their derivatives vary continuously across
the interface.
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Homework 5.2

The final relation in (5.22) is significant for our specific application, in which
one needs to integrate, across an interface, equations that contain discontinu-
ous quantities along with derivatives of discontinuous quantities. By treating
the delta function and the step function as limits of appropriate functions
(see a mathematical methods book), prove this relation.

Applying the relations of (5.22) to (5.19) and (5.20), realizing that w is
continuous across the interface and that all derivatives of w in z are contin-
uous and bounded as one approaches the interface, we find

0 =
[
ρ2ν2

(
∂2

∂z2
+ k2

)
w2 − ρ1ν1

(
∂2

∂z2
+ k2

)
w1

]
z=0

and (5.23)

0 = −(δp2 − δp1)z=0 +
[
2 (ρ2ν2 − ρ1ν1)

∂w1

∂z

]
z=0

+ wo
g

n
(ρ2 − ρ1)z=0,

(5.24)
in which we have used wo to designate the common value of w at the inter-
face. The second of these equations in particular is essential to the analysis of
RT, but this requires that we eliminate the pressure difference to obtain an
equation involving only one unknown function. We can obtain another con-
dition for the pressure, by subtracting (5.19) from itself across the boundary
to find

k2(δp2 − δp1)

= ρ2

[
−n + ν2

(
∂2

∂z2
− k2

)]
∂w2

∂z
+ ρ1

[
n − ν1

(
∂2

∂z2
− k2

)]
∂w1

∂z

+
∂(ρ2ν2)

∂z

(
∂2

∂z2
+ k2

)
w2 −

∂(ρ1ν1)
∂z

(
∂2

∂z2
+ k2

)
w1, (5.25)

and then combining this with (5.24) to eliminate the pressure. (We henceforth
drop the notation “z = 0”, realizing that in such boundary conditions all
quantities are evaluated as z approaches the boundary from within the fluid
designated by the subscript.) After using (5.23) to eliminate two terms, this
gives a usable, if complex, boundary condition,

wok
2 g

n
(ρ2 − ρ1) + k2

[
2 (ρ2ν2 − ρ1ν1)

∂w1

∂z

]

= ρ2

[
−n + ν2

(
∂2

∂z2
− k2

)]
∂w2

∂z
− ρ1

[
−n + ν1

(
∂2

∂z2
− k2

)]
∂w1

∂z
.(5.26)

For problems in which we include finite viscosity, a final boundary con-
dition is that the first derivative of w, ∂w/∂z, must be continuous across the
interface, as must the other derivatives of u. The microscopic interactions of
the particles that create viscosity assure this. (In contrast, when we neglect
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viscosity in a fluid model, we allow locally discontinuous solutions like those
we found for shocks.)

In many hydrodynamic circumstances the pressure is continuous across an
interface. The is certainly the case across interfaces in steady motion, but it
is not necessarily the case in unstable, accelerating systems, as (5.24) shows.
However, in this case the xz and yz components of the viscous stress tensor
are continuous. One has

σxz = ρν

(
∂u

∂z
+

∂w

∂x

)
= ρν

(
∂u

∂z
+ ikxw

)

σyz = ρν

(
∂v

∂z
+

∂w

∂y

)
= ρν

(
∂v

∂z
+ ikyw

)
, which implies

(5.27)

ikxσxz + ikyσyz = ρν

[
∂

∂z
(ikxu + ikyv) − k2w

]
= −ρν

(
∂2

∂z2
+ k2

)
w.

(5.28)
This quantity is continuous across the interface, as one can also see from (5.23).

Thus, the boundary conditions we have to work with are (5.23), (5.26),
the continuity of w across the boundary, any additional constraints imposed
by the geometry of the problem, and for viscous flows the continuity of ∂w/∂z
across the boundary.

5.2 Applications of the Linear Theory
of the Rayleigh–Taylor Instability

At this point we have the tools we need to address various cases. We now
proceed to consider three basic applications of the theory developed in the
previous section. We begin with the simple case of an interface separating
two fluids of different density. We then discuss the effects of viscosity on
the instability. This is important for example in the atmosphere. It seems
that it might not matter for high-energy-density systems, which have large
Reynolds number (see Chap. 2). However, viscosity can play a role in such
systems in altering the growth of small-scale structures. After that, we turn
to the impact of density gradients, which are important in many applicaitons.

5.2.1 Rayleigh–Taylor Instability with Two Uniform Fluids

The simplest case is that of two uniform fluids with a boundary at z = 0 and
with no viscosity. Equation (5.21) then becomes

∂

∂z

[
−ρn

∂w

∂z

]
= k2

[
−ρnw + w

g

n

∂ρ

∂z

]
, (5.29)

in which ∂ρ/∂z also equals zero for the uniform fluids. This then simplifies
for uniform density in each region to
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∂2w

∂z2
= k2w. (5.30)

Since the fluid must be undisturbed at sufficiently large distances, so as
w → ±∞, the solutions are

w1 = woe
kz for z < 0

w2 = woe
−kz for z > 0,

(5.31)

where wo is the same in both solutions because w must be continuous at the
interface (to avoid the creating of voids or the accumulation of matter). Here
we have defined fluid 1 as the region below the interface and fluid 2 as the
region above it, by using subscripts on w. Our primary differential equation
has thus given us the profiles but not the growth rate. To find this, we use
the boundary condition (5.26) to find

wo
g

n
(ρ2 − ρ1) =

n

k2
(ρ2 + ρ1)kwo, from which (5.32)

no =
√

ρ2 − ρ1

ρ2 + ρ1
kg =

√
Ankg (5.33)

in which we have labeled the growth rate for this case as no and defined the
Atwood number, An = (ρ2 − ρ1)/(ρ2 + ρ1), which varies from −1 to 1 and
measures how strong the density jump is at an interface. When An is negative,
meaning that the denser fluid is already “below“ the less dense one, then in
the simple limit of (5.33) no is purely imaginary and the modulations oscillate
but do not grow. (If we included finite viscosity such modulations would
damp, as is discussed at length in Chandrasekhar.) Equation (5.33) gives the
simplest result for the RT growth rate, and for this reason is often referred
to as the “classical“ RT growth rate. (Thus continuing the flagrant abuse
of the term “classical“ throughout physics.) This growth rate no provides a
reference for the growth in more-complicated systems. Adding complications
tends to reduce this growth rate below no.

Homework 5.3

Find the solution for the velocity profiles and the growth rate for the RT
instability for two uniform, constant density fluids that are confined by two
planar surfaces each a distance d from the interface, which is accelerated at
constant g.

Before considering complications, it is worthwhile to point out how RT
inherently provides circumstances that may lead to further instabilities. Sup-
pose that the wavevector points in the x direction, so that k = kx. Then in
the light the solution given by (5.31), (5.17) implies iu1 = wo and u2 = −u1.
The first of these relations implies that u and w are out of phase spatially.
The second implies that there is shear flow across the interface. Figure 5.2
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Fig. 5.2. Shear flow induced by Rayleigh-Taylor. The arrows show the location and
direction of the maxima in the velocity perpendicular to the interface and along
the interface. The amplitude shown is nonlinearly large. In the linear limit, u is
horizontal to first order

illustrates this. Material must flow along the interface to provide the mass
that penetrates across the original interface. Correspondingly, the material
must flow in opposite directions on the two sides of the interface. This shear
flow provides the potential for growth of the Kelvin–Helmholtz instability,
discussed later in the chapter.

5.2.2 Effects of Viscosity on the Rayleigh–Taylor Instability

As a first example of a complication that reduces the RT growth rate, con-
sider the effects of viscosity. (We leave to the specialized literature the effects
of mass diffusion due to binary collisions, which complement viscosity and
further reduce the RT growth rate.) As a preliminary exploration, let us as-
sume that the viscosities on the two sides of the interface are nonzero, and
that the densities on the two sides of the interface are different in magnitude,
but that the densities and viscosities are both otherwise uniform in space. In
this case, (5.21) becomes

[
−n + ν

(
∂2

∂z2
− k2

)]
∂2w

∂z2
=

[
−nw + ν

(
∂2

∂z2
− k2

)
w

]
k2. (5.34)

This equation has a general solution,

w(z) = C1e
s1z + C2e

−s2z + C3e
kz + C4e

−kz (5.35)

in which si = k
√

1 + n/(k2νi) with i being 1 or 2. To assure that w vanishes
at ±∞, it is clear that C1 and C3 are zero for z > 0 and C2 and C4 are
zero for z < 0. Note that this choice regarding how to satisfy the specific
boundary conditions used here implies that the real parts of k, s1, and s2 are
all positive. This will be an important constraint as we develop our solution.
We have four boundary conditions. These are the continuity of w(z), the
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continuity of ∂w/∂z, (5.23) and (5.26). These with the definition of si give
us

C1 − C2 + C3 − C4 = 0, (5.36)

s1C1 + s2C2 + kC3 + kC4 = 0, (5.37)

n(ρ2C2−ρ1C1)+ρ2ν2k
2 (2C2 + 2C4)−ρ1ν1k

2 (2C1 + 2C3) = 0, and (5.38)

0 =
2Angk2

n
(C1 + C3) − kn (C3(1 − An) + C4(1 + An))

−2k2(kC3 + s1C1)(ν1 − ν2) + 2Ank2(kC3 + s1C1)(ν1 + ν2).
(5.39)

Since we have four equations that are linear in the four amplitudes, we
can write (5.36) to (5.39) as an equation in which a matrix M multiplies
the vector (C1, C2, C3, C4). Then the determinant of M must be zero, which
gives us the following general dispersion relation for this case:

0 = n2
[
2A2

nk − (s2 + s1) + An(s2 − s1)
]

+2k2n [(s2 − s1) + An(2k − (s2 + s1))] [ν2(1 + An) − ν1(1 − An)]

+2
[
k5 − k4(s2 + s1) + k3s1s2

]
[ν2(1 + An) − ν1(1 − An)]2

+Angk [s2(1 − An) + s1(1 + An) − 2k] .

(5.40)

For further discussion here, we will specialize to the case ν1 = ν2 and thus
s1 = s2, obtaining

0 = 2n2
(
A2

nk − s
)

+ 8nA2
nk2ν(k − s) + 8A2

nk3ν2(k − s)2 − 2Angk(k − s).
(5.41)

This equation is deceptively simple, as s depends on n. We could solve for
either variable, but it is most useful to solve for s because s is constrained
to have a positive real part. Substituting for n in in (5.41), we obtain a
fifth-order polynomial for s,

0 = −s5ν2 + s4kν2A2
n + 2s3k2ν2(1 − 2A2

n) + s2k3ν2(6A2
n)

+ s(Angk − k4ν2(1 + 4A2
n)) − Angk2 + A2

nk5ν2. (5.42)

By taking the limit as the viscosity vanishes, one can see from (5.42)
that the growth rate goes to

√
Angk, as it should. While one can solve (5.42)

straightforwardly with a computational mathematics program, it is more use-
ful to first cast it in a nondimensional form. If one compares the terms in
the coefficient of s, it is clear that g corresponds to k3ν2, suggesting that
one uses a normalized wavenumber k̃ = k/(g/ν2)1/3. It is worth noting that
we can write this as k̃ = [(k2ν)/

√
gk]2/3, so one sees that k̃ depends on the

competition between diffusion and growth. Specifically, for a spatial scale of
1/k, k̃ is the 2/3 power of the ratio of the rate of viscous diffusion to the fun-
damental RT growth rate

√
kg. Comparing the third term on the right-hand

side with the sixth term, one sees that s3ν2 here corresponds to g, suggesting
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that one uses a normalized value s̃ = s/(g/ν2)1/3. The corresponding nor-
malization of the growth rate is ñ = n/(g2/ν)1/3. This too can be written
more intuitively, as ñ = (n/

√
kg)(k2ν/

√
kg)1/3, which depends on the growth

rate per unit fundamental RT growth rate times
√

k̃. With these normaliza-
tions, the zero-viscosity growth rate is ñ =

√
Ank̃, and the dispersion relation

becomes

0 = −s̃5 + s̃4A2
nk̃ + 2s̃3k̃2(1 − 2A2

n)

+ 6s̃2A2
nk̃3 + s̃k̃

[
An − k̃3(1 + 4A2

n)
]
− Ank̃2 + A2

nk̃5. (5.43)

This equation provides a universal relation between the normalized growth
rate and the normalized wavenumber, depending only on the value of the
Attwood number. Any root of this equation (for s̃), whose real part is positive,
corresponds to a physical mode, but this mode is only exponentially growing if
�(s) > k. Otherwise the mode is damped. Any roots with nonzero imaginary
parts would correspond to oscillating modes, which might in principle be
growing or damped.

Figure 5.3 shows the non-trivial solutions of (5.43) for s̃. One of the roots
has a positive real part that always exceeds one. This is the exponentially
growing mode. Two of the roots always have negative real parts, and so never
correspond to solutions of this problem. These two roots also have imaginary
parts; the other two are purely real. The final root is negative at small k̃
(small viscosity) but becomes a damped mode as k̃ increases.

Figure 5.4 shows the corresponding values of the normalized growth rate
ñ, for the root corresponding to an exponentially growing mode, for two values
of An. The roots shown in Fig. 5.4 are readily obtained from a computational
mathematics program, but are not algebraically simple. However, it turns out
that a simpler equation captures much of the behavior with high accuracy
except at very small An. The physical basis for this is that the growth will
approach the zero-viscosity value when viscosity is small and that viscous
effects will dominate at high viscosity, so that a solution that joins these two
regimes may work well even through the transition between them. To obtain
such a solution, one can replace s in (5.41) with the value from an expansion
for high viscosity, s ∼ k[1 + n/(2k2ν)]. Making this substitution and solving
the resulting equation produces the much simpler dispersion relation

n =
√

Ankg + k4ν2 − k2ν, (5.44)

which in our dimensionless units becomes

ñ =
√

Ank̃ + k̃4 − k̃2. (5.45)

This solution, originally developed by Hurt, Harlow, and Duff, is shown as
the dashed gray curves in Fig. 5.4.
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Fig. 5.3. Solutions for the spatial decay rate s for the Rayleigh-Taylor instability
with viscosity, for An = 0.5. The real and imaginary part of each root are shown
using the same curve type in both (a) and (b). (a) Real parts. Modes with positive
real parts are physical solutions to the problem considered here. (b) Imaginary parts

Homework 5.4

The discussion above (5.43) shows that ñ = (n/
√

kg)
√

k̃. This would suggest
that it might make more sense to separate the meaning of the axes more
cleanly by using δ̃ = (n/

√
kg) and k̃ = [(k2ν)/

√
gk]2/3 as the two variables.

Recast this equation in terms of these new variables, solve it, and plot the real
roots from k̃ = 0 to 2. Discuss the results and compare them to n =

√
Angk.

Homework 5.5

Derive (5.44) and (5.45) from (5.41). Comment on the nature of the terms
that have been dropped.

It is no surprise that the wavenumber of the mode with the highest growth
rate has a normalized wavenumber that is some fraction of unity. The largest
growth occurs at wavenumbers just smaller than those for which viscosity
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Fig. 5.4. Rayleigh-Taylor instability with viscosity. The black curves show the ac-
tual growth rates. The solid gray curves show the zero-viscosity result, n =

√
Ankg.

The solid gray curves shows the approximation of (5.45). The panels show (a)
An = 1 and (b) An = 0.2

begins to substantially reduce the growth. The wavenumber of maximum
growth is approximately that given by (5.44) and (5.45), from which k̃ =
A

1/3
n /2 or

k =
1
2

(
Ang

ν2

)1/3

(5.46)

at the maximum. The magnitude of the growth rate at this wavenumber is

n =
3
4

√
(Ang)4/3

ν2/3
− (Ang)2/3

4ν1/3
. (5.47)

Another observation from (5.44) and (5.45) is that, although the effect
of viscosity is to reduce the growth rate, viscosity alone can never reduce
it to zero. This makes physical sense, because while the viscosity can re-
sist the flow of fluid and turn some kinetic energy into heat, the system
will still seek its minimum-potential-energy state. Turning to real numbers,
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the viscosity is given in (2.40), and in a very rough estimate has a typi-
cal value ∼ 0.01 cm2/s in high-energy-density experiments. A characteristic
value for g might be (100 km/s)/(10 ns) = 1015 cm2/s. With these assump-
tions, the wavenumber of maximum growth for an RT mode, already well
below

√
Ankg, from (5.46) with An = 0.5, is of order 106 cm−1, so the

wavelength is of order 0.1 µm. In some experiments this wavelength can be
larger, of order 1 µm. Wavelengths shorter than this will experience greatly
reduced RT growth. This will definitely limit the ability of RT and related
mechanisms to produce short-wavelength turbulence. In an astrophysical con-
text, one might have ν ∼ 1020cm2/s and g might be (100 km/s)/(100 years)
∼0.003 cm2/s. In this case, the maximum growth occurs for a wavenumber of
10−15 cm−1, or a wavelength of order 1016 cm ∼ 0.01 light years. Wavelengths
much shorter than this would be in the high-viscosity regime and experience
reduced growth.

5.2.3 Rayleigh–Taylor with Density Gradients
and the Global Mode

Some interfaces are abrupt, and one can design experiments to create abrupt
interfaces at least initially. However, the RT instability occurs in many situa-
tions that have a gradual interface. Indeed, sometimes there is no “interface“
as such but merely an extended density gradient that opposes a pressure
gradient. This is the case, for example, in supernovae. So it is worthwhile to
explore the effects of a density gradient on this instability. Given that the
effects of viscosity are typically small, it is sensible to set ν = 0 for this
calculation. In this case our basic differential equation (5.21) becomes

k2

(
ρn − g

n

∂ρ

∂z

)
w − ∂

∂z

(
nρ

∂w

∂z

)
= 0. (5.48)

Before proceeding to specific cases, it is worthwhile to observe that this
equation has the solution w = woe

−kz for an arbitrary density profile, cor-
responding to a growth rate of n =

√
kg. This mode is known as the global

Rayleigh–Taylor mode, and this growth rate is the largest RT growth rate
that exists (see Bychkov et al.). One might think that this is the end of the
story for RT in density profiles. However, this mode does not always exist be-
cause it may not satisfy the boundary conditions. On the one hand, whenever
a high-pressure region of negligible density is either accelerating or deceler-
ating a fluid layer of some thickness L, the fluid layer will be unstable to
the global RT mode for modes with kL  1. The maximum amplitude of
these modes will be at the free surface where the high pressure is located.
This mode can also be viewed as a generalization of the mode we found in
Sect. 5.2.2 to an arbitrary density profile and to An = 1. On the other hand, if
there is a nonnegligible density on both sides of the interface, then the bound-
ary conditions do not allow the global mode. We consider next such a case
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in which the instability develops somewhere on an extended and continuous
density profile.

We will assume, as a sensible general case, that the density is exponentially
distributed, so that ρ(z) = ρoe

z/L. Thus the density increases with “height“,
defined as the direction opposite the acceleration g in the frame of reference
of the interface. Thus ρ′(z) = ρo/L. Substituting for ρ = ρ(z), (5.48) has the
solution

w = C1 exp
[(√

1 + 4k2L2 − 4gk2L/n2 − 1
) z

2L

]
(5.49)

+ C2 exp
[
−
(√

1 + 4k2L2 − 4gk2L/n2 + 1
) z

2L

]
,

with two constants C1 and C2. Here again these constants respond to the
boundary conditions. If, for example, the unstable zone is confined between
two boundaries, as can happen in the Earth’s atmosphere, then one would
need the amplitude to be zero at these boundaries (though for a linear theory
this would be relevant only to wavelengths of order the distance between
boundaries). Such close boundaries are less common in the systems of interest
to us, so we will take C1 = 0 for z < 0 and C2 = 0 for z > 0, in order to assure
that the perturbation dies out with distance. Then the remaining constants
are of equal magnitude to keep w continuous at the interface.

It is worth focusing on the fact that the notion of an interface is somewhat
artificial in a continuous density profile. The instability might develop at any
location in the profile. The largest fluctuations in the profile, wherever they
may be, will produce large modulations first. Figure 5.5 illustrates the impact
of a single mode in such an environment. The mode is strongest at some
location (about halfway up the figure) and results in the flow of material
both laterally and vertically. Matter flows into the downward moving spikes
and upward moving bubbles. In reality, instabilities are likely to be seeded
throughout the profile, and the entire unstable region is likely to become very
clumpy.

Indeed, the localized modes with k ⊥ ∇p that we consider here are a sub-
set of the possible modes. In a continuous profile the direction of k (and thus
the “surface“ considered) are not restricted to lie in the plane perpendicular
to ∇p, but for a given magnitude of k this direction will correspond to the
direction of largest growth. In addition, one can find plane-wave solutions
to (5.48) in which the growth rate has both real and complex parts. These
correspond to modes that grow while they propagate. Their growth rate is
somewhat smaller than that of the global RT mode.

Homework 5.6

Find the plane-wave solutions in x, y and z to (5.48) and discuss their be-
havior.
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Fig. 5.5. A Rayleigh-Taylor mode on a density gradient. This grayscale repre-
sentation shows a vertically exponential density profile in which there is a density
perturbation due to a single mode

Returning to a localized RT mode in a continuous density profile, we find
the RT growth rate by applying the boundary condition (5.26), noting that
at the chosen interface ρ1 = ρ2 = ρo, so the term involving g in this equation
drops out. Some simple algebra then gives an equation for the growth rate,

0 = n2(1 + 4k2L2) − 4gk2L, (5.50)

with the obvious solution for the growing mode

n =
√

gk

√
4kL

1 + 4k2L2
. (5.51)

The normalized growth rate, n/
√

kg, is plotted against kL in Fig. 5.6. The
growth rate reaches the value for the global mode at kL = 1/2, corresponding
to a wavelength about ten times the density scale length. (For comparison,
Fig. 5.5 shows a mode whose wavelength is about 30% of the density scale
length, so kL ∼ 20). The normalized growth rate is finite but rapidly de-
creasing at small kL, becoming proportional to

√
2kL. If one thinks about a

steadily increasing wavelength in Fig. 5.5, one can see that more mass has
to flow over longer distances as the wavelength increases. On the other hand,
at large enough kL the growth rate goes to

√
g/L, losing all dependence on

k. This is thought to be the relevant limit for many cases in astrophysics. If
we write g = |∇p|/ρ = p/(ρLp), where Lp is the scale length of the pressure
profile, then the growth rate takes a form familiar to astrophysics, becom-
ing (c2

s/γ)/
√

LLp. (There is also a contribution to growth from the pressure
gradient alone in this limit, which we discuss in Sect. 5.3.)

There are cases in which a density gradient exists and may even be expo-
nential, but only over a limited range of densities. A prime example is found
in inertial fusion, at the inner surface of the fusion capsule. Unstable wave-
lengths that are small compared to the density scale length are affected by
the density profile, while wavelengths that are long compared to the density
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Fig. 5.6. Impact of density gradient on Rayleigh-Taylor growth rate. The black
curve shows the result from (5.51). The gray curve shows the approximate relation,√

1/(1 + kL), discussed in the text

scale length tend to respond to the densities at the upper and lower bound-
aries, behaving as though the interface is abrupt. The gray curve in Fig. 5.6,
showing the function

√
1/(1 + kL), is a reasonable compromise to approxi-

mate the behavior under such conditions. It is widely used, as is the similar
approximation

√
An/(1 + AnkL).

Homework 5.7

Consider an exponential density profile that decreases in the direction of the
acceleration, g, as ρ = ρoe

−z/L, and thus is the opposite of the case analyzed
above. Apply the RT instability analysis to find n for this case. Discuss the
results.

5.3 The Convective Instability or the Entropy Mode

The RT instability is in fact a special case, although it is a very important
one. Consider, for example, the behavior of the Earth’s atmosphere near the
surface. The density gradient is negligible in comparison to the temperature
gradient. On a hot day, when the air is hottest and the pressure is greatest
near the surface, a parcel of air that rises slightly will expand to equalize its
pressure. This in turn reduces the density of the parcel and makes it buoyant.
The reverse happens when a parcel of air drops slightly. In short, the air is
unstable to convective motions that will have the net effect of bringing cooler
air down and hotter air up. Cumulus cloud formation is often a diagnostic of
this. This instability is naturally called the convective instability.

The general instability of which the convective instability and the RT in-
stability are special cases is the entropy mode. The instability occurs when
∇s · ∇p > 0, where once again s is the specific entropy. This condition is
known as the Schwarzchild stability criterion in the Western literature. When
∇s ·∇p < 0 the fluid supports stable, oscillating waves. The Rayleigh-Taylor
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instability is all that remains in the fully incompressible limit. The condition
∇s · ∇p > 0 can be reduced to ∇ρ · ∇p < 0 by recalling that the specific
entropy s can be expressed as so +cV ln(p/ργ) and that in the incompressible
limit γ → ∞. The more general condition allows for the possibility described
above that a fluid parcel may expand or contract adiabatically as it crosses
the interface, because of the overall pressure gradient. In that case, interpen-
etration of the fluids leads to a reduction in potential energy if ∇s · ∇p > 0
is satisfied. Landau and Lifshitz anticipate this instability in their section
entitled “internal waves in an incompressible fluid.” We can develop a linear
theory of this mode as follows.

We use the same conventions as in Sect. 5.1.2, with s(z) being the initial
entropy profile and δs being the first-order deviation. We also assume that
only the first derivatives of p, ρ, and s are nonzero in the initial state. The
linearized conservation of entropy can be written as

∂

∂t
δs = −u · ∇s. (5.52)

Although we will take the medium to be compressible, we look for fluctua-
tions that involve no compression to simplify the mathematics. There is some
chance that these will be the fastest growing modes, as they invest no energy
in longitudinal compression. Thus

∇ · u = 0. (5.53)

As in the case of Rayleigh–Taylor, we want to consider the motion in the
plane of the interface, so the momentum equation in this accelerating frame
becomes

∂

∂t
u = −1

ρ
∇δp +

∇p

ρ2
δρ. (5.54)

Here we have explicitly written the force introduced by the accelerating frame
in terms of the pressure gradient. Equivalently we could write g = ∇p/ρ.

To solve these equations, we begin by using pressure and entropy as the
thermodynamic variables. Thus

δρ

ρ
=

1
ρ

(
∂ρ

∂s

)
p

δs +
1
ρ

(
∂ρ

∂p

)
s

δp. (5.55)

The second term in this equation is negligible, as δp � ρc2
s, which is necessary

for a linear theory to be valid. This term also introduces no new dependences
in the solution. Thus the momentum equation becomes

∂

∂t
u = −1

ρ
∇δp +

(
∇p

ρ2

∂ρ

∂s

)
p

δs. (5.56)

We look for solutions to this equation of the form exp[nt+ikxx], allowing
for exponential growth and for propagation in some direction perpendicular
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to z, which we designate as x. The y component of u is not affected by
this dynamics, as the right-hand side of (5.56) has no curl. We seek a wave
equation for the fluctuating velocity w as in Sect. 5.1.2. We begin by taking
the dot product of (5.56) with ∇s, to obtain

− ∂2

∂t2
δs = −1

ρ

∂s

∂z

∂

∂z
δp +

(
1
ρ2

∂p

∂z

∂s

∂z

∂ρ

∂s

)
p

δs. (5.57)

The time derivative of this equation, with (5.52) and dividing out the common
factor, gives

n2w = −n

ρ

∂

∂z
δp −

(
1
ρ2

∂p

∂z

∂s

∂z

∂ρ

∂s

)
p

w. (5.58)

Next we use the x component of (5.56) and (5.53) to eliminate δp, finding

δp = −nρ

k2
x

∂w

∂z
. (5.59)

Noting that both w and ρ in this equation have finite derivatives in z, (5.58)
becomes

n2w =
n2

k2
x

∂2w

∂z2
+

n2

ρk2
x

∂ρ

∂z

∂w

∂z
−

(
1
ρ2

∂p

∂z

∂s

∂z

∂ρ

∂s

)
p

w, (5.60)

which is a wave equation

k2
x

(
1 +

ω2
s

n2

)
w − 1

L

∂w

∂z
− ∂2w

∂z2
= 0, (5.61)

where for convenience we have defined 1/L = ∂ ln ρ/∂z and

ω2
s =

(
1
ρ2

∂p

∂z

∂s

∂z

∂ρ

∂s

)
p

. (5.62)

Equation (5.61), in combination with boundary conditions developed as
described above, covers a wide variety of limiting cases. For example, in the
limit as L → ∞, one obtains plane-wave solutions having n2 = −ω2

s sin2 θ,
where θ is the angle between the z axis and k. This is the solution found
in the fluid mechanics text of Landau & Lifshitz, which also covers stable
gravity waves. We will develop these applications further shortly, but first it
is useful to return to the use of p and ρ as the thermodynamic variables, in
which case, using the thermodynamic relation(

∂ρ

∂s

)
p

(
∂s

∂p

)
ρ

= −
(

∂ρ

∂p

)
s

. (5.63)

This allows us to connect several useful forms of ωs as

ω2
s = −1

ρ

∂p

∂z

[
1

ρc2
s

∂p

∂z
− 1

ρ

∂ρ

∂z

]
= −c2

s

γ

[
1

γL2
p

− 1
LpL

]
= −gkp, (5.64)
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in which the third term assumes a polytropic gas, p/Lp = ∂p/∂z, and kp =
|∇p|/(ρc2

s)−(1/L). Note that both L and Lp can be positive or negative. One
sees that a pressure gradient is always destablizing, which is sensible from the
discussion at the beginning of this section, and that a density gradient must
oppose the pressure gradient to be destabilizing. The frequency ωs, when real,
is called the Brunt-V‘̀aisälä buoyancy frequency (see, for example, Tritton).

If we seek a general solution to (5.61), we find

w = C1 exp
[( z

2L

)(√
1 + 4k2

xL2(1 − gkp/n2) − 1
)]

+C2 exp
[(

−z

2L

)(√
1 + 4k2

xL2(1 − gkp/n2) + 1
)]

,

(5.65)

in which C1 and C2 are constants. For L → ∞ and no pressure gradient,
the two terms here are proportional to exp[±kxz], as they should be. Just as
in the above, one needs the boundary condition to find the growth rate. If
one finds the growth rate for the simple case that w → 0 at ±∞, with finite
density and pressure gradients near an interface where the Atwood number
is An, one finds

n2 = gkx

(
2kxL

1 + 4k2
xL2 − A2

n

)[
kpL − A2

n +
√

k2
pL2 + A2

n(1 + 4k2
xL2 − 2kpL)

]
.

(5.66)
This equation includes most of the cases one may encounter in the laboratory
or in astrophysics, with the exception of a density gradient that extends for
a finite distance between two layers of constant density.

Homework 5.8

Carry out this calculation and find (5.66). Then find the limits when (a)
kp → 0 and kxL  1 and (b) when An = 0 and Lp = 0. Compare these with
previous results in the chapter.

Homework 5.9

Work out the linear theory to find an expression for the growth rate for the
case of a density gradient that extends for a finite distance between two layers
of constant density.

5.4 Buoyancy-Drag Models of the Nonlinear
Rayleigh–Taylor State

Once the amplitude of a single-mode RT instability reaches about 10% of
the wavelength of the initial perturbation, nonlinear effects begin to alter the
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rate of growth. For a purely sinusoidal initial condition, the first development
is that harmonics of the imposed wavelength begin to appear as the shape
of the perturbation becomes distorted. This development has been studied
in experiments and may have some relevance to specific applications. Even
so, like the linear phase, the phase when harmonics are important is only
transitory. Eventually the instability develops very elongated bubbles and
spikes. In addition, the impact of Kelvin–Helmholtz processes at the tips of
the bubbles and spikes is to broaden the tips until the interface, expressed
as a function, becomes double-valued. This evolution can be seen in Fig. 5.1.
This phase of the evolution, with elongated bubbles and spikes growing in
time and having broad tips, may last for a significant time. The evolution
during this phase can be thought of as the buoyancy-driven rising of the
bubbles, limited by the drag on their tips. Models that describe this behavior
are known as buoyancy-drag models. We discuss an example here. At present,
more details can be found only in the literature, for example in Oron et al.,
in Dimonte, and in the references these contain.

A buoyancy-drag model describes the velocity of the interface, ui, with
the equation

(ρ1 + ρ2)
dui

dt
= (ρ2 − ρ1) g − Cd

λ
ρ2u

2
i , (5.67)

for densities ρ1 < ρ2 and with λ a “wavelength“ corresponding to the width
of a bubble. This is not quite a simple Newtonian force equation. Here we
focus on the evolution of the bubbles. Similar considerations apply to the
spikes. The contribution of ρ2 on the left-hand side represents the fact that
as the bubbles rise the denser mass must be displaced sideways. This might
not necessarily contribute with a factor of 1 as assumed here. The first term
on the right-hand side gives the buoyancy force causing the bubble to rise.
The second term on the right-hand side gives the drag force that resists the
rise of the bubble. For three-dimensional bubbles, Cd = 2π. The factor of 1/λ
in this term is not genuinely an inverse wavelength. Physically it represents
the ratio of the bubble volume, which contributes to the other two terms, to
the bubble area, which produces the drag.

When (5.67) applies, the bubble will accelerate until the two terms on the
right-hand side balance. This defines the asymptotic bubble velocity,

ui =

√
Angλ

π(1 + An)
, (5.68)

in which we have employed the Atwood number. Defining the bubble height
h as the displacement of the bubble from the mean position of the original
interface, one has ui = dh/dt. In addition, it is reasonable to suppose that
the bubbles have a characteristic shape (see below). One can express this as
a ratio b = h/λ. This gives an equation one can solve for h, finding

h = αBAngt2, (5.69)



5.5 Mode Coupling 195

in which a parameter αB or “alpha bubble” has been introduced, being equal
in this model to [2πb(1 + An)]−1. One can observe the growth of unstable
structures in experiments or simulations to find a value of αB . Typical values
of αB are within a factor of 2 of 0.05. There is much physics in the details that
can be summarized by a certain value of αB , but these are not our concern
here.

Interfaces that are not prepared with a specific initial mode typically have
a broad spectrum of initial modes. Our discussion of RT makes some features
of such systems evident. The initial growth of the unstable modes will be
most rapid for the short-wavelength modes, whose exponential growth rate
is proportional to

√
Ankg. These modes grow faster and also have a smaller

asymptotic velocity from (5.68). Thus, they reach their final velocity first.
As time progresses, larger bubbles reach their final asymptotic velocity, over-
taking and absorbing the smaller bubbles. This process is known as bubble
competition. In what is known as the self-similar regime, the net effect of
bubble competition is that the characteristic shape of the bubbles does re-
main constant as they grow in amplitude. Detailed calculations have shown
that such a self-similar regime is reached, for an initial broadband spectrum
and for constant acceleration. Experiments or other physical systems, how-
ever, may not have a broadband initial spectrum, may remain for a very
long time in a state in which the initial conditions impact the structure, and
may not have truly constant acceleration. As a result, the bubble-competition
viewpoint and (5.69) are a useful model but not one that can be assumed to
always apply.

5.5 Mode Coupling

Thus far we have considered the RT modes to be independent of one another,
even in the nonlinear regime. This is consistent with our treatment of the
equations in Sect. 5.1.2. Indeed, it is implied by these equations, because we
began by linearizing them. Linearization amounts to assuming that the modes
do not affect one another, because it is the nonlinear terms that would permit
such effects. From the point of view that the nonlinear terms are small during
the initial phases of RT growth, this is perfectly acceptable. However, as the
modes grow (or if their initial amplitude is not very small), the existing modes
do in fact couple to one another. This produces source terms for modes whose
wave vector is the sum or difference of the wave vectors of existing modes.
The production (or enhancement) of some modes by this process is known as
mode coupling. We explore this here.

The general notion that the beating of two waves can produce sum and
difference modes is a familiar one from general physics, often discussed in
the context of music. In such discussions, it is only sometimes emphasized
that it is the nonlinear terms in the underlying equations that create such
possibilities. In general, such mode coupling can develop in two ways. On the
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one hand, the coupling can occur throughout a volume in which waves are
present. In this case, the equations of continuity and of momentum are key
to describing the interaction of the waves throughout space. Harmonic gen-
eration in music, laser scattering, wave coupling in the ionosphere, and the
interaction of fluctuations in the solar wind all are examples of such volumet-
ric mode coupling. This type of coupling, however, is of limited importance
in RT. On the other hand, the coupling can occur at a surface, where the
requirement that the surface move self-consistently and the other boundary
conditions may include nonlinear terms and introduce mode coupling. Such
a surface is often, but not always, an interface between two regions with
distinct properties.

Let us begin by considering the behavior of such a surface, and return to
the volumetric behavior later. The velocity of a point on a continuous sur-
face is determined by the combination of its local time variation and motion
that propagates to that point from adjacent regions. The requirement for
continuity of the surface can be written

∂xs

∂t
+ u(xs) · ∇xs = us, (5.70)

in which xs is the location of a point on the surface, u(xs) is the fluid
velocity at that point, and us is the velocity of the point on the surface at
xs. Note, for example by reference to Fig. 5.2, that the fluid velocity may
differ substantially from the velocity of the point on the surface.

The important point about (5.70) is that the second term in this equation
is nonlinear. The fluid velocity u includes motion due to all the modes that are
present at the surface, as does the location of the surface xs. This inherently
produces coupling of any two modes present at the surface to drive other
modes. This is known as second-order mode coupling. In more detail, the fact
that u is evaluated at xs and not at an unperturbed, flat, initial interface,
creates finite though weaker coupling at all higher orders. We will not discuss
this aspect here.

To see more clearly what happens in second-order mode coupling at sur-
faces, we can explore mathematically a simple case that an experiment might
attempt. Suppose we have an interface, separating two uniform fluids of dif-
ferent density and negligible viscosity, initially perturbed by some number
of modes of small amplitude. The amplitude of each of these modes is made
to be much larger than that of the other modes. All these other modes have
finite initial amplitudes, at minimum corresponding to variations in the sur-
face location on the atomic scale, but we take these to be negligible. We then
apply and maintain a constant acceleration g to the system, beginning at
some time t = 0.

We know from the differential equation (5.1.25) found in Sect. 5.2.1 that
all the modes decay exponentially in ±z. We can specify the perturbed ve-
locity as a sum over surface fluctuations involving the possible wavevectors
in the x − y plane, km. As we are considering mode coupling, we cannot
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use the usual complex notation without thought, but instead must represent
the physical variables as real quantities. Taking all this into account, we can
write the z-component of the velocity as

w =
∑
m

wm(t)e−skm(z−zs) cosh(ikm · x − iφm), (5.71)

in which φm is the phase of mode m, s is −1 for z > 0 and +1 for z < 0,
wm(t) is its time-dependent amplitude, and zs, also a function of time, is the
location of the surface. It would be mathematically simpler but less intuitive
to absorb the term involving zs into the time-dependent function wm(t). In
addition, the present formulation explicitly shows that the behavior of every
mode is affected by all the other modes, through zs.

Since ∇ ·u = 0 by assumption, the fluctuating velocity along the surface,
u⊥ is given by

u⊥ =
∑
m

um⊥ =
∑
m

wm(t)e−skm(z−zs)(−is) sinh(ikm · x − iφm)k̂m, (5.72)

in which k̂m is a unit vector in the direction of km. Note that um⊥ has
this definite direction, but that the mode having a wave vector of −km is
redundant, as the hyperbolic sine changes sign, compensating for the change
in unit-vector direction. One could attempt to sum over only a half space but
the bookkeeping would become messy. Instead, we will sum over all directions
and realize that the amplitude a measurement would detect is twice that
corresponding to any one term in the sum.

We can express the position of the surface as a sum over the same modes

zs =
∑
m

zm =
∑
m

zm(t) cosh(ikm · x − iφm), (5.73)

in which only some modes have finite initial amplitude at t = 0. If we take
the average initial position of the interface to be at z = 0, then modes with
an initial amplitude small enough to be in the linear regime evolve with
zm(t) ∝ cosh(nmt), where nm is the linear growth rate, and have wm(t) =
nmzm(0) sinh(nmt).

Some further discussion of these initial values is worthwhile. Note that
they involve functions of ±nmt. Although in Sect. 5.2.1 we took n > 0 to
find growing modes, we can observe that the differential equations found
there for an interface separating two uniform fluids are unchanged for n < 0.
Modes with n < 0 decay with time and so are not relevant to the behavior
after a few growth times. However, they may be important to the initial
condition. Examination of our derivation in Sect. 5.2.1 shows that the implicit
initial condition in that section is that of a flat interface on which a velocity
perturbation has been imposed. Such an initial condition is physically sensible
and might be achieved in practice, but is certainly not typical. Much more
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typical is the case of (5.73), in which the interface is initially structured and
the velocity is initially zero.

With these definitions, we can evaluate the z component of (5.70), using
an overdot for the partial derivative in time. This gives∑

m

[żm(t) − wm(t)] cosh(ikm · x − iφm) =
∑

�

u�⊥(t, zs) · ∇
∑

j

zj

=
∑

�

∑
j

w�(t)zj(t)(k̂� · kj)s sinh(ik� · x − iφ�) sinh(ikj · x − iφj),
(5.74)

which becomes, upon expanding the hyperbolic sines and cosines,∑
m

[żm(t) − wm(t)] cos(km · x − φm)

=
s

2

∑
�

∑
j

kjw�(t)zj(t)(k̂� · k̂j)

(5.75)×
(
cos [(k� + kj) · x − (φ� + φj)]

− cos [(k� − kj) · x − (φ� − φj)]
)
.

We want to identify the term in the sum corresponding to any specific
mode m. Each possible combination of two modes � and j shows up four times
in the sum, in consequence of summing over all directions. To be specific, a
sum mode with k = k1 + k2 shows up twice in each term through various
combinations of terms involving ± each wave vector. The redundant mode
with k = −(k1 + k2) also appears four times. The result for any one of
the redundant modes, summing over only one of the two wave vectors, is to
introduce a factor of 2. We get

żm(t) − wm(t) = s
∑

j

kjw�(t)zj(t)(k̂� · k̂j)
∣∣∣∣
km=k�+kj;φm=φ�+φj

−s
∑

j

kjw�(t)zj(t)(k̂� · k̂j)
∣∣∣∣
km=k�−kj;φm=φ�−φj

.

(5.76)

Here the matching condition in wave vector and phase is indicated by the
vertical line following each sum. This designates which terms in the sum are
selected; these are the terms that contribute to mode m. The other terms in
the sum are ignored. (Alternatively, one could devise some more-complicated
notation related to a Kronecker delta function.)

When existing modes are creating new modes by beating together, we
call them the driving modes and call the beat modes the driven modes. A
consequence of the two terms in this equation is that any two driving modes
produce driven modes with wave vectors that are the sum or difference of
their wave vectors. Any two driving modes will produce one term driving a
mode with a larger wave number, said to be upshifted and one term driving
a mode with a smaller wavenumber, said to be downshifted.
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In addition, the phase φm of the driven mode is determined by the phases
of the driving modes. A specific driven mode may already be present at some
amplitude, but how this mode is affected by the driving modes will depend
upon the relative phases. In experiments using initial modes to drive others,
the phases are chosen. Then the phases of the driving modes determine the
phase of the driven mode. In more general circumstances, such as an inertial
fusion capsule, the amplitude of the driven mode might be initially increased,
initially decreased, or gradually become altered in phase through the influ-
ence of the driving modes. Henceforth we will ignore any contributions from
the relative phases, assuming the modes to be in phase. This allows us to
rewrite (5.76), explicitly specifying k� in the argument of z�, as

żm(t) − wm(t) = s
∑

j

zj(t)

(5.77)
×

[
(k̂� · k̂j)w�(t,k� = km − kj) − (k̂� · k̂j)w�(t,k� = kj − km)

]
.

For our purposes, it will suffice to have a second-order expression for wm.
We can obtain one by realizing that wm = żm to first order. To second order
in the mode amplitudes, this gives us

wm(t) = żm(t) + s
∑

j

kjzj(t)
(
k̂� · k̂j

)
[ż�(t,k�) + ż�(t,−k�)]

∣∣∣∣
k�=km−kj

.

(5.78)
For reasons discussed above z�(k�) = z�(−k�), but we leave them sepa-

rate to clarify some of the steps below. We will use this relation in another
boundary condition to find an equation for the overall behavior of the modes.

To make further progress, we now must return to the fundamental dif-
ferential equations. For our special case of constant density, the continuity
equation does not produce any contributions to mode coupling. (This is not
true if there is a density gradient.) The momentum equation under these
assumptions is

ρ
∂

∂t
u + ρu · ∇u = −∇p −∇Ψ, (5.79)

in which Ψ is the gravitational potential, given by Ψ =
∫

ρgdz. Note that
Ψ has a discontinuous derivative at the interface, for our assumptions. The
initial profile of pressure is determined by the initial gravitational potential,
and the gradients of these profiles cancel one another in this equation. This
lets us follow only the variations, δp and δΨ . We can also expand the convec-
tive derivative, using u · ∇u = ρ∇u2

2 − u ×∇× u. This allows us to see, by
taking the curl of the resulting equation, that ∇× u must remain zero if it
is initially zero. Since ∇×u is zero for our initial conditions, (5.79) becomes

ρ
∂

∂t
u + ρ∇u2

2
= −∇δp −∇δΨ. (5.80)
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As an aside, it is worth mentioning that much of the literature takes an
alternative approach to this problem of a stationary, structured interface, by
exploiting the fact that ∇× u, which is known as the vorticity, is zero. The
vorticity corresponds qualitatively to the degree of swirling present in the
motion. The vorticity plays an essential role in the development of hydro-
dynamic turbulence, as is discussed in Sect. 5.8. We show there that, in the
absence of viscosity, vorticity is frozen into the fluid volume. Thus, in this
limit the volumetric vorticity is fixed in time (the vorticity on a surface is
not fixed). Therefore, if one assumes that the fluid is inviscid (which means
that the viscosity is zero) and also is incompressible, then the velocity has
both zero curl and zero divergence for all time. This in turn implies that
the velocity is the gradient of a potential, φv and that this potential satisfies
Laplace’s equation, ∇2φv = 0. Such models are known as potential flow mod-
els, since the flow is described by a potential. In a potential flow model, one
can write the momentum equation (2.3.2), under the present assumptions, as
the gradient of an equation involving the density and gradients of pressure,
velocity potential, and gravitational potential. The resulting equation corre-
sponds to one version of Bernoulli’s equation, which can also be used as a
starting point. The potential-flow approach enables some simpler approaches
to numerical simulation. A drawback is that such a model cannot describe
any system containing actual vorticity and thus cannot follow the onset of
turbulence.

Returning our attention to (5.80), our assumption of uniform density im-
plies that the first term introduces no mode coupling, so that all the mode
coupling enters here through the term involving u2. In addition, we can iden-
tify δΨ as

δΨ = − (ρ2 − ρ1) g [z [H(z) − H(z − zs)] + zsH(z − zs)] , (5.81)

where again H is the Heavyside step function. As in Sect. 5.1.2, (5.80) has
components in the z direction and in the x–y plane, written for example as

ρ
∂

∂t
w + ρ

∂

∂z

u2

2
= − ∂

∂z
δp − ∂

∂z
δΨ, and (5.82)

ρ
∂

∂t
u⊥ + ρ∇⊥

u2

2
= −∇⊥δp, (5.83)

in which ∇⊥ is the gradient in the x–y plane. Our first step in Sect. 5.1.2 was
to take the versions of these equations corresponding to specific assumptions
and to find a single differential equation. The general version of this is left
for homework, but the outcome is that no mode coupling remains in the
differential equation for w. This is the origin of the statement above that
there is no mode coupling in the absence of a density gradient.
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Homework 5.10

By operating on (5.82) and (5.84), create two scalar differential equations
that can be subtracted to eliminate terms involving p. Compare the resulting
differential equation to (5.21) and discuss.

To proceed toward a solution for the behavior with mode coupling, we
proceed as we did above in finding a boundary condition across the interface.
Integrating (5.82) across the interface gives

(δp2 − δp1)zs
= (ρ2 − ρ1) gzs, (5.84)

while operating on (5.83) with ∇⊥, using the incompressibility condition, and
subtracting across the interface gives

−∇2
⊥(δp2− δp1)zs

= − ∂

∂t

(
ρ2

∂w2

∂z
− ρ1

∂w1

∂z

)
+ρ2∇2

⊥
u2

2

2
−ρ1∇2

⊥
u2

1

2
. (5.85)

Here as before the quantities are evaluated as one approaches the interface
from the side designated by the subscript. Together these give

− (ρ2 − ρ1) g∇2
⊥zs = − ∂

∂t

(
ρ2

∂w2

∂z
− ρ1

∂w1

∂z

)
+ρ2∇2

⊥
u2

2

2
−ρ1∇2

⊥
u2

1

2
. (5.86)

In the absence of mode coupling, this gives the standard RT growth rate
as found in Sect. 5.2.1. Mode coupling appears to second order through (5.78)
for wm and through the final two terms (from the convective derivative). One
finds

(ρ2 − ρ1)
2

∇2
⊥

u2

2

∣∣∣∣
m

=
(ρ2 − ρ1)

2
k2

m

∑
j

(
1 − k̂� · k̂j

)
żj

× [ż�(t,k�) + ż�(t,−k�)]
∣∣∣∣
k�=km−kj

.

(5.87)

Now we can use this equation, (5.78), and (5.86) to obtain an equation
for the evolution of a mode on the interface having wave vector k, as

z̈k − Angkmzk = −An

∑
j

kj

[(
k̂� · k̂j

)
zj(t)

[
z̈�(t,k�) (5.88)

+z̈�(t,−k�)
]

+
(
1 + k̂� · k̂j

) żj(t)
2

[ż�(t,k�) + ż�(t,−k�)]
]

k�=k−kj

.

Here again one sees that in the absence of mode coupling, one recovers the
usual RT growth rate. The presence of mode coupling can increase or decrease
the growth of the mode relative to this, depending on the sign of the right-
hand side (and thus on the phases of the modes). The right-hand side must
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be positive to add to the growth of the mode (with the assumed phase). Note
that the sum is over all directions, so that if the term (1 + k̂� · k̂j) is 0 in
one case, it will equal 2 for the opposing mode. The mode-coupling terms
will tend to dominate if kjzjz�/zk  1. If the driving modes are growing
exponentially, the right-hand side will have terms proportional to n2

�e
(n�+nj)t

and n�nje
(n�+nj)t. In this limit, the driven mode will grow in approximately

an exponential way and will have a growth rate larger than that of the driving
modes by approximately kjzjz�/zk. Thus, mode coupling can rapidly bring
the coupled modes up to an amplitude of order kz times that of the driving
modes.

The modes driven as described above then act as driving modes in turn.
In this way, two initial modes can overtime produce a broad spectrum of
modes. These modes will have a sparse spectrum that can be constructed by
taking sums and differences of multiples of the initial wave vectors. In applica-
tions, mode coupling can play a substantial role in creating more complicated
structures at an RT-unstable interface.

5.6 The Kelvin–Helmholtz Instability

The Kelvin–Helmholtz (KH) instability, like Rayleigh-Taylor, is seen fre-
quently in many disparate physical systems. Whenever two fluid regions flow
past one another, with a sufficiently narrow transition region at their mutual
boundary, fluctuations at the boundary are unstable and will grow. The tran-
sition region where the velocity changes quickly in magnitude but remains
along the same axis is known as a shear layer. Figure 5.7 shows an example
of modulations caused by a KH instability. Modulations driven by KH can
routinely be seen in clouds, in flowing water, and in the ripples in the sand
at the beach. They are also observed at shear layers in the magnetosphere.

Fig. 5.7. The structures seen along the upper edges of these clouds were produced
by the Kelvin-Helmholtz instability



5.6 The Kelvin–Helmholtz Instability 203

Throughout astrophysics, there are many systems that produce shear lay-
ers, anytime a flow of material from one object or region passes through or
around another object or region. In addition, the characteristic mushroom
shape that develops at the spike tips in the RT instability is produced by
KH driven by the shear between the spike material and the bubble material.
(See, for example, the simulation results shown in Fig. 4.24) One can see that
this process is so prevalent that it is worthwhile to understand.

5.6.1 Fundamental Equations for Kelvin–Helmholtz Instabilities

The fundamental equations for KH instabilities are similar to those for
Rayleigh-Taylor instabilities, but have differences reflecting the presence of
a nonzero velocity and velocity gradient in the initial, unperturbed state. As
in the case of the Rayleigh-Taylor instability, and for the same reasons, we
will develop the theory for an incompressible fluid. This instability does not
require compressibility to exist. Also, the unstable behavior is not strongly
modified by compressibility, although we will not prove this assertion here.
We consider the system sketched in Fig. 5.8. We assume the shear layer to be
planar and to lie in the x–y-plane, so that the z-direction is perpendicular to
it. We further assume the initial flow, designated by U , to be parallel to the
x-axis, and that the zeroth-order gradients of U and of ρ are parallel to the
z-axis. As in Sect. 5.1.2, we designate the first-order density and pressure per-
turbations by δρ and δp, respectively, and the x, y, and z components of the
first-order velocity perturbation, u, by u, v, and w. With these assumptions
the continuity and momentum equations become

∂δρ

∂t
+ U · ∇δρ + u · ∇ρ = 0, and (5.89)

U(z)

x ∇U

1(z)

2(z)

z

Nominal interface

Fig. 5.8. Geometry for Kelvin–Helmholtz instability calculations. The densities
and velocities may vary with z. The shear layer and velocity gradient may or may
not be localized at the nominal interface
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ρ
∂u

∂t
+ ρU · ∇u + ρu · ∇U = −∇δp − gδρẑ, (5.90)

where once again ẑ is a unit vector in the z direction. In addition, we have
the important additional condition expressed in (5.70) above, which is to first
order

∂δxs

∂t
+ U · ∇δxs = us, (5.91)

in which δxs is the location of a point on the interface relative to its initial
position and us is the velocity of that point. Here xs and us are both first-
order quantities. This equation specifies that the interface must move with the
fluid self-consistently. We will not consider mode coupling for KH instabilities,
but it exists for the same reasons that produce it in RT instabilities. One
specific source is the requirement that the interface remain continuous, as
represented in its full nonlinear form by (5.70).

In writing (5.89) to (5.91), we have ignored surface tension for the reasons
discussed in Sect. 5.1.2. We also have ignored viscosity, for which we have
much less excuse. Viscosity can play a role in KH instabilities at short wave-
length. However, the mathematics turns out to be particularly intractable.
Nonetheless, one aspect of the influence of viscosity can be accounted for
using the above equations. Viscous diffusion of momentum causes the tran-
sition region in any initially abrupt shear layer to develop a scale length of√

νt. This stabilizes the KH instability for the shortest wavelengths, and the
maximum wavelength that is stabilized increases with time. We consider the
effect of an extended shear layer below in Sect. 5.6.3.

It is helpful to express (5.89) through (5.91) as equations for the com-
ponents, and to write out the incompressibility condition, in order to obtain
a set of equations we can solve to see the unstable behavior. These are as
follows:

ρ
∂u

∂t
+ ρU

∂

∂x
u + ρw

∂

∂z
U = − ∂

∂x
δp, (5.92)

ρ
∂v

∂t
+ ρU

∂

∂x
v = − ∂

∂y
δp, (5.93)

ρ
∂w

∂t
+ ρU

∂

∂x
w = − ∂

∂z
δp − gδρ, (5.94)

∂

∂t
δρ + U

∂

∂x
δρ = −w

∂ρ

∂z
, (5.95)

∂δzs

∂t
+ U

∂

∂x
δzs = ws, and (5.96)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (5.97)

Here only the z component of (5.91) is important in a linearized analysis. Note
that all three dimensions matter for KH, unlike simple RT. This is because
three directions – that of the gradients, that of U , and that of k – all matter
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independently. Also note that the sign of gravity is such as to produce a
downward acceleration. We seek surface waves growing exponentially in time,
but possibly also having an oscillatory component, we assume all linearized
amplitudes to be proportional to exp i(kxx + kyy + nt). This differs from our
assumption in the Rayleigh-Taylor problem. Now a growing instability will
be one with negative imaginary n. Our set of equations then becomes

iρ (n + kxU) u + ρw
∂U

∂z
= −ikxδp, (5.98)

iρ (n + kxU) v = −ikyδp, (5.99)

iρ (n + kxU)w = − ∂

∂z
δp − gδρ, (5.100)

i (n + kxU) δρ = −w
∂ρ

∂z
, (5.101)

i (n + kxU) δzs = ws, and (5.102)

ikxu + ikyv = −∂w

∂z
. (5.103)

One sees that five of these six equations involve the term (n + kxU). In a
system with uniform flow, this type of term introduces a Doppler shift into
wave frequencies. Here we have the added complication that U varies with z.
We simplify these equations first by obtaining from (5.98), (5.99), and (5.103)

−ρ (n + kxU)
∂w

∂z
+ ρkxw

∂U

∂z
= −ik2δp, (5.104)

while from (5.100) and (5.101) we find

iρ (n + kxU) w = − ∂

∂z
δp − ig

w

(n + kxU)
∂ρ

∂z
. (5.105)

Eliminating δp from these equations gives a single differential equation for w
in terms of known parameters,

−k2ρ (n + kxU)w+
∂

∂z

[
ρ (n + kxU)

∂w

∂z

]
− ∂

∂z

(
ρkxw

∂U

∂z

)
= g

wk2

(n + kxU)
∂ρ

∂z
.

(5.106)
One can see that this is a second-order equation for w and thus likely to
allow solutions that decay away from the interface, or that combine to satisfy
specific geometric constraints. Chandrasekhar points out that it is worthwhile
to separate out the role of the density in this equation, obtaining

−k2 (n + kxU)w +
∂

∂z

(
(n + kxU)

∂w

∂z
− kxw

∂U

∂z

)

=
1
ρ

∂ρ

∂z

[
g

wk2

(n + kxU)
−

(
(n + kxU)

∂w

∂z
− kxw

∂U

∂z

)]
.

(5.107)
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The right-hand side of this equation can be ignored so long as the scale length
of the density profile, L, is large compared to the perturbation wavelength of
interest and unless the gravitational acceleration is very large (> k2

xU2L).
To develop solutions that involve an interface, we need boundary con-

ditions at the interface. At this point we have incorporated (5.98) through
(5.103) except for (5.102), which gives us one boundary condition as the in-
terface position must be the same when approached from either side. This
implies that w/(n + kxU) is continuous at the interface, so

w2

(n + kxU2)
=

w1

(n + kxU1)
. (5.108)

Here and in the following the subscript 1 or 2 indicates the value found by
approaching the interface from the side designated by the subscript and the
subscript s designates the value of a continuous quantity at the interface. To
find another boundary condition, we can proceed as we did in Sect. 5.1.2. We
integrate (5.105) across the interface, then subtract (5.104) from itself across
the interface so we can eliminate δp. The resulting boundary condition is

gk2

(
w

n + kxU

)
s

(ρ2 − ρ1) = ρ2(n + kxU2)
∂w2

∂z
− ρ1(n + kxU1)

∂w1

∂z

+kx

(
−ρ2w2

∂U2

∂z
+ ρ1w1

∂U1

∂z

)
. (5.109)

We are now prepared to consider specific cases of interest.

5.6.2 Uniform Fluids with a Sharp Boundary

We consider the simplest case first, to determine the most general features of
this process. Consider the two fluids to have uniform densities and uniform
initial flow velocity, U , supposing that the value of these parameters may
change only at an interface. Further assume the gravitational acceleration to
be negligible for now. We then find from (5.107) that

−k2w +
∂2w

∂z2
= 0, (5.110)

so that we have solutions that are a linear combination of terms proportional
to ekz and e−kz, with coefficients that must be set to match the geometric
boundary conditions. We will consider the case with the simplest algebra, in
which the boundary condition is that the disturbance become negligible at
large distances, so that

w = A2e
−kz for z > 0 and w = A1e

kz for z < 0, (5.111)

where (5.108) implies
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A2 = A1
n + kxU2

n + kxU1
. (5.112)

It is convenient to work in a frame of reference corresponding to the
average velocity of the two regions, because the velocity difference is what
drives the instability and because one often knows the velocity difference in
real applications. In this case U2 = ∆U/2 and U1 = −∆U/2. With these
results, (5.109) becomes

0 = ρ2 (n + kxU2)
2 + ρ1 (n + kxU1)

2
, (5.113)

which has the solution for n

n = −kx
An

2
∆U ± ikx∆U

√
ρ1ρ2

(ρ1 + ρ2)
. (5.114)

The real part of n is finite if An �= 0, so that in such cases the wave propagates
along the surface in this frame of reference. The negative imaginary part of n
describes the exponential growth, given our specification of the modulations.
For equal densities one finds the standard and very simple result that the
exponential growth rate is kx∆U/2. (The factor of 2 depends on the definition
of ∆U , which varies among references.)

There are some things worth noticing about the result of (5.114). First,
this process has no minimum wavenumber. Perturbations at all wavelengths
are unstable (until the wavelength approaches the scale of the system, in
which case this calculation becomes invalid). Shorter-wavelength perturba-
tions have more-rapid growth rates. On the one hand, if the initial fluctuations
present at a sharp interface corresponded to broadband noise, one would ex-
pect to see small-scale hair grow first, followed by the evolution of larger
scales. On the other hand, one does not typically see this, which probably
reflects the fact either that the initial fluctuations are larger at some specific
wavelengths or that the shear layer is not indefinitely sharp. Finally, while
the component of k along U determines the growth rate, there is no limita-
tion on the y component of k. Fluctuations whose wave vector makes some
angle with U grow freely, though more slowly than do fluctuations of the
same wavelength for which k is parallel to U .

Homework 5.11

If we take the point of view that the modulations of interest are proportional
to eınt, then we would insist on finding negative imaginary n in order to have
growth of the modulations, as opposed to damping, in time. However, this
should give us pause because the complex representation is only a mathe-
matical convenience while the physical quantities are real. Considering the
real, physical quantities, what is the significance of finding positive or nega-
tive imaginary n. (The chapter in Jackson that introduces waves may be of
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some help regarding the connection of real physical quantities and a complex
representation.)

If we now allow for gravity but change no other assumptions, then (5.110)
through (5.112) remain correct, but now (5.109) gives

−gk(ρ2 − ρ1) = ρ2 (n + kxU2)
2 + ρ1 (n + kxU1)

2
, (5.115)

in which we have divided out a factor of [kw/(n + kxU)]s. The solution for n
now becomes

n = −kx
An

2
∆U ± i

√
k2

x∆U2ρ1ρ2 + gk(ρ2
2 − ρ2

1)
(ρ1 + ρ2)

, (5.116)

in which if the argument of the square root is positive then there is an unstable
root. Our conventions imply that ρ2 is from the “upper” region as defined
relative to the gravitational acceleration. One sees that instability is always
present if the upper density (ρ2) is higher than the lower density (ρ1). In this
case, the KH and RT instabilities work together to produce larger growth.
In contrast, when the lower density exceeds the upper density, this places a
condition on the wavenumber for instability,

k >
g(ρ2

1 − ρ2
2)

∆U2ρ1ρ2cos2θ
. (5.117)

Here θ is defined by cos θ = kx/k. Thus, the RT dynamics at a given k opposes
the instability growth due to KH, but at large enough k the KH instability
dominates and one will see a positive growth rate. When gravity becomes
large enough (and ρ1 > ρ2) the argument of the square root in (5.116) be-
comes negative. Then any modulations of the interface oscillate but do not
grow.

5.6.3 Otherwise Uniform Fluids with a Distributed Shear Layer

The next level of complexity is to assume that the shear layer is not an
instantaneous change in velocity, which at the microscopic level is unphysical
in any case. Realistic problems with shear can become quite complex. As a
first simple problem, we will suppose that the velocity shears but that the
density changes abruptly at an interface. This may be relevant, for example,
to the KH instability at boundaries between two fluids that are incompressible
or that have only slow variations in density. The boundaries created by the
RT instability or at bow shocks may be of this type. We mentioned above
that the minimum width of the shear layer, in a system that has kinematic
viscosity ν and has evolved for time t, is

√
νt.

We assume that the right-hand side of (5.107) is small, because the density
is constant or slowly varying in the sense required. Further assuming the
velocity profile to be given by Us(1 + z/L), we can observe that the terms
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involving ∂U/∂z in this equation cancel out, and that we are left once again
with (5.110), solution 5.2.23, and condition 5.2.24 on the amplitudes. Here,
because there are no boundaries on the flow, L is the distance over which
U changes by Us. Note that this assumption implies working in an inertial
frame for which U = 0 at z = −L and that U1 = U2 = Us so w1 = w2 = ws.
The boundary condition of (5.109) then becomes

Angk2 +
AnkxUs

L
(n + kxUs) + (n + kxUs)2k = 0, (5.118)

which can be solved for n to give

n = −kxUs

(
1 +

An

2kL

)
± i

√
gAnk − A2

nk2
xU2

s

4k2L2
. (5.119)

We see that n has a real part, so these modes oscillate and propagate. For
instability, the argument of the square root must be positive. In particular, an
interface of this type (continuous linear U , discontinuous ρ) is always stable
if the product gAn is zero or negative. Another way to put this is that modes
that perceive the region of velocity shear to be large are stabilized, and here
the shear region is indefinitely large. In the next section, we will see that any
boundaries, no matter how distant, will have the effect of destabilizing modes
whose wavelength is of order the distance between boundaries. In contrast,
when gAn > 0 the interface is unstable so long as

kL >
Ancos2θU2

s

4Lg
. (5.120)

This is a curious result, as the shear in this context acts to stabilize long-
wavelength modes but not short-wavelength ones. Note that the shear acts
to stabilize modes with k along U , but not modes with k perpendicular to
U . If k is aligned with U and the interface decelerates over some distance h
so g ∼ U2

s /h, then modes with wavelength λ > 8πL2/(Anh) are stable.

5.6.4 Uniform Fluids with a Transition Region

The notion of a sharp interface, however, is an approximation, as molecular
diffusion always will mix the materials from the two sides of the interface to
some extent. This is particularly true in high-energy-density physics, where
surface tension does not exist. Unfortunately, when U and ρ both vary, the
solutions become much more complex. We will work out one standard case
here, following Chandrasekhar, and will leave other and more realistic cases
to the specialized literature and to simulations. The geometry of this case
is illustrated in Fig. 5.9. One has two layers of fluid, of density ρ1 and ρ2,
separated by a transition region of width 2L. The velocity of the layers ±Us,
and with a linear velocity profile U(z) = Usz/L connecting them through the
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Fig. 5.9. Geometry for Kelvin Helmholtz instability with a transition region having
uniform density

transition layer. The density of the transition layer is assumed to be constant
and equal to ρo = (ρ1+ρ2)/2. This corresponds to the approximation that the
transition layer is fully mixed, presumably through the action of instabilities
and turbulence. We will designate the lower and upper regions, using the
subscripts 1 and 2, respectively, and the transition region, using the subscript
o.

We now can apply our fundamental analysis to this problem. We have
three distinct regions with two boundaries, and we will once again assume
that the perturbations must vanish at large |z|. Under the assumptions
stated, (5.107) once again reduces to (5.110), ∂2w/∂z2 = k2w, in all three
regions. [The right-hand side of (5.110) is zero and the other derivatives on
the left-hand side cancel one another]. The solutions are w(z) = Ae±kz, with
coefficients chosen so to make w vanish appropriately in the outer regions.
This gives

w = A2e
−kz for z > L,

w = Aoe
−kz + Boe

kz for − L < z < L,

and w = B1e
kz for z < −L.

(5.121)

Thus, we have four unknown amplitudes. Our first boundary condition
(5.108) tells us that w(z) must be continuous at both boundaries, because
U(z) is continuous by assumption. This gives us two equations,

Aoe
2 + Bo − B1 = 0, and (5.122)

Ao + Boe
2 − A2 = 0. (5.123)

Our second boundary condition (5.109) applies at each interface, giving
two more equations,
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0 = B1e
−kL

[
gk2(ρ1 − ρo)
(n − kxUs)

− kρ1(n − kxUs)
]

+ρoBoe
−kL

[
nk −

(
k +

1
L

)
kxUs

]
− ρoAoe

kL

[
nk −

(
k − 1

L

)
kxUs

]
, and

(5.124)

0 = A2e
−kL

[
gk2(ρo − ρ2)
(n + kxUs)

− kρ2(n + kxUs)
]

−ρoBoe
kL

[
nk +

(
k − 1

L

)
kxUs

]
+ ρoAoe

−kL

[
nk +

(
k +

1
L

)
kxUs

]
.

(5.125)
As before, we can express (5.122) through (5.125) as the product of a

matrix and the vector of coefficients (B1, Ao, Bo, A2). The determinant of
this matrix then gives the dispersion relation, which is fourth order in n.

Certain quantities appear in natural combinations in these equations. It
simplifies the resulting expressions to define η = kL, νg = n/(kxUs), and β =
(ρ1 − ρ2)/ρo. In addition, one can define a Richardson number, Jr, which
measures the ratio of buoyancy to inertia, as

Jr =
gkηβ

2k2
xU2

s

. (5.126)

For further discussion of the Richardson number, see Chandrasekhar. With
these substitutions, and looking only at the modes with k = kx, the dispersion
relation becomes a fourth-order equation for the normalized growth rate ν:

0 = ν4
g

[
4η2e4η +

β2η2

4
(
1 − e4η

)]
+ ν3

gβη
(
1 − e4η

)

+ν2
g

[(
1 − e4η

)(
1 − β2η2

2

)
+ 4ηe4η(1 − Jr − 2η)

]

−νg

[
βη

(
1 − e4η

)
(1 + 2Jr)

]
− 2Jr

(
1 − e4η + 2ηe4η

)

+
(
1 − e4η

) [β2η2

4
− 1 − J2

r

]
+ 4e4η(η2 − η).

(5.127)

The solution of this equation, readily obtained from a computational
mathematics program, has only one root with an imaginary part that is at
times negative, corresponding to instability by our definition of the modes.
It turns out, quite fortuitously, that the growth rate is nearly independent
of β. As |β| increases, the root develops a finite real part, implying that the
growing solution would oscillate once the density difference becomes larger.
The growth rates can be accurately obtained from (5.127) assuming β to be
small. This equation then becomes quadratic in ν2

g , and the growth rate can
be displayed as contours on a plot with η(∼ kL) and Jr (buoyancy) as axes.
Figure 5.10 shows this.
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Fig. 5.10. Kelvin–Helmholtz at an interface with linear velocity shear and a density
transition. Working from the interior outward, the contours show a growth rate,
in units of kxUs, of −0.3,−0.1, and 0. Surface modulations outside of the νg = 0
contour are damped

This plot supports a number of observations. First, if there is no gravity
and thus no buoyancy, the KH instability is only unstable up to a maximum
kL of about 0.65. This short-wavelength cutoff is the effect of the gradient
in velocity. It says that wavelengths shorter than about 10L are stablilized.
As any given system evolves in time, L, being approximately

√
νt, increases,

so that growth of the KH instability will be stopped at progressively longer
wavelengths.

Second, for finite gravity, our new assumptions have introduced an addi-
tional feature that was not present in the absence of velocity shear. In the
presence of a sharp interface and gravity, we found (5.117), which says approx-
imately that kL > Jr for instability. This corresponds to the left boundary
in Fig. 5.10, and determines the longest wavelength that is unstable. The
right boundary is the new feature, introduced by the presence of a velocity
gradient that stabilizes the shortest wavelength modes. This is the impact of
a limited region of velocity shear, allowing instability for waves to which the
change in velocity seems abrupt. One sees that the combination of buoyancy
and shear can produce a very narrow range of unstable wavelengths.

Homework 5.12

Suppose β is small enough that terms involving β in (5.127) can be dropped.
Determine whether the two boundaries seen in Fig. 5.10 ever cross, completely
eliminating the instability.



5.7 Shock Stability and Richtmyer–Meskov Instability 213

Finally, it is of interest to compare the results of these last two calcu-
lations. On the one hand, with a velocity gradient that extended over all
space and a sharp density change at the interface, we found instability only
in the presence of gravity and only when the interface is RT unstable (An > 0
with our definitions). In effect, the velocity gradient acted to stabilize all the
modes we would normally describe as Kelvin–Helmholtz modes. In the pres-
ence of shear but only across a transition layer, we find instability whether
or not there is gravity and for either direction of the density gradient, but
only over a range of wavelengths longer than some multiple of the velocity
scale length. In addition, the shear acts to stabilize the RT modes, producing
a long-wavelength limit like that we saw in Sect. 5.6.2.

5.7 Shock Stability and Richtmyer–Meskov Instability

The two instabilities we have now considered develop within some enduring
state of a fluid system. Rayleigh–Taylor requires sustained acceleration, while
Kelvin–Helmholtz depends on sustained shear. In both cases, an incompress-
ible model produces an excellent conceptual model for observed phenomena,
even when the actual fluids are compressible. Even so, it was clear in Chap. 4
that real high-energy-density systems nearly always involve some combina-
tion of shock waves, rarefactions, and interfaces. As a result, the structure
of such a system is sensitive to the stability properties of these phenomena.
This motivates the present section. The introduction of compressibility does
greatly complicate the mathematics. In addition, at this writing the under-
standing of these phenomena is still evolving in the literature. As a result,
the discussion here will be more qualitative than in some other sections of
the book.

5.7.1 Shock Stability

We consider first what may happen to a shock wave that has lateral structure.
We will describe this as a rippled shock and assume the rippling (in the z
direction) to be proportional to cos(kx), corresponding to a two-dimensional
ripple with no dependence on y. As usual, more-complex structures can be
treated as a sum over such plane waves. We will also suppose that the rippling
is of a long-enough wavelength that we can think about its effects using our
analysis of oblique shocks in Sect. 4.1.5. A rippled shock can be produced by
pushing on a fluid with a rippled piston, or by allowing a planar shock to
interact with a rippled interface. Here we focus only on the shock; later we
will consider the interface. We will assume the ripple to be of initial amplitude
ao, and to be small (so that aok � 1). We will also assume the shock wave
to be strong, in order to simplify the mathematics.

Figure 5.11 illustrates the deflection of the flow that occurs at a rippled
shock. Here a fluid moving in the −z direction approaches a shock whose
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Fig. 5.11. Sketch showing the horizontal flow produced by a rippled shock

z location is given (in the shock frame) by a = ao cos(kx). This results in
a deflection of the flow away from the shock normal. The shock normal is
indicated in the figure by arrows attached to the shock. The deflection has
three consequences. First, material flows toward the lagging section of the
shock; the horizontal arrows in the figure indicate this component of the flow.
Second, sound waves are driven in the shocked material. Third, the shock
transition is affected by the change in deflection as a function of position. We
consider these in turn.

The shock normal vector is shown in the figure and given to first order in
aok by

n = −x̂(aok)sin(kx) − ẑ. (5.128)

tanφ1 ≈ φ1 = (aok)sin(kx), (5.129)

from which the small-angle formula for the deflection ψ of the flow away from
the −z direction, ψ = φ1(ρ2/ρ1−1) gives ψ = 2φ1/(γ−1). As is discussed in
Sect. 4.1.5, the local transverse component of the flow is unchanged by the
shock, while the local normal component of the flow is reduced.

Homework 5.13

Analyze the shock conditions for a small-amplitude ripple and show that the
change due to the ripple in the ẑ component, relative to that from a planar
shock, is second order in the ripple amplitude [i.e., generalize (5.130)].

To first order in aok, the immediate postshock fluid velocity is given by

u2 = x̂us(aok)sin(kx) − ẑus

(
γ − 1
γ + 1

)
, (5.130)

in which the shock speed is us and the postshock velocity, in the shock frame,
is u2. The lateral (x) component of this, u2x, is proportional to aok sin(kx),
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illustrated by the horizontal arrows in Fig. 5.11. We can estimate the con-
sequences of the lateral flow by the following simple estimate. We make the
oversimplified assumption that the shape of the shock remains sinusoidal and
that the amplitude is reduced as material flows laterally. The rate of mass
flow per unit length per unit density from the leading to the lagging sections,
on each side of the minimum of a(x), designated as zmin, is approximately the
wave amplitude times the transverse velocity at the mean interface position,
or aous(aok). This has units of area per unit time. The mass per unit length
per unit density between zmin and z = 0, which has units of area, within half
of the lagging region of the shock, is ao/k. If this flow of material were the
only factor, one would have

d

dt
ao = −(aok)2us, (5.131)

from which, with the initial amplitude given by aoo, one finds

ao

aoo
=

1
1 + (aook)(kust)

. (5.132)

This corresponds to a steady decay of the ripple in the shock on a timescale
given by the number of ripple wavelengths the shock has propagated. The
decay is quite rapid, so that by the time the shock has propagated a few
ripple wavelengths the amplitude will be greatly reduced. This result has the
correct trend (rapid damping) but is wrong in two respects – the shock wave
damps as 1/t3/2 rather than 1/t and it oscillates as it damps. Both effects
are a result of the second factor we mentioned above, discussed next.

Incident
flow

p∆

Pressure
maximum

Fig. 5.12. The lateral flow produced by a rippled shock causes a pressure maximum
to form downstream of the shock

If one considers the horizontal arrows in Figs. 5.11 and 5.12, one may
note that they also correspond to a standing sound wave. As the downstream
material flows away from the shock, the transverse flow of fluid will compress
the material until the lateral flow stagnates, after which the fluid will recoil.
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The fluid will proceed to slosh back and forth laterally as it flows away from
the shock, producing a sequence of stagnations. Thus, while any shock wave
is a source of sound waves, a rippled shock wave radiates an organized pattern
of sound waves. Note that the first pressure maximum produced by the flow
will lie underneath the lagging portion of the shock wave in Fig. 5.12. As
the shock wave flattens, this will result in an upward pressure gradient. This
increases the rate at which the shock flattens, and also causes the shock wave
to overshoot and to oscillate.

If the formation of this pressure maximum were strictly out of phase
with the flattening of the shock, then one might find that the shock wave
would oscillate indefinitely. However, the pressure maximum will form in
one-quarter cycle for the sound wave, which is λ/(4cs), where the wavelength
of the ripple is λ. The shock wave does not flatten this quickly from lateral
flow alone, so the pressure gradient from the sound wave acts to increase
the rate of flattening but also weakens as the shock becomes flatter. As a
result, the pressure gradient causes an overshoot but not to the full initial
amplitude. This, however, is not simple to model mathematically. We show
instead, in Fig. 5.13, numerical results showing the decay of a shock wave of
amplitude ao = 0.01λ.

0 2 4 6

0.01

Normalized time, vst/  

a s
(t

)/
 

0

—0.01

Fig. 5.13. The decay of a rippled shock, adapted from Ishizaki et al., Phys. Rev.
E 53, R5592 (1996)

The third effect mentioned above is the change in the shock properties due
to the ripple. At any given location, the shocked material is diverted toward
the unshocked material, altering to some degree the conditions of the adjacent
element of material as it is shocked. For ordinary materials and polytropic
gases this is a small effect, but for a sufficiently pathological material it can
lead the shock to become unstable. Landau and Lifshitz discuss the necessary
conditions.

A qualitative summary is then as follows. Shocks are ordinarily stable. If
they become rippled, the ripple damps out as the shock propagates. The shock
oscillates as it damps (sometimes this is described as superstable behavior).
The ripple becomes negligible as the shock propagates.
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5.7.2 Interaction of Shocks with Rippled Interfaces

In high-energy-density experiments, one is often concerned with the inter-
action of a shock with an interface and with the structure that may be in-
troduced by that interaction. Here we consider first what structures result
from the interaction of a shock with a rippled interface. For modeling, we will
assume that the analysis of Sect. 4.4 can be applied point by point along the
ripple. However, our conclusions will be more general, as these depend mainly
on the relative speed of the various waves in the problem. At the interface of
interest, the density may increase or the density may decrease.

Figure 5.14 shows what usually happens when the density increases at
a rippled interface. We anticipate that there will be a transmitted shock
and a reflected shock, as discussed in Chap. 4. As the shock crosses the
interface, the reflected shock moves backward with a faster velocity than
the incoming shock. As a result, the phase of the ripple of this wave is the
same as that of the interface ripple while the initial ripple amplitude on this
shock is larger than the ripple amplitude on the interface; the ratio equals
the ratio of reflected-shock velocity to interface velocity. For any ordinary
equation of state, the postshock velocity of the interface and the transmitted
shock velocity are each smaller than that of the initial shock wave. A first
consequence is that the ripple on each of them remains in phase with the
ripple on the interface. A second consequence is that the amplitude of the
modulation decreases, in this case in proportion to the ratio of postshock
interface velocity to incoming shock velocity. The velocity of the transmitted
shock will typically be somewhat larger than that of the interface. As a result,
the initial modulations of the transmitted shock will be somewhat larger than
that of the interface, although these will damp rapidly.

There are some differences in the response when a shock reaches an in-
terface where the density decreases. Figure 5.15 illustrates this case. We will
assume that the conditions are such that there will be a transmitted shock
and a reflected rarefaction wave; the specialized exceptions of Sect. 4.4.1 are
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density

Shock  wave 
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density

Transmitted
shock

Reflected 
shock

Fig. 5.14. Behavior when a shock reaches a rippled interface where the density
increases
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straightforward and we ignore those others that might correspond to a very
unusual equation of state. The reflected rarefaction wave again moves faster
than the shock wave, though not by much; it moves at the sound speed of the
initially shocked matter. As a result, the ripple on the reflected rarefaction
wave remains in phase with the ripple on the interface. Velikovich and Phillips
show that such reflected rarefaction waves are weakly unstable. The pertur-
bation amplitude of the “trailing edge” (the one near the interface) grows
linearly with time. There are standing but damped sound waves, emitted
downstream and propagating in the rarefaction fan toward the interface.

In contrast, the transmitted shock nearly always moves faster than the
incident shock. As a result, the ripple of this shock is typically inverted in
phase relative to the ripple of the interface. This is equivalent to saying that
α > 0 in Sect. 4.4.6. However, the postshock behavior of the interface depends
on whether its postshock velocity is larger or smaller than the incident shock
velocity. The case χ > 0 corresponds to a larger postshock velocity, which
will occur for strong shocks if the density ratio is large enough. As the density
ratio becomes smaller, and depending on the EOS, eventually one will have
χ < 0, and the interface will not be inverted as the shock passes.

These dynamics of the rarefaction wave have interesting consequences for
experiments that view such behavior from the side (from above the page
here). It is common in such experiments to use a radiographic diagnostic
whose x-rays are preferentially absorbed by the material on one side of the
interface. If the downstream side is diagnosed in this way, then the signal
decreases exponentially as the areal density (mass/area) increases along any
given line of sight. In consequence, the diagnostic may be more sensitive to
the higher-density material near the head of the rarefaction wave (if the trans-
mission is relatively high) or to the lower-density material near the interface
(if the diagnostic x-rays are strongly absorbed). Thus, for large density ratios
(so χ > 0) the structure that the diagnostic detects may be in phase or out
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Fig. 5.15. Behavior when a shock reaches a rippled interface where the density de-
creases. The transmitted shock is labeled TS and the postshock interface is labeled
PSI
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of phase with the modulations at the interface, or may change phase within
the image.

5.7.3 Postshock Evolution of the Interface;
Richtmyer Meshkov Instability

xs At this point we have seen that modulations in shock waves are typically
damped, so modulations introduced by an interface will die away in time. We
have also seen that the heads of rarefaction waves are stable, so modulations
introduced by an interface will not grow further. The remaining issue involved
in understanding such systems is the postshock evolution of the interface. It
turns out that structure on the interface grows in time after the shock passes.
The origin of this is easily seen in Fig. 5.16. This figure is centered on a trough
in the interface modulation. The behavior of the shock waves is clear from
our discussion above: the reflected shock wave deflects the flow away from
the trough, while the transmitted shock wave deflects material toward the
trough. As the shock crosses the interface, the postshock velocity slows. This
causes a deflection of the flow away from the normal to the interface or toward
the trough. This corresponds to α < 0 in the analysis of Sect. 4.4.6. Thus,
one can see that this postshock flow of material will deepen the valleys and
raise the peaks of the initial modulations.
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Fig. 5.16. Lateral velocities after a shock interacts with an interface where the
density increases

This process is known as the Richtmyer–Meshkov instability. We will des-
ignate it by the initials RM. This label is firmly entrenched in the literature,
but strikes the author of this book as problematic. One definition of an in-
stability is “a process through which the rate of increase of the magnitude
of some physical quantity increases in time“. This is typified by the equation
df/dt = γf , in which γ is the (exponential) growth rate of the quantity f . In-
stabilities by such a definition inherently involve some feedback mechanism.
In the case of Rayleigh–Taylor, for example, this mechanism is the increase
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in the net buoyant force resulting from increased interpenetration of the two
materials. By this definition the RM process is not an instability. A weaker
definition of an instability, which RM would satisfy, is “a process through
which the magnitude of some physical quantity increases in time.“ However,
many other phenomena, not described as instabilities, would satisfy this de-
finition. The main point of this discussion is that, unlike every other process
described in this book as an instability, one will search in vain for a feedback
mechanism that increases the rate of RM growth.

There is also a further conceptual difficulty associated with the RM
process. The RM instability is often described as the impulsive limit of the
RT instability, from the point of view that it corresponds to the limit of RT
as the variation of the acceleration in time approaches the delta function cor-
responding to the shock. This description originates with the original paper
of Richtmyer in 1960, but he and others have recognized problems with it.
The evolution of the structure occurs after the shock passes, and thus is not
the limiting case of growth that occurs during acceleration. Correspondingly,
one does not do theory of RM by taking a limit of RT theory. In addition, as
Velikovich described in 1996, one can produce RM, at least in principle, in a
system with two rarefaction waves and no initial acceleration of the interface.

Independent of this history, the best intuitive sense of the RM process can
be found by thinking of the flow that will develop following the initial condi-
tions created by the shock. For the case of Fig. 5.16, we can use this intuition
and the analysis of Sect. 4.4.6 to develop a semiquantitative description of
the growth of modulations, as follows.

The four regions seen in Fig. 5.16 correspond from bottom to top to
regions a,R, d, and c of Fig. 4.30 and Sect. 4.4.6. The small-angle limits
of (4.127) and (4.130) and give

χ =
2α − (γ − 1)β

γ + 1
, and (5.133)

χ =
2η(γ + 1) − β(γ − 1)2

(γ + 1)2
, (5.134)

respectively. Recall that β is the angle between the initial shock normal and
the local interface normal. Setting the pressures in the two postshock regions
equal, in the small-angle limit, gives

ρc

ρb

(
1 +

α

β

)2

=
γ + 1
γ − 1

(
γ − 1
γ + 1

+
η

β

)2

, (5.135)

These three equations can be solved to find the ratio of α, η, and χ to β as a
function of γ and the density ratio at the interface, ρc/ρb. Also note that in
the geometry of (5.128) and for small β one has β = (aok) sin(kx). One ends
up, for any given value of γ, with a figure like Fig. 5.17.
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Fig. 5.17. The dependence of the postshock angles of deflection on the density
ratio at an oblique interface where the density increases, for strong shocks. The
angles of the transmitted shock, the interface, and the reflected shock are α, χ, and
η, respectively, with η defined in the opposite direction in Sect. 4.4.6

Homework 5.14

Solve (5.133) through (5.136) to find the ratio of α, η, and χ to β. Plot the
results for various values of γ and comment on what you observe.

Equations (4.125) and (4.128), after transformation back into the lab
frame, give the lateral deviation of the flow as the x-component of the velocity
vectors udlab and uRlab. In the small-angle limit, these are

udlab =
−2β

(γ + 1)
us

[
α

β

(
1 +

α

β

)]
x̂ +

2
(γ + 1)

us

[
1 +

α

β

]
ŷ and (5.136)

uRlab =
2β

(γ + 1)2
us

[
η

β

(
(γ − 1) +

η

β
(γ + 1)

)]
x̂

+
us

(γ + 1)2

[
4γ − 2

η

β
(γ + 1)

]
ŷ, (5.137)

respectively. By substituting the solution to (5.133) to (5.135) into these two
equations, one can find the deviations in velocity introduced by the shocks.
For any given value of the density ratio ρc/ρb, one can plot the lateral devi-
ation as a function of distance as Fig. 5.18 shows.

Referring again to Fig. 5.16, one can see that there is a significant dif-
ference between the behavior at the interface and the behavior at the shock.
The flow at the interface acts to increase (rather than to decrease) the size
of the perturbation. We can make an approximate calculation, similar to the
one we did for the rippled shock, to estimate how rapidly the ripple ampli-
tude will increase. An important difference is that the lateral velocity is set
by the initial amplitude and does not evolve further as the ripple changes,
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Fig. 5.18. The lateral flow velocities produced by a shock at an interface where the
density increases are shown. This circumstance produces shear flow at the interface

except perhaps due to the effects of the sound waves emanating from the
shock waves, which are not accounted for in the present estimate. The lateral
velocity produced by the reflected shock tends to be the larger of the two, so
we will assume that it is responsible for the flow. Using this velocity to be
uperp, taking η/β ∼ 0.9 as a typical value, and recalling that β = aook for
small angles, one can show

u⊥ ≈ 3.4γ

(γ + 1)2
(aook)us. (5.138)

From the point of view that this inward flow of material from each side
produces a corresponding increase in the full amplitude (2ao) of the ripple,
we then estimate

d

dt
ao =

3.4γ

(γ + 1)2
kusaoo. (5.139)

Key qualitative features of this estimate are that the interface ripple grows
linearly in time, and that the rate of growth is proportional to the initial
normalized amplitude, aook. These features are present in more sophisticated
estimates in the literature, such as the widely used formula due to Richtmyer,

d

dt
ao = kA∗upsaps, (5.140)

in which the postshock velocity of the interface in the lab frame is ups, the
postshock amplitude of the ripple is aps, and the postshock Atwood number
at the interface is A∗. However, no such formula is completely general and
cases where this one does not work have been identified.

We have just discussed Richtmyer–Meshkov growth as a consequence of
the lateral velocities induced by the shock. An alternative way to view such
growth is in terms of the vorticity that the shock generates. In fluid dynamics
the vorticity is ∇ × u. An initial, uniform postshock flow has no vorticity,
but vorticity is generated as the shock passes a rippled interface. The shock
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produces tubes of vorticity with alternating direction when it passes an in-
terface with the two-dimensional structure we have been discussing. Vorticity
corresponds to rotational flow; it is conserved in the absence of dissipation.
Thus, another way to view the growth of the ripple amplitude is that the
rotation in opposing vortex tubes funnels material into the maxima of the
ripple.
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Fig. 5.19. Lateral velocities after a shock interacts with an interface where the
density decreases. Here PSI and PS stand for postshock interface and postshock,
respectively

Now we turn to the behavior when a shock reaches a rippled interface
where the density decreases. This can be analyzed in a similar way, using the
equations for a rarefaction from Sect. 4.4.6. Figure 5.19 illustrates the qualita-
tive behavior, for the case of a large enough density decrease that χ > 0. One
can see that here again the amplitude of the ripple at the interface will grow
with time. The qualitative behavior is the same in this case as in the previ-
ous one. A small ripple grows linearly with time, with the rate of increase of
the amplitude being proportional to the initial normalized amplitude and the
shock velocity. In the language of vorticity, the shock wave deposits vorticity
on both sides of the interface. After this, the transmitted shock continues to
deposit vorticity in the newly shocked fluid. In contrast, the rarefaction wave
does not deposit additional vorticity in the fluid it affects.

If the density decrease is smaller, so that χ < 0, then the interface at
first retains the phase of the initial ripple. The flows then cause the interface
to invert before the ripples grow larger. For this case, there is a standard
theoretical estimate due to Meyer and Blewett, which involves the average of
aoo and aps. It is

d

dt
ao = kA∗ups

1
2
(aps + aoo), (5.141)

in which one should note that A∗ < 0.
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Homework 5.15

Evaluate the small-angle limit of the equations for a shock at an oblique
interface with a density decrease, and produce a plot similar to Fig. 5.19 for
this case.

Homework 5.16

Consider the qualitative behavior of the postshock interface when there is a
rarefaction but χ < 0. Redraw Fig. 5.19 for this case. Discuss the evolution
of the interface.

In more complete theoretical treatments of the RM process, one finds
that the growth at the interface can be expressed as a consequence of the
sound waves generated by the shocks near it. Both transmitted and reflected
shock waves contribute in this way. A reflected rarefaction, however, does not
produce sound waves that affect the interface growth.

5.8 Hydrodynamic Turbulence

We often see phenomena that one might describe as turbulent. This is par-
ticularly true when two distinctly observable fluids, such as clouds and air or
cream and coffee, mix. But flow in a single fluid also can become in some sense
turbulent, as does the airflow behind an airplane wing or a racecar. There are
a number of possible definitions of turbulence, and one finds that the word has
distinctly different meaning in different areas of plasma physics and hydro-
dynamics. As a result, when reading a wide range of literature one should be
somewhat wary of this term. A fairly general definition of turbulence is “the
presence of structures having a range of spatial scales that are smaller than
the spatial scales of the motions that provide the energy source producing
the structures.“ This may not satisfy the extreme hydrodynamicist, who may
insist that a system to be turbulent must have evolved to a state that is inde-
pendent of its initial conditions. Whether such a state is practically realizable
is not so clear. Here we will not trouble ourselves further with definitions.
Rather, we will examine the properties of hydrodynamic systems that lead
to the presence of structure over a range of small spatial scales. The book by
Tennekes and Lumley provides an excellent introduction to hydrodynamic
turbulence. They emphasize that such turbulence is a property of fluid flows
and not of the underlying fluid itself.

The basic notion behind descriptions of turbulence is that energy is in-
troduced to a system by some process, such as the RT or KH instability,
that this enables processes to occur which produce much smaller-scale fluc-
tuations, and that these fluctuations eventually lose their energy by viscous
dissipation. Because vorticity once generated spreads by viscous diffusion and
is removed only through viscous heating, swirling patterns of motion generally
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Fig. 5.20. Images of a slice through round turbulent jets in liquids, illuminated by
a laser (Dimotakis, 2005). (a) Re ≈ 2,500. (b) Re ≈ 10,000

characterize turbulent systems. Indeed, the presence of varying patterns of
vorticity on a range of spatial scales is considered to be an essential property
of turbulent hydrodynamic flows.

A simple example of turbulent flows are the jets shown in Fig. 5.20. The
Reynolds number Re increases from left to right in the figure. In all similar
cases, the jet first produces the KH instability. This sets the stage for further
instabilities and for the development of smaller scale structures. At low Re,
the flow remains dominated by large-scale structures. As Re increases, the
flow develops finer-scale structures and the distribution of these structures
becomes more uniform.

As we shall see, turbulence is typically a property of flows with large Re.
This may seem paradoxical at first. In Chap. 2 we found that Re is the ratio
of the convective momentum transport to viscous momentum transport. We
argued that Re is nearly always large in high-energy-density flows, and cor-
respondingly that the Euler equations are typically a good basis for analysis.
In detail, however, this argument works only for phenomena whose spatial
scale is not too small. One can construct a Reynolds number from any sensi-
ble length and velocity scales so that different aspects of a system can have
different Reynolds numbers. If we focus on small-enough spatial scales, the
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corresponding phenomena do experience strong dissipation and cannot be de-
scribed by the Euler equations. This is what makes it possible for a turbulent
flow to dissipate energy.

Before we proceed with some discussion of incompressible hydrodynamic
turbulence, it is worthwhile to consider how this might apply to plasma sys-
tems. In a sufficiently collisional plasma, the fluid motion is hydrodynamic
and collisional damping dominates the dissipation of energy. However, as the
plasma becomes less collisional, collective effects begin to occur and the com-
pressive fluctuations in the plasma begin to produce significant electric fields.
These electric fields accelerate particles, providing a source of energy dissi-
pation that is distinct from viscous effects. At this writing, the competition
between these sources of dissipation is not well understood. This competition
could alter the structure of turbulence in plasmas as compared to that in
purely hydrodynamic fluids.

Returning to the point of view that turbulent flows are dominated by ro-
tating motions that we can call vortices, we can idealize these motions, using
the (oversimplified) model of rotating toroids. These donut-shaped structures
rotate about the axis of the donut. They can have any aspect ratio, being thin
rings, fat rings, or elongated and nearly cylindrical structures. The rotation
is essential, though, as this is what makes ∇×u nonzero so that there is vor-
ticity. Such vortices can have a range of sizes but the smallest possible vortex
is one that is damped by viscosity in of order one rotation. If we use w to rep-
resent the rotational velocity and λ to represent the diameter of the vortex,
then the rotational timescale is λ/w while the timescale for viscous damping
is λ2/ν, where ν is again the kinematic viscosity. Setting these timescales
equal gives wλ/ν ∼ 1 for the smallest vortex. Thus, the Reynolds number
constructed from the characteristic scales of the smallest vortex is of order
unity. The reader may recall from Chap. 2 that the typical Reynolds number
describing high-energy-density flows is at least several orders of magnitude
larger than 1. The consequence is that the smallest vortices are some orders
of magnitude smaller than the characteristic scale of the entire system.

A next step in this discussion is to consider the overall rate at which
damping must dissipate energy. The largest vortices produced in the system
are known as the eddies. The eddies typically span the turbulent zone. In
simple cases such as KH or RT they are created through the evolution of
the large structures generated by these instabilities. We will designate the
characteristic speed of the material in the eddy as we and the characteris-
tic diameter of the eddy as �. An observed property of turbulence, and an
assumption in traditional turbulence theory, is that these large eddies dissi-
pate their energy on a timescale of order 1 circulation time. Their specific
energy is of order w2

e , so the specific energy dissipation rate (a power per unit
mass) is of order w3

e/�. We will designate this turbulent dissipated power by
Pt. However, the inherent viscous damping of these structures is small. To
see this, one can note that their viscous timescale is �2/ν, so their viscous
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damping rate is w2
eν/�2. Thus, the ratio of the viscous damping rate to Pt

is ν/(we�) = 1/Re. Taken together with the previous paragraph, the im-
plication is that dynamical processes must create small-scale structures to
dissipate the energy deposited in the eddies by the global processes in the
system (such as KH or RT).

The order-of-magnitude size of these smallest structures is one of the
Kolmogorov scales. These are the length scale, ηk, the time scale, τk, and the
velocity scale, uk, that can be constructed from the specific energy dissipation
rate and the viscosity. One has

ηk = (ν3/Pt)1/4, τk = (ν/Pt)1/2, and uk = (νPt)1/4. (5.142)

To see how small these scales are physically, one can substitute for Pt and
obtain results in terms of the Reynolds number corresponding to the eddies,
we�/ν. This gives

ηk = �/Re3/4, τk = (�/we)/Re1/2, and uk = we/Re1/4. (5.143)

Thus, for a Reynolds number of 105, the size of the smallest vortex will be
of order 6,000 times smaller than the size of the largest eddy. Note that
the Reynolds number corresponding to the Kolmogorov scales satisfies the
condition we developed above, having ηkuk/ν = 1.

We will explore how structures can form on such scales below. To prepare
for this, we first will compare them with some other characteristic dimensions
and then discuss the dynamics of the fluid in more detail. An eddy may
initially form with sharp edges, as during the roll-up produced by Kelvin–
Helmholtz, as at the spike tips in Fig. 5.1 and at the shear layer in Fig. 5.7.
As the eddy evolves, viscous diffusion smoothes the edge of the shear layer
(see Sect. 5.6.3). This diffusion produces a laminar boundary layer within
which there is a finite transverse gradient of the velocity. The scale length
of this boundary layer is

√
νt. On the timescale of the large eddy, �/we, this

boundary layer scale length is thus �/
√

Re. Comparing this with (5.143),
one sees that the Kolmogorov scale length where the dissipation occurs is
smaller than the boundary-layer scale length, and that the difference between
them increases as Re increases. Externally driven instabilities do not readily
occur on the small scales that exist within such a boundary layer, where
there is a continuous gradient in flow velocity. KH, for example, is stabilized
by this gradient. Thus, the fluctuations within the boundary layer should
evolve through local fluid dynamics until they dissipate. The full thickness of
the boundary layer, throughout which the velocity gradients may limit the
instabilities, is a few times �/

√
Re.

To be able to go further in our description, we need to work with the
fluid equations. The relevant equations are (2.27) for momentum and the
mechanical energy equation that can be constructed from it by taking the
dot product with u, keeping the terms involving viscosity but dropping all
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the terms involving radiation or other forces. One also assumes incompress-
ibility and for simplicity assumes constant ρ, constant ν, and that the second
coefficient of viscosity is 0. Then one has

∂u

∂t
+ u · ∇u =

−1
ρ

∇p + 2ν∇ · s, and (5.144)

1
2

∂u2

∂t
+ u · ∇

(
u2

2

)
=

−1
ρ

u · ∇p + 2ν∇ · (u · s) − 2ν(s · ·s). (5.145)

in which one has used the incompressibility condition to simplify σν from
(2.36), and defined the strain rate tensor as s, given by

s =
1
2
(
∇u + (∇u)T

)
. (5.146)

With the elements of s given as sij , the expression s · ·s is the sum over both
indices of sijsij .

Homework 5.17

Develop (5.144) and (5.145) from the equations in Chap. 2.

Since fluid turbulence develops within a fluid flow, it is useful to ana-
lyze these equations as the sum of terms describing the mean flow and terms
describing the (turbulent) fluctuations. We take u = U + w, p = P + δp,
and s = S + δs, in which the first, uppercase quantity is the mean value
and the second term is the fluctuating term. We substitute these definitions
into (5.144) and (5.145) and average over a time long compared with the dis-
sipation time for any specific eddy. The fluctuating terms average to zero in-
dividually. However, products of the fluctuating quantities do not, in general,
average to 0, but instead have values depending on the degree of correlation
of these quantities. Indicating such an average by an overbar, and assuming
the overall system to be in steady state for simplicity, we obtain equations
for the mean flow and for the turbulent fluctuations. The equation for the
momentum and energy of the mean flow are

ρ(U · ∇)U =
−1
ρ

∇P + 2ν∇ · S −∇ · (ρww) and (5.147)

U · ∇
(

U2

2

)
= ∇ ·

(
−P

ρ
U + 2νU · S − ww · U

)

−2ν(S · ·S) + ww · ·S
, (5.148)

respectively, while the equation for the turbulent energy is

U · ∇
(

w2

2

)
= −∇ ·

(
1
ρ
wδp − 2νw · δs +

1
2
w2w

)

−ww · ·S − 2νδs · ·δs
. (5.149)
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If one pursues the literature of fluid dynamics, one finds various interme-
diate quantities that are given names and contribute to the jargon. These
include, for example, the general stress tensor, which includes both pressure
and viscous stress terms. We are now prepared to discuss the dynamics of
the turbulent flow in more detail.

Homework 5.18

Derive (5.147) through (5.149).

First consider the mean momentum. Applying the scaling analysis dis-
cussed in Sect. 2.3 shows that the viscous term in (5.147) is of order 1/Re
relative to the convective term and so typically is negligible. The rightmost
term in this equation is the divergence of a tensor. This term describes the
forcing of the mean flow by the fluctuations. This tensor, having first been
developed by Reynolds in 1895, is known as the Reynolds stress tensor. It
quantifies the effects of the turbulent fluctuations on the mean flow. Unfor-
tunately, the magnitude of this term is not obvious. The turbulent veloc-
ity w should be smaller than U and the eddy diameter � smaller than the
global scale length of the flow L. In actual turbulence it is common to see
w/U ∼ �/L ∼ a few percent. This has the implication that the final term
in (5.147) is a few percent of the term on the left-hand side. This is often
much larger than the viscous loss term but remains small enough that the
flow changes gradually on the scale of L.

The story is similar with regard to the mean energy, as expressed
by (5.148). The viscous terms are of order 1/Re relative to the energy. The
terms involving the correlations of the turbulent velocities are typically much
larger, but remain small enough that the energy of the mean flow is only grad-
ually reduced.

The equation for the turbulent energy (5.149) has more to tell us. The
first line can be rearranged as the divergence of a vector that contains en-
ergy fluxes, pdV work, and energy transport by viscous stresses. These sum
to zero over any volume within which the fluctuating mechanical energy is
unchanging, as will be the case in steady turbulence. The second line of this
equation includes the terms identified with the production of turbulent en-
ergy (the first term) and with the dissipation of turbulent energy (the second
term). In a crude scaling sense S ∼ U/L ∼ we/�, so the magnitude of the first
term in the second line is w3

e/�. This equals the specific energy dissipated by
turbulence that we obtained above from general arguments.

The final term in (5.149) represents the dissipation by the turbulence,
and is the significant new result we obtain from this analysis. Assuming the
turbulence to be isotropic, one can show with some algebra that

2νδs · ·δs = 15ν(∂w1/∂x1)2, (5.150)

in which the subscript 1 designates the first vector component. (For a detailed
development of the equations related to turbulence, see Hinze.) Fluctuations
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at all spatial scales contribute to δs, so that δs is not given by w/�. In-
stead, the length-scale associated with δs must be smaller than �. Defining
this length scale as λT , and balancing the production of turbulence with its
dissipation, we have

w3/� = 15νw2/λ2
T , so that (5.151)

λT /� =
√

15/Re1/2. (5.152)

The length scale λT is known as the Taylor microscale, named after G.I.
Taylor, who first defined it. However, the curious aspect of the Taylor mi-
croscale is that it is not a physical distance that characterizes the turbulence.
Rather, it is the maximum size at which the energy from the large eddies
can be dissipated by viscosity, if the turbulent fluctuation velocity does not
change as the scale decreases. Tennekes and Lumley would prefer to see λT

used only in combination with w to give a dissipation rate. Vortices at this
scale are able to dissipate all the energy from the eddies. Thus, this is a
reasonable estimate of the scale below which the behavior is not influenced
by the large-scale dynamics that drives the eddies. However, this dissipation
cannot occur within one vortex circulation timescale for eddies with rotation
speed w and size scale λT . Thus, such vortices fail to satisfy the assumption
that any turbulent vortex dissipates its energy in one turnover time. If this
presumed property of turbulence, which is experimentally supported, is valid,
smaller vortices will continue to form until the Kolmogorov scale is reached.

A notable feature of the Taylor microscale is that it is of the same order as
the laminar boundary layer thickness developed during one eddy timescale,
discussed above. Any structures that endure for an eddy timescale will de-
velop such boundary layers. This adds a physical basis to the notion that
the global unstable dynamics might have limited effects below this scale. To
emphasize this correspondence, Dimotakis calls this the Liepmann–Taylor
microscale.

Thus, we have a picture in which the fluid dynamics causes the transfer of
energy to smaller-scale vortices, although we have yet to discuss the dynamics
of this. The result is that the global unstable dynamics produces eddies and
also produces vorticity, at least on surfaces. The vorticity spreads by viscous
diffusion. The energy created by the global dynamics is transferred to smaller
and smaller vortices, which become independent of the global processes once
the vortex size drops below the Taylor microscale. The energy is then even-
tually dissipated when it reaches the Kolmogorov scale. As Re increases, the
Taylor microscale and Kolmogorov scale become increasingly separated.

In between the Taylor microscale and the Kolmogorov scale, only the
dynamics of the vortices governs the flow of energy to smaller scales. Since the
equations do not depend fundamentally on the scale, one might hope to find
a fairly simple scaling for the changes in the eddy properties as their diameter
decreases. Working from a fairly general set of limiting assumptions, reviewed,
for example, in Chap. 8 of Tennekes and Lumley, Kolmogorov showed that the
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Fig. 5.21. Structure of the turbulent spectrum of kinetic energy

wavenumber spectrum of the kinetic energy, E(k), is proportional to k−5/3.
The meaning of this statement is that E(k)dk is the kinetic energy of the
vortices whose characteristic wavenumber is within dk/2 of k ∼ 2π/λ, and
that this is proportional to k−5/3. The corresponding scaling of the fluctuating
strain rate is δs ∝ k2/3, so the fluctuating strain rate is largest at the smallest
scales. The exponent of 5/3 is not a universal constant; one will see other
values in both theory and observations for systems that satisfy assumptions
different from those used by Kolmogorov.

Figure 5.21 illustrates the qualitative structure of the resulting spectrum
of E(k). The spectrum at the lowest wavenumbers is determined by the
processes that create the turbulent energy, in addition to the processes that
transfer it to smaller scales. Thus, the structure of this part of the spectrum
may vary with conditions. It is shown as flat in the figure. As k increases so
that the vortex size λ drops below λT , the spectrum becomes a Kolmogorov
spectrum, with a slope of −5/3. Then as the vortex size approaches the Kol-
mogorov dissipation scale, the energy is dissipated and E(k) decreases more
rapidly. On the basis of a review of data, Dimotakis concludes that dissipative
effects begin to alter the spectrum for vortex scales λ ≤ 50ηk. The region of
the spectrum that has a power-law shape is known as the inertial range. This
reflects the point of view that the inertial dynamics of the fluid is responsible
for producing this part of the spectrum. Based on this discussion, an inertial
range should appear once Re becomes large enough that 50ηk < λT . This
requires a value of Re above about 104.

An important feature of turbulent systems is the presence or absence of
a mixing transition. This is generally observed to occur at some value of Re
which depends on details. Once the mixing transition has occurred, the tur-
bulence causes rapid mixing of the two interacting fluids and rapid diffusion
of each into the other. This transition is of significant practical importance
for systems such as chemical processors, intended to generate copious inter-
actions between the molecules in two fluids. This may also be important for
high-energy-density systems, as one may in various contexts desire to encour-
age or to discourage such mixing. A conjecture due to Dimotakis is that the
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mixing transition corresponds to the development of an inertial range, and
that achieving Re > 104 is a necessary condition for this development.

We close this section with a brief discussion of the dynamics that produces
the flow of energy from larger to smaller vortices. To see these dynamics, it
is useful to recast the momentum equation, (5.144) in two ways. We keep all
the same assumptions including incompressibility. First, one can manipulate
the convective derivative and the viscous term to highlight the effect of the
vorticity ω = ∇× u in this equation. We obtain

∂u

∂t
= −∇

(
p

ρ
+

u2

2

)
+ u × ω − ν∇× ω. (5.153)

This equation illustrates one important effect of vorticity. The fluid velocity
is redirected in the direction of u × ω. This is easy to understand if one
returns to our analogy that vortices are spinning donuts. Recall the behavior
of topspin shots in tennis, curve balls in baseball, or slice shots in golf. In all
these cases, a spinning object creates lift by increasing the flow velocity on
one side and decreasing it on the other, which creates a pressure difference
through the Bernoulli effect. Thus, vortices redirect the flow in a direction
perpendicular to the flow and to the vorticity vector.

Second, we can take the curl of (5.144) to develop a dynamic equation for
the vorticity itself. This gives

∂ω

∂t
= ∇× (u × ω) + ν∇2ω. (5.154)

This equation is identical to (2.48), describing the behavior of the magnetic
field. The analogy between vorticity and magnetic field is often exploited for
both physical explanations and mathematical analysis. Here we note that the
vorticity will diffuse if there is no net flow or if its spatial scales are small
enough. Otherwise, the first term on the right-hand side causes the vortices to
move with the flow. Thus, in the same sense that magnetic field in a plasma
is frozen in, the vorticity in a fluid is frozen in. In addition, this equation
makes it clear that the role of viscosity with regard to momentum is to create
diffusion. This transfers momentum (and vorticity) from the structure being
damped into the surrounding fluid. The energy involved in vortex motion can
be dissipated by its conversion to thermal energy, described by the viscous
heating term in the energy equation.

Homework 5.19

To be more precise about this point, one should recognize that what moves
with the fluid is the vorticity passing through a surface S. Prove this by
taking the time derivative of the integral of ω · dS over a surface S that
moves with the fluid and may change its shape in time. Relate the result
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to (5.154). Hint: The key here is the evaluation of the partial derivative in
time of the surface as a contour integral involving the edge of the surface.

The consequence of (5.153) and (5.154) together is that vortices do not
allow a fluid to flow through them undisturbed. They deflect the fluid, and
stay with it to deflect it further. However, it remains the case that changes
in the flow can affect the local value of ω. This is due to the effects of
the gradients in velocity. To see these effects more clearly, it is helpful to
recast (5.154) as follows:

∂ω

∂t
+ u · ∇ω = ω · s + ν∇2ω . (5.155)

Here we see that only if the strain rate is zero (and viscous damping remains
negligible) does the local vorticity move with the fluid without changing. To
see what kinds of changes may occur, we consider the effects of finite strain
rate on the vortices.

First, the off-diagonal elements of s act to rotate the vortices. This is
simple to understand. We discussed the lift generated by the interaction of
ω and u. If u changes along the vortex, then the lift varies along the vortex,
which will produce a torque and cause a rotation of it. Since vortices generally
involve derivatives of u in all three directions, the distribution of vorticity
tends to become isotropic as vortices come to dominate the dynamics. As
a result, small-scale turbulence is typically isotropic even when the driving
instability at the global scale may not be.

Second, the diagonal elements of s produce changes along the direction
of the vortices. These act either to stretch or to compress the vortices. These
effects are illustrated in Fig. 5.22. As is illustrated, stretching or compress-
ing changes the size of a vortex. This is a simple consequence of the fluid
flow. When, for example, fluid in a pipe speeds up to pass through a nar-
rower section, a cylindrical element of fluid is stretched in length but shrinks
in diameter. When this happens to a vortex, the rotation speed also must
change to conserve angular momentum. As a result, when the fluid dynamics
stretches a vortex, the vorticity increases. Furthermore, note that the in-
crease in vorticity is very rapid. For example, in the case of Fig. 5.22, the
vorticity is in the x1 direction, and the nonzero element of the strain rate ten-
sor that produces the vortex stretching is s11 = ∂u1/∂x1. Through (5.155),
this produces exponential growth of the vorticity (for constant strain rate).
This might potentially produce a turbulent state, as exponential growth often
leads to large amplitudes. However, any fluctuations in the strain rate as the
flow developed would tend to prevent this outcome.

Even so, vorticity in turbulent systems often increases explosively, through
the combination of two effects. The first effect is the one we just discussed
– the amplification of vorticity through its interaction with the strain rate.
The second effect is the unstable growth of the strain rate through a “sec-
ondary instability.” The simple instabilities, such as RT or KH, tend to pro-
duce very ordered two-dimensional or three-dimensional flows. On the jets



234 5 Hydrodynamic Instabilities

w ω ωw

∂u1/∂x1

u1, x1

Fig. 5.22. Vortex stretching. Changes in fluid velocity cause vortices to stretch or
shrink

of Fig. 5.22, for example, the KH instability produces curled structures that
wrap around the column of the jet to form loops. These have vorticity on their
surfaces, which soon diffuses into the fluid near these surfaces. The direction
of this vorticity is azimuthal (it wraps around the jet). Initially, the azimuthal
strain rate is zero – the system is cylindrically symmetric. However, many
symmetric, two-dimensional systems are unstable to fluctuations in the third
dimension. In the case of the jets, these fluctuations modulate the surfaces
in the azimuthal direction, and these modulations grow exponentially. The
key consequence is that these growing modulations create a finite azimuthal
strain rate that also grows exponentially. At this point the vorticity amplifies
exponentially from the exponentially growing strain. A very turbulent flow
develops almost immediately.

Homework 5.20

Obtain (5.153) through (5.155) from the momentum equation.

The above discussion enables us to understand how the dynamics of the
fluid creates a distribution of vortices on all scales down to the Kolmogorov
length. The vortices larger than any given scale produce the strain rate that
is experienced by the smaller vortices. Thus, vortices at any given scale are
both stretched and rotated through the influence of the larger scales. Ten-
nekes and Lumley show that any given scale is most strongly affected by
slightly larger scales. As a result, the flow of energy and vorticity to smaller
scales can accurately be described as a cascade. Komogorov first described
this dynamics. For this reason, the spectrum of E(k) observed in turbulent
systems is often described as a Kolmogorov cascade.

We need to address a few more details in order to conclude this discussion.
First, note that vortices are inherently three-dimensional objects. They have
structure in all three directions. As a result, vorticity and its effects cannot be
captured by one-dimensional or two-dimensional calculations or simulations.
This makes the accurate modeling of turbulence a very challenging problem.
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Second, in the above we have used the notion of fluctuating vorticity. This
can be misleading, as we also saw that the vorticity through a given surface is
conserved unless viscous diffusion matters. The vorticity in turbulence fluc-
tuates because vortices move and change their shape, not because there is
a vorticity oscillation. Another way to put this is that vortex motion is not
wave motion and does not involve the oscillation of physical quantities.

Finally, there is the question of how the vortices at small scales begin. We
have seen that vortices on a given scale can affect those on a smaller scale,
but this assumes that the smaller scale vortices are already present. There is
certainly some thermal level of vorticity, but growing this to large amplitude
would be a very long process. The global instabilities such as KH do deposit
vorticity on surfaces, and perhaps these or other more-complex processes are
responsible for the initial production of vorticity at small scales. One may
hope and expect that further research will clarify the details of the transition
to turbulence.

This takes us to the end of our discussion of unstable hydrodynamic be-
havior. Given that acceleration, deceleration, shear layers, and shock waves
can each produce such behavior, it is no surprise that hydrodynamic insta-
bilities are common in high-energy-density experiments. We proceed now to
turn our attention to another aspect of high-energy-density systems. They
are often quite hot, and being hot they tend to radiate profusely. We begin
to cope with this in the next chapter.



6 Radiative Transfer

Thus far we have examined primarily systems that are purely hydrodynamic.
In so doing, we have ignored a major aspect of many high-energy-density
systems: radiation. It is easy to see why radiation often matters. At any
given pressure, the temperature increases as density decreases, and there
is some density below which radiative fluxes will exceed material fluxes. If
we suppose that Z + 1 = A, for simplicity, then the temperature is given
by T = mpp/(ρkB). The characteristic radiative flux is σT4, which can be
compared to a characteristic material energy flux ρεcs. The actual material
energy flux may differ from this by some factor, but the threshold density
below which radiative fluxes exceed thermal fluxes depends only on the one-
fourth power of this factor. Figure 6.1 shows the density at which σT 4 equals
ρεcs, for pressures from 1 Mbar to 1000 Mbars. Radiative effects matter
in gases and foams toward the low end of this regime, and in solid-density
materials toward the high end. We consider some other comparisons based
on temperature, and when radiation pressures matter, at the beginning of
Chap. 7.

The first problem to address in understanding radiation is radiative trans-
fer, which is the transport of energy and momentum through a physical sys-
tem by radiation, including the interactions with matter. Radiative transfer
is familiar to us in everyday life. For example, suppose radiation from the
sun, with its spectral peak at frequencies we perceive as green, is transmitted
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through the atmosphere, heating a black asphalt driveway. On a hot, bright
day we can feel the radiation emitted from this black surface, if we are smart
enough to put our hand or foot near it before we step on it. We experience
another aspect of radiative transfer, namely scattering, when looking through
a fog bank at a bright light.

The emission, absorption , and transfer of radiation are central to much of
astrophysics. Shu, for example, devoted one entire volume of his two-volume
set, The Physics of Astrophysics, to radiation. For example, fusion generates
heat in the core of a star that in the end must be radiated from its surface.
The stellar structure depends strongly on the absorption and emission of ra-
diative energy. In some variable stars, structure in the absorption causes the
luminosity of the star to oscillate. This occurs for example in Cepheid variable
stars, which are often used as distance indicators because in order to oscillate
their luminosity must remain in a narrow and well-known range. Figure 6.2
shows an example of luminosity oscillations from four Cepheid variable stars.
The period of oscillation varies, and can be used to establish their absolute
luminosity based on the empirically established relation between period and
luminosity. The luminosity oscillations are a consequence of oscillations in
the temperature dependence of the absorption length for radiation within
the star, which leads the surface of the star to regularly become hotter and
cooler. The inverse of the absorption length is known as the opacity, which is
discussed at length below. The period–luminosity relation for Cepheid vari-
able stars is now understood, thanks to more-sophisticated versions of the
calculations described in this chapter, verified by laboratory measurements
of the opacity, some of which are shown in Sect. 6.2.3.
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6.1 Basic Concepts

In order to work with radiation, its transport, and its effects on matter, one
must first face the task of describing the radiation itself. This is a task at
least as complicated as the description of the particles. Like particles, the
radiation can fill space, vary in time, and propagate in any direction. The
radiation does have a unique velocity, which is simpler than the situation
with particles, but this is more than offset by the fact that the radiation
can have any frequency and can interact through several mechanisms, some
of which would be described in mechanics as “inelastic.” In addition, since
radiation does move at the speed of light, it is a bit easier for relativistic
effects to matter. Nonetheless, by proceeding step by step we can develop
useful descriptions. As we do so, we will use primarily a subset of the notation
in the book by Mihalas and Mihalas, where one can find a much longer and
much more complete discussion, especially in the area of relativistic effects.

6.1.1 Properties and Description of Radiation

Here we will build up our description from fundamentals. This corresponds
to the development of fluid theories beginning with the Boltzmann equation.
The analog of the distribution function, for radiation, is the spectral radiation
intensity, Iν , which has units of energy per unit area per unit time per unit
solid angle per unit frequency, or ergs cm−2 s−1 sr−1 Hz−1 in cgs units.
Thus, within differential elements of area (perpendicular to the direction of
propagation), time, solid angle, and frequency given by dA,dt,dΩ, and dν,
respectively, the increment of energy delivered is

energy = IνdAdtdΩdν. (6.1)

It should be evident that the spectral intensity is fundamentally related
to the Poynting vector. Working out the relationship is an interesting prob-
lem, but not one that we need to take up here. A fundamental and complete
description of radiation would have to describe the variations in Iν as a func-
tion of all these variables. Fortunately, much can be understood by working
with less-complete models. We will identify the radiation intensity, IR, as the
energy per unit area per unit time per unit solid angle in the radiation. That
is,

IR(x, t,Ω) =
∫ ∞

0

Iν(x, t,Ω, ν)dν, (6.2)

with cgs units of ergs cm−2 s−1 sr−1. The total intensity emitted by a black
body is the thermal intensity, B(T ), given by

B(T ) = σT 4/π ergs cm−2 s−1 sr−1. (6.3)

Useful values of σ are 1.03 × 1012 ergs cm−2 s−1 eV−4 or 1.03 × 105 J cm−2

s−1 eV−4.
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Homework 6.1

Integrate the thermal intensity over 2π steradians to find the total radiation
power per unit area from a surface at temperature T.

The radiation intensity is not necessarily uniform in direction, as hotter
regions generally emit more thermal radiation (though not necessarily more
radiation in atomic line emission, as we discuss below). It turns out that
quantities known as the mean spectral intensity, Jν , and mean intensity, JR,
are quite useful. These are defined as

Jν(x, t, ν) =
1
4π

∫
4π

Iν(x, t,Ω, ν)dΩ (6.4)

and
JR(x, t) =

1
4π

∫
4π

IR(x, t,Ω)dΩ. (6.5)

We will see how these quantities are important later in this chapter when we
discuss radiative energy transport.

No matter what the distribution of the radiation in angle, its energy den-
sity is an important property that appears in some of the dynamic equations.
In general the density of something is a ratio of flux to velocity, but in par-
ticular the mathematics depends upon the details. When material particles
move in many directions, as in a gas, their total energy density is much larger
than the directed energy of motion of the gas viewed as a fluid. Similarly, the
energy density of the radiation is not the net radiation flux divided by the
propagation speed. Instead, the radiation energy density, ER, is the integral
over solid angle of the radiation intensity divided by the group velocity. Thus,

ER(x, t) =
1
c

∫
4π

IR(x, t,Ω)dΩ =
4π

c
JR, (6.6)

in which we have made the nearly-always-valid assumption that the group
velocity is isotropic and is equal to c. There is of course a corresponding
spectral radiation energy density, given by

Eν(x, t, ν) =
1
c

∫
4π

Iν(x, t,Ω, ν)dΩ =
4π

c
Jν . (6.7)

The above quantities are similar to integrals of a particle distribution function
to find total density, distributions of speeds, and so on. There is a choice in
both cases regarding what variables to use to define the distribution. Particle
distributions could be defined by their energy density in a space of position,
direction, and energy, but it is generally more intuitive to use the number
density in a space of position and velocity. In contrast, one can treat photons
in terms of their number density, by dividing Iν by chν, and this is at times
useful. But it is generally more intuitive to work with their energy density in
a space of position, direction, and energy.
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Continuing the analogy with distributions of particles, we next discuss
the moments of the distribution of photons. By direct analogy, one would say
that the photon flux is

∫
4π

Iν(x, t,Ω, ν)
chν

vdΩ, (6.8)

in which v is the photon velocity vector. But the radiation energy flux, F R,
is generally more useful, and we know that the speed is c, so we write

F R(x, t) =
∫

4π

IR(x, t,Ω)ndΩ, (6.9)

in which n is a unit vector in the direction of propagation for any value of
Ω. Thus it varies as one integrates. The z-component of n, for example, is
cos θ in a standard spherical coordinate system. The cgs units of radiation
energy flux are ergs s−1 cm−2. It will come as no surprise that the spectral
radiation energy flux is

F ν(x, t, ν) =
∫

4π

Iν(x, t,Ω, ν)ndΩ, (6.10)

with units ergs s−1 cm−2 Hz−1. The radiation flux is a particularly important
quantity, because there is a large and important regime in which transport
of energy by radiation is crucial even though the energy density and pressure
of the radiation are negligible. The radiation flux is related to the radiation
momentum density. The total radiation momentum density is F R/c2, and
the spectral radiation momentum density is F ν/c2. Thus, the total radiation
momentum transport across an element of area, dA, is F R · dA/c.

Homework 6.2

Using the particle treatment of the radiation, derive an expression for the
total radiation momentum density, and show that it equals F R/c2.

As is the case with particle distributions, one can define further moments
of the radiation distribution function indefinitely. In practice, the second
moment is as far as one typically needs to go. The spectral radiation pressure
tensor, P ν , is defined in dyadic notation by

P ν(x, t, ν) =
1
c

∫
4π

Iν(x, t,Ω, ν)nndΩ. (6.11)

This is clearly a symmetric tensor since reversing the order of the compo-
nents of n does not change the integral. The integral of (6.11) over frequency
is the total radiation pressure tensor, P R. The transport of momentum by
radiation, in the absence of matter, is fundamentally described by
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1
c2

∂F ν

∂t
= −∇ · P ν . (6.12)

This is again perfectly natural, as one can see by integrating over a finite
volume and using Gauss’ theorem. It is worth noting that the left-hand side of
this equation is nearly always negligible in systems involving both radiation
and matter. The radiative contribution to the energy flux in a system of
radiation and matter is often large, but the material momentum nearly always
dominates over the radiation momentum. Even so, the radiative momentum
source (the right-hand side of this equation) can be the dominant momentum
source for the matter.

The radiation field often is symmetric in one of three ways that produce
simpler results for the radiation pressure. In general, the scalar spectral radi-
ation pressure pν is defined by

pν(x, t, ν) =
2π

c

∫ π

0

Iν(x, t, θ, ν) cos2(θ) sin(θ)dθ

=
2π

c

∫ 1

−1

Iν(x, t, µ, ν)µ2dµ.

(6.13)

Here we have evaluated the zz component of P ν , which equals the xx and
yy components. The integral of (6.13) over frequency gives the (total) scalar
radiation pressure, pR. If the radiation field is isotropic, then P ν is evidently
diagonal with three equal, nonzero elements. One then has

pν(x, t, ν) =
2πIν(x, t, ν)

c

∫ 1

−1

µ2dµ =
1
3
Eν , (6.14)

which is the simplest example in which one can see this relation between pres-
sure and energy density. In the isotropic case the divergence of the pressure
tensor in the momentum equation becomes the gradient of the scalar pressure,
∇ · P ν = ∇pν , just as occurs with material pressures. (One might protest
that a truly isotropic radiation field cannot have pressure gradients, because
local isotropy cannot be maintained without having a spatially uniform radi-
ation intensity. This is mathematically true. However, in practice, significant
pressure gradients can correspond to negligible anisotropy.) Treating the ra-
diation field as isotropic is for example justified in the diffusion regime, which
is of great importance and which we will discuss at length below.

Homework 6.3

Derive (6.14).

A second useful, symmetric case is the planar case, in which Iν varies
only in angle relative to one direction, and is isotropic in the two orthogonal
directions. In this case we choose the direction of variation as the z axis and
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write Iν = Iν(z, t, µ, ν) where again µ = cos θ. In this case the zz element of
P ν is again pν , and the xx element, Pxx, is

Pxx =
1
c

∫ 2π

0

∫ 1

−1

Iν(z, t, µ, ν)(1 − µ2)dµ cos2 φdφ

=
1
2
Eν − 1

2
pν = pν − 1

2
(3pν − Eν) ,

(6.15)

which is also equal to Pyy. Note that for an isotropic intensity or for any
angular distribution that yields Eν = 3pν , the pressure again reduces to a
scalar. In the planar case, the only nonzero derivatives are in the z direction,
so

∇ · P ν = (∂pν/∂z) ẑ, (6.16)

where ẑ is a unit vector in the z direction. In the third useful case, of spher-
ical symmetry, the diagonal components corresponding to the polar and az-
imuthal angles equal Pxx, and the radial component is again pν . In this case
the only nonzero derivatives are in the radial direction, so

∇ · P ν = [∂pν/∂r + (3pν − Eν)/r] r̂, (6.17)

in which r̂ is a unit vector in the radial direction.
Now consider in general terms the ratio of pν to Eν . This ratio is known

as the Eddington factor, fν = pν/Eν . The Eddington factor depends on the
angular variation of Iν , as is clear in (6.13). In the limit of a plane wave at fre-
quency ν, with irradiance (power per unit area) I, one would have Eν = I/c
and pν = (I/c2)c = I/c so in this case pν = Eν and fν = 1. A sufficiently
beam-like intensity distribution can have fν ∼ 1. The limit where the radi-
ation propagates freely with little interaction is known as the free-streaming
limit. In the free-streaming limit, fν will approach 1 as the distance from the
source increases. It is also clear from (6.13) that fν decreases as the distribu-
tion spreads in angle, reaching 1/3 when the distribution becomes isotropic.
In natural systems, fν typically varies between 1/3 and 1. Mathematically,
a “pancake-like” distribution, in which most of the energy was transverse
to the symmetry axis, would produce an Eddington factor below 1/3. This
could be achieved in an experiment designed for that purpose and might oc-
cur in nature if an extended, hot, source region were sandwiched between two
strongly absorbing regions.

It should be evident that one can define a total radiation pressure ten-
sor, P R, and a scalar radiation pressure, pR, by integrating the relations
above over frequency. This permits one to define an overall Eddington factor,
pR/ER. Some computational approaches to radiation transport are formu-
lated in terms of an Eddington factor, which can be an effective way to
improve the accuracy of a calculation without always dealing explicitly with
all the possible directions of radiation propagation.
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6.1.2 Thermal Radiation

Thermal radiation is very important even in systems with very nonequi-
librium radiation. The reason is that the electrons are responsible for the
emission of radiation, and the electrons very often develop a Maxwellian or
piecewise-Maxwellian distribution. In such cases, the spectral intensity of the
emitted radiation in some frequency range is proportional to the equilibrium
spectral radiation intensity at the temperature of the electrons that are re-
sponsible for the emission. Nearly all texts on modern physics or statistical
mechanics derive the properties of thermal equilibrium (or blackbody ) radia-
tion, so we need not repeat this here. By considering the relative probability
that a state will be occupied, the density of states in phase space, and the
two possible polarizations, one can show that the spectral thermal radiation
intensity, Bν(T ), is,

Bν(T ) =
2hν3

c2

1
ehν/(kBT ) − 1

, (6.18)

in which h is Planck’s constant. Here the subscript indicates that Bν(T )
is frequency dependent. Integrating over ν, one finds that the total thermal
radiation intensity, B(T ), is

B(T ) = σT 4/π, (6.19)

in which σ is the Stefan–Boltzmann constant. The energy density of the
radiation is

ER(T ) =
4π

c
B(T ) =

4
c
σT 4. (6.20)

Thermal radiation must be isotropic, so the pressure is a scalar and p(T ) =
ER(T )/3.

6.1.3 Types of Interaction Between Radiation and Matter

Having defined the variables necessary to describe the radiation in isolation,
we now are ready to ask how radiation and matter interact. This will prepare
us to consider the combined problem, known as the radiative transfer problem.
One can identify three fundamental types of interaction between radiation
and matter. The first of these involves bound–bound transitions, which one
encounters in elementary physics upon being introduced to the Bohr atom.
The electron in a Bohr atom is bound to the atom, but can transition among
the energy levels of the atom, known as “states.” The lowest energy state is
the ground state and all bound, higher-energy states are excited states. Radi-
ation can be emitted when the electron “decays” from a higher-energy state
to a lower-energy one. This is bound–bound emission, which is responsible
for the familiar Lyman and Balmer spectral series. The inverse process, com-
pared to decay, is excitation, in which an electron is given energy and moves
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from a lower-energy state to a higher-energy one. In general, both excitation
and decay require the involvement of at least one additional particle, other
than the electron and the atom or ion, to conserve energy and momentum.
This additional particle can be any type of particle including a photon. In
practice, certain particles tend to dominate the rate at which a specific decay
or excitation occurs. In low-density plasmas, a decay is nearly always radia-
tive and an excitation nearly always is produced by an electron collision. In
high-energy-density plasmas, both collisional and radiative decay often mat-
ter, collisions may move the electron from one excited state to another, and
radiative excitation will also be important if the radiation is near equilibrium
with the matter.

Bound–bound emission produces line radiation, whose frequency ν is given
by E∆ = hν, where E∆ is the energy difference between the levels and h is
Planck’s constant. The spectral width is quite narrow. Energy emitted from
one particle can be absorbed by a second particle, but only if the frequency
of the radiation as seen by the second particle overlaps a bound–bound tran-
sition in the second particle. Since any Doppler shift changes the frequency
seen by the second particle, the transfer of energy by repeated absorption
and emission involving bound–bound transitions can become complex.

Homework 6.4

From the uncertainty principle, the spectral width in frequency, ∆ν, of an
emission line is roughly the inverse of the decay time. For a typical decay
time of 1 ns, find the normalized spectral width ∆ν/ν, for emission lines in
the visible and in the soft x-ray with a photon energy of 100 eV.

The second fundamental type of radiation–matter interaction involves
the bound–free transition. The limiting energy of the bound states is the
ionization energy, given in the Bohr model in the limit that the principal
quantum number goes to infinity. In plasmas, continuum lowering may reduce
this, as was discussed in Chap. 3. When an electron is given energy that moves
it above the ionization energy, it becomes a free electron. It is then said to be
in the continuum, so called because the energy of the allowed states can vary
continuously. Just as in the case of bound–bound transitions, an electron can
decay from or be excited to a continuum state as a result of an interaction
with any particle including photons.

Thus, a photon can be absorbed by an atom or ion, releasing one of the
electrons through a transition from a bound state to a free state. This is
a major contribution to the absorption of x-ray photons by materials. Fig-
ure 6.3 shows the transmission of a thin layer of titanium. There is an abrupt
decrease in transmission at 4.7 keV, which is the lowest energy at which
the x-ray photon can pull an electron from the bound state whose principal
quantum number is n = 1 (the K-shell) into the continuum. This absorp-
tion feature is known as the K-edge. As the photon energy increases above
the K-edge, any absorbed photon will place the electron into a higher-energy



246 6 Radiative Transfer

2 4 6 8 10

0.2

0.4

0.6

0.8

1

X-ray energy (keV)

Tr
an

sm
is

si
o

n

Fig. 6.3. The transmission of a 5 µm thick titanium slab to x-rays

continuum state. The cross section for this process decreases as the energy
of the continuum state increases, which leads to the increase in transmission
as energy increases above the K-edge. The energy of the K-edge increases
with increasing atomic number. The next edge, with lower ionization energy,
is the L-edge. It corresponds to the extraction of an electron from the n = 2
shell. Higher-Z materials such as tin or rhodium have an L-edge in the 3 to
4 keV energy range. All solid materials become strongly absorbing at x-ray
energies below 1 keV, where bremsstrahlung (free–free) absorption becomes
large.

Alternatively, a photon can be emitted when an electron in the contin-
uum recombines with an ion. This produces an x-ray line near the K-edge,
as it is a much stronger process for electrons in continuum states with near
zero energy. On the low-energy side of this line, one may observe structure
resulting from electrons that recombine into an excited state and then decay
into the ground state. On the high-energy side of this line, one may observe
a continuous feature from electrons that make free–bound transitions from
higher-energy states in the continuum. The spectrum of free–bound radia-
tion, at energies just above the x-ray line, can in some cases be used as a
temperature diagnostic.

The third category of radiation–matter interaction involves free–free tran-
sitions. These transitions move an electron from one continuum state to an-
other. The interaction of a free electron with any other particle (including a
photon) produces a free–free transition. Such transitions often produce pho-
ton emission or absorption. Two of the most common and important free–free
interaction processes are bremsstrahlung emission and inverse bremsstrahlung
absorption. In bremsstrahlung, a particle (in practice, an electron) is accel-
erated by interaction with another charged particle (in practice, a nucleus),
and this results in the emission of photons. This is the primary source of
continuum emission from hot dense matter. In inverse bremsstrahlung, a
photon (or light wave) moves an electron past a nucleus. The interaction
with the nucleus randomizes the motion of the electron, which has the ef-
fect of extracting energy from the light. The absorption coefficient for inverse
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bremsstrahlung is discussed in Sect. 9.2. The high-energy limit of inverse
bremsstrahlung is Compton scattering, in which the photon–particle energy
exchange is quantized. Another free–free emission mechanism, important in
magnetized plasmas, is synchrotron emission.

6.1.4 Description of the Net Interaction of Radiation and Matter

Fortunately, one often need not explicitly account for every distinct interac-
tion of radiation and matter. Instead, one can obtain an adequate description
of many systems by considering the net total emission, absorption , and scat-
tering. We develop such a description here. Plasmas emit radiation, both
directly through the interactions of the particles, such as bremsstrahlung,
and indirectly by scattering radiation in angle and/or energy. We will write
the spectral emissivity, ην , as

ην(x, t,n, ν) = ηνth(x, t,n, ν) + ηνsc(x, t,n, ν), (6.21)

which has (cgs) units ergs cm−3 s−1 sr−1 Hz−1. In some writings, the term
spectral emission coefficient is used rather than spectral emissivity. Here the
spectral thermal emissivity is ηνth, which is an approximation assuming that
the particles have a single, Maxwellian energy distribution. A more general
and complete expression would explicitly include all the processes by which
all the particles in the system can emit radiation, including for example line
emission following collisional excitation and bremsstrahlung emission by high-
energy tails on the electron distribution. Note that the integral of this term
over frequency and solid angle gives the power loss rate of the matter in
the plasma due to radiation. The spectral scattering emissivity is ηνsc, which
includes all processes that scatter radiation in angle or energy. We will not
pursue this in any depth here, but in general this emissivity at a given angle
or energy depends on an integral over the radiation intensity present at other
angles or energies. Unlike the quantities discussed previously in this section,
this implies that the integral of (6.21) over frequency or angle is not straight-
forward, unless one can simply approximate the scattering term or ignore it
for some reason.

The rate of absorption of energy from radiation depends inherently on the
radiation intensity, so the energy absorbed must be an expression involving
the radiation intensity. We express the energy absorbed per unit volume per
unit time per unit solid angle per unit frequency as χνIν , in which χν is the
spectral total opacity in units of cm−1, also at times known as the spectral
extinction coefficient. In analogy with the case of emission, there is a spectral
absorption opacity, κν , for absorption by the particles, which contributes
to heating of the matter, and there is a spectral scattering opacity, σν , for
scattering by the particles, which changes the direction (and possibly the
energy) of the radiation. Thus

χν(x, t,n, ν) = κν(x, t,n, ν) + σν(x, t,n, ν). (6.22)
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Here again, the general interaction of radiation and matter may be much
more complex. In principle it may involve dielectric tensors and powers of
the electric field of the light waves. But for nearly all problems in high-
energy-density physics, it is sufficient to take the energy absorption rate to
be linearly proportional to the radiation intensity, as we do here.

In the following we will not specifically treat the emission, absorption ,
and scattering of radiation by spectral lines. In some contexts, these can be
approximated as an overall effective emissivity and opacity. In other contexts,
they must be treated explicitly. The methods will be similar to those discussed
here, but it will be necessary to treat each line discretely and to associate
Doppler shifts with all relative material motions.

Kirchoff’s law states that emission and absorption of radiation must be
equal in equilibrium, which today we would view as an application of the
principle of detailed balance to radiation emission and absorption. Mathe-
matically, we would write this as

ηνth(x, t) = κν(x, t)Bν(T ). (6.23)

Local thermodynamic equilibrium (LTE) is a state in which each species in the
plasma, including the radiation, has an equilibrium distribution of energies,
and in which the temperatures of these distributions are all equal. Plasmas
are in LTE if the photon mean free path for absorption (and the collisional
mean free paths) are very small compared to the gradient scale length of
the temperature and if any variations in time are slow compared to the time
required for an equilibrium distribution of ionization and excitation to be
established. Thus, a system must be quite dense or very large to establish
LTE. Some high-energy-density systems can be accurately described as LTE.
In some experiments, for example, a low-Z envelope is used to confine a
higher-Z material of interest, and this entire sample is maintained within an
equilibrium radiation environment long enough to be uniformly heated. This
places the material of interest in LTE.

Relation (6.23) is useful under other circumstances. Collisions are usu-
ally rapid enough that the distribution of electrons in a high-energy-density
system is Maxwellian. The thermal radiation emitted by these electrons is
accurately described by (6.23). The situation with regard to atomic line emis-
sion is more complicated, however. The intensity produced by line emission
cannot rise above Bν(T ), assuming the electron distribution is Maxwellian.
Also the emission from any excited states whose populations are maintained
at their equilibrium (Saha) values by electron collisions will be described by
(6.23). However, the excited states that interact with the tail of the electron
distribution, and with photons having long mean free paths, typically are not
in their equilibrium distributions. These states are not in LTE, (6.23) does
not accurately describe their emission, and an explicit non-LTE (NLTE) cal-
culation of their populations is necessary to accurately describe them. Unfor-
tunately, NLTE calculations are costly computations, so it has often proven
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necessary to use (6.23) even when it is not strictly applicable. Finally, note
that in many astrophysical systems photons are not confined; such systems
will nearly always be far from LTE.

6.2 Radiation Transfer

6.2.1 The Radiation Transfer Equation

The radiation transfer equation is no more than an accounting of the change
in radiation intensity due to sources and losses of radiation in a specific
element of phase space. In this case the phase space includes an element of
solid angle, dΩ, about a direction, n, an element of frequency, dν, about a
frequency, ν, and an element of volume of length ds and cross-sectional area
dA beginning at position x. The net rate that energy from this element of
phase space adds to the radiation intensity in some direction is the difference
between the rate that energy enters the element at x and t and the rate that
energy leaves it at x+nds, t+∆t, where ∆t = ds/c. Mathematically, we can
write this as[

Iν

(
x + nds, t +

ds

c
,n, ν

)
− Iν(x, t,n, ν)

]
dAdΩdν

=
[
1
c

∂Iν

∂t
+

∂Iν

∂s

]
dsdAdΩdν, (6.24)

which has units of energy per unit time. What causes this increase in intensity
is the difference between the total rate of energy emission from the medium
into the element of phase space, which includes scattering from other elements
of phase space, and the total rate of energy removal from the radiation by
absorption or by scattering into other elements of phase space. In terms of
the total spectral emissivity, ην , and the total opacity, χν , we can write
[
1
c

∂

∂t
+

∂

∂s

]
Iν(x, t,n, ν) = ην(x, t,n, ν)−χν(x, t,n, ν)Iν(x, t,n, ν). (6.25)

This is the “classical” equation of radiation transfer. It is perhaps most ac-
curately thought of as an equation for photons treated as particles, which
is an excellent approximation for the x-ray photons that carry the thermal
energy in high-temperature plasmas. Wave effects, including diffraction, re-
fraction, and polarization are ignored. Note that, unlike most of the equations
above, one cannot obtain an equation for the total intensity by integrating
this equation without making a severe simplifying assumption about the fre-
quency dependence of χν . Also note that this form of the equation will be
most useful when scattering, including absorption and reemission, is not a
central feature of the radiation dynamics. If, for example, the emissivity in-
cludes significant scattering from other angles (or other frequencies), then the
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emissivity involves an integral over Iν times a scattering coefficient and (6.25)
becomes an integro-differential equation. For example, the problem of radia-
tion transport through an expanding envelope, as in a supernova, introduces
just this sort of complexity. This issue is the origin of various standard aver-
aged opacities, such as the Rosseland mean and the Planck mean, discussed
below.

It is worthwhile for ease of applications to elaborate on ∂/∂s. From the
chain rule we can write

∂Iν

∂s
=

∂Iν

∂x
· ∂x

∂s
= n · ∇Iν +

∂n

∂s
· ∂Iν

∂n
, (6.26)

in which ∂/∂x is equivalent to the gradient operator. The second equality
follows because the jth component of the position vector, xj , along n is
xj = s cos αj , where the direction cosine for the jth component of x is αj . Of
course, n is the unit vector composed of these direction cosines. In a Cartesian
coordinate system, αj is fixed and only the first term on the right is nonzero.
In curvilinear coordinate systems, αj varies along s. This can lead to very
complicated expressions in general cases. In a standard spherical coordinate
system, for example, one needs three variables (r, θ, φ) to specify the location
of a point on the ray and in addition two variables (a polar angle Θ and an
azimuthal angle Φ) to specify the direction of the ray with respect to the local
radial direction. In a spherically symmetric system, such as a star treated as
a symmetric object, the location is fully specified by r. At any specific point,
the radiation intensity varies with direction, but it is symmetric about the
local radius vector. As a result, one needs a single angle, Θ, to specify the
local direction of the ray. Defining µ = cos Θ, one can show that

[
1
c

∂

∂t
+

∂

∂s

]
Iν(x, t,n, ν) =

[
1
c

∂

∂t
+ µ

∂

∂r
+

(1 − µ2)
r

∂

∂µ

]
Iν(r, t, µ, ν).

(6.27)

Homework 6.5

Derive (6.27)

6.2.2 Radiative Transfer Calculations

We have at last come to the end of our first task relating to radiative trans-
fer. We have defined the properties of radiation and of its interactions with
matter. We now face the problem of actually describing this interaction, and
of developing applied equations that will prove useful in various limits. In
many circumstances, the time derivative in (6.25) can be neglected, as the
motion of the radiation is effectively instantaneous in comparison with that
of the matter. Especially in these cases, but even in general, it can be useful
to normalize (6.25) by the opacity. To do so, we introduce a new variable
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known as the optical depth , τν , which is inherently a function of frequency.
We define an infinitesimal increment of optical depth as

dτν = χνds. (6.28)

Thus, the optical depth, at frequency ν, between point s and point so, is

τν =
∫ so

s

χν(s′)ds′. (6.29)

In applications, sign conventions are usually chosen so that the optical depth
is a positive quantity. This often takes care of itself. For example, if radiation
is propagating in the −z direction then ds = −dz and τν becomes the integral
of the opacity from smaller to larger z. A layer of material is said to be
optically thick (at some frequency) if τν  1, and optically thin if τν � 1.
All materials are optically thick at long enough wavelengths and optically
thin at short enough wavelengths. (We should also mention that the use of
optical depth and related terms is not always consistent in the literature and
can be misleading. In some experimental work, the transmission of a layer
may be given as its “optical depth.” In contrast, the optical depth of (6.29)
is the natural logarithm of the transmission. In optics, one encounters filters
designated by “O.D..” However, these initials stand for “optical density”, not
optical depth. Optical density is consistently defined as the logarithm to the
base 10 of the transmission.)

To complete the normalization of (6.25), we define the source function,
Sν , as

Sν = ην/χν . (6.30)

As an application of Kirchoff’s law, discussed above, the source function due
to a Maxwellian distribution of electrons is

Sν = Bν(T ). (6.31)

When this is the case, one can see by normalizing (6.25) that the spectral in-
tensity will be driven toward this equilibrium value as optical depth becomes
large. We will frequently constrain the electron distribution to be Maxwellian,
as opposed to specifying that the system be in equilibrium. For (6.31) to de-
scribe the emission, it is a necessary and sufficient condition that the electron
distribution be Maxwellian. This often occurs, and (6.31) often describes the
source function, even in systems that are far from complete equilibrium.

When we proceed to calculate the angular dependence of the spectral
intensity, the definition of τν in (6.29) becomes impractical, because it gives
a different value of τν for each direction of propagation through a layer of
some thickness. For planar systems in which quantities vary along the z axis,
it is practical to define dτν = −χνdz, so that dτν = −µχνds, where µ = cos θ,
with θ being the polar angle relative to the z axis. Then (6.25) becomes
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µ
∂Iν

∂τν
= Iν − Sν . (6.32)

Next we suppose that the thermal emission is given by (6.23), and that
the scattering is isotropic and elastic (or “coherent”), so that it does not
change the photon energies. Then we have

ην = κνBν + σνJν (6.33)

so
Sν = (κνBν + σνJν)/(κν + σν). (6.34)

Using this definition of ην , one can find from (6.25),

1
c

∂Iν

∂t
+

∂Iν

∂s
= κν(Bν − Iν) + σν(Jν − Iν). (6.35)

Integrating this equation in frequency one obtains

1
c

∂IR

∂t
+

∂IR

∂s
=

∫
κν(Bν − Iν)dν +

∫
σν(Jν − Iν)dν. (6.36)

It is often sensible to approximate the second term on the right-hand
side in this equation as negligible, either because the intensity distribution
is nearly isotropic, so Iν = Jν , or because the system is optically thin so
that it changes IR primarily by emission, or because the scattering is small
relative to the absorption. (However, in some astrophysical systems scattering
is large relative to absorption, especially when the radiation is dominantly
line radiation.) In the static limit, and with this approximation, we have

∂IR

∂s
= κ(B(T ) − IR), (6.37)

in which κ is a nonlinearly averaged absorption coefficient, approximately
equal to the Planck mean opacity, defined and discussed just below. Equa-
tion (6.37) may be needed to determine the angular variation in (and integral
of) the radiation intensity reaching some surface of interest in an application.
One important example is the calculation of the radiation intensity emerging
from an optically thin layer of material.

If instead one integrates (6.36) over all solid angle, then the second term
on the right vanishes identically. Note that this is equivalent to taking the
zeroth moment over angle of (6.25). In Cartesian coordinates, we find

∂ER

∂t
+ ∇ · F R = 4π

∫ ∞

0

dνκν (Bν − Jν) ≡ 4πκ (B − JR) , (6.38)

which relates the overall absorption of radiation to changes in the radiation
flux and energy density. Note that ∇·F R =

∫
(∂IR/∂s) dΩ. Equation (6.38) is

an equation for the radiation energy, although conceptually it is the analogue
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of the continuity equation for mass, in which the rate of change of a density
is related to the divergence of a flux and to sources. It is convenient, but
also intuitively sensible, that the scattering terms cancel out of this result.
The energy density is very often negligible, in which case this becomes a fairly
simple equation for ∇·F R. It is also important to note that (6.38) is only valid
for a static medium. In a moving medium, there are both a convective energy
flux and pdV work associated with the radiation, as discussed in Chap. 7.

Equation (6.38) also defines an absorption opacity, κ. One sees that κ is
again a nonlinear average over frequency of κν . This is one of several similar
averages that one encounters in simple calculations. The average in (6.37) is
also labeled κ, even though it represents a nonlinear average over Bν − Iν

rather than Bν−Jν . The reason we make no distinction here is that in practice
one seldom calculates either average. Unfortunately, one cannot evaluate κ as
defined unless one has already solved the problem of the radiation transport
and knows Iν and Jν . So to obtain practical solutions one must somehow
approximate κ. It turns out that, for systems to which it makes sense to
apply (6.37) or (6.38),

κ ≈ κP ≡ 1
B(T )

∫ ∞

0

dνκνBν . (6.39)

Here κP is the Planck mean opacity, which depends only on the equilib-
rium properties of a material, is often tabulated, and may be available in an
approximate functional form. Of course, one could develop iterative solutions
to either (6.37) or (6.38), in which one determined κ from an initial solution
assuming κ = κP . But if one actually needed to do this, one might be better
advised to employ a more-sophisticated radiation transport calculation from
the start.

One can proceed to take higher moments of the radiation transfer equa-
tion, to determine additional features of the radiation transport. We will not
make use of any of these in what follows, but for reference will include and
discuss here the radiation momentum transport equation, which is the first
moment in angle of (6.25), again integrated also in frequency. This gives

1
c2

∂F R

∂t
+ ∇ · P R =

1
c

∫ ∞

0

dν

∫
4π

dΩ (ην − χνIν) n. (6.40)

This equation greatly simplifies in most situations, as the first term on the left
is only significant for relativistic motions and as the emission nearly always
is isotropic and averages to zero. One then has on the right-hand side with
the radiation force density, fR, expressing the momentum imparted to the
matter by the radiation, as

fR =
1
c

∫ ∞

0

dν

∫
4π

dΩ (χνIν) n. (6.41)
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For isotropic scattering, and in the Eddington approximation, the spectral
force density is related to the spectral radiation pressure and spectral radia-
tion energy density by

∇pν = ∇ (fνEν) = −χν

c
F ν . (6.42)

This is the intuitively obvious result. Note also that this set of approximations
corresponds to diffusive radiation transport, in which the flux of radiation
energy is proportional to the gradient of the density of radiation energy.

Homework 6.6

Take moments of the radiation transfer equation to derive (6.38) and (6.40).

Note at this point that the situation with regard to closure of the radi-
ation equations is identical to that for the particle equations. Each moment
equation introduces the next higher moment, so one will need some additional
assumption, such as an “equation of state” for the radiation in order to close
the equations. The use of an Eddington factor, relating radiation pressure
and energy density, is one way to achieve this closure.

It is both straightforward and worthwhile to obtain solutions to the time-
independent radiation transfer equation. First, note that (6.25) has an inte-
grating factor, which is just exp(−τν). With this realization, integrating and
simplifying this equation gives

Iν(xo + ns) = e−τν(0,s)Iν(xo) +
∫ s

0

Sν(xo + ns′)e−τν(s′,s)ds′, (6.43)

where the optical depth τν(a, b) is the integral of χν along n from s = a to
s = b. This shows how the intensity at some propagation distance s from an
initial point xo (where s = 0) is the transmitted intensity from xo plus the
attenuated contribution from the emission at each intervening point.

For planar systems, with ds = dz and dτν = χνdz, and τν = 0 at a
specified value of z, one obtains

Iν(τν) = e−(|τν−τo|/µ)Iν(τo) +
∫ τo

τν

Sν(τ ′)e−(|τ ′−τν |/µ) dτ ′

µ
. (6.44)

This equation is essentially identical to the previous one, except that it ac-
counts for the variation in optical depth with angle through the introduction
of µ = cos θ. For applications in which an approximate treatment of the total
intensity is relevant, one can define dτ = κdz and integrate (6.37) to find

IR(τ) = e−|τ−τo|/µIR(τo) +
∫ τ

τo

B(τ ′)e−|τ−τ ′|/µ dτ ′

µ
. (6.45)

We will use this in the next chapter.
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Fig. 6.4. The specific Planck mean opacity of Al versus electron temperature, with
the curves from bottom to top showing densities in g/cm3 of 10−6, 10−4, 10−2, 1,
102, and 104 (based on LANL SESAME table 13710)

6.2.3 Opacities in Astrophysics and the Laboratory

Opacities are often tabulated as specific opacities, which can be approxi-
mated as power laws in density and temperature. The density dependence of
the specific opacity is typically weak at densities of interest for high-energy-
density physics. Figure 6.4 shows the Planck mean opacity of Aluminum from
one standard set of tables (this is LANL SESAME table 13710). There are a
number of interesting features in this table. First, note that in the range of
density (1–100 g/cm3) and temperature (10 eV–1 keV) typically of interest
in high-energy-density experiments, the density dependence of the opacity
is very weak. This is the origin of the standard formula given below. Sec-
ond, note that the absorption peak near 30 eV in temperature associated
with the second ionization (producing neon-like aluminum) is so strong that
in this temperature range the opacity depends very weakly on density even
at lower densities. Third, at lower densities and at higher temperatures the
curves separate, and the opacity becomes proportional to density squared.
This is the regime in which two-body interactions dominate the absorption
(and emission).

Here are some approximations to the specific Planck mean opacity, κm,
based on a standard set of tables (the SESAME tables):

κm ≈ 2 × 105 T−1
eV cm2/g for CH

κm ≈ 3 × 106 T−1
eV cm2/g for Al (6.46)

κm ≈ 3 × 109 T−2
eV cm2/g for Xe.

The scaling of the opacity is different in low-density systems, where the ab-
sorption and emission may be dominated by bound–bound transitions and
line radiation. The net emission from low-density astrophysical plasmas is
often described using a cooling function. The cooling function Λ is the power
loss per unit volume per unit electron density per unit ion density. Thus, the
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Fig. 6.5. Typical astrophysical cooling functions. The overall shape does not vary,
but the location of the minimum depends upon the density of elements above He.
The primordial case has only H and He while the other two cases have solar or
10% solar concentrations of such heavier elements, as indicated. Adapted from
Sutherland and Dopita

power loss per unit volume is neniΛ, and one can see that Λ has units of ergs-
cm3/s or equivalent. The discussion in Sect. 7.2.2 shows that the relation of
the absorption opacity to the cooling function is κ = neniΛ/

(
2σT 4

)
. Using

typical numbers of ne ∼ ni ∼ 10 cm−3, Λ ∼ 10−22, ergs cm3/s, and T = 10
eV, one finds κ ∼ 5×10−37 cm−1, or about 10−19 parsec−1. Figure 6.5 shows
typical astrophysical cooling functions, based on results in Sutherland and
Dopita. These particular results correspond to a model assuming that the
distribution of ionization states is in an equilibrium determined by collisions.

Laboratory measurements can determine opacities under material con-
ditions that are the same as those present in some astrophysical systems.
Indeed, they are essential for this. We saw in the case of EOS that such
measurements under identical conditions was all one might hope for. The sit-
uation with regard to opacity is somewhat better, because opacities depend
fundamentally upon quantum-mechanical processes within atoms. (In con-
trast, the EOS depends in part upon chemical interactions among groups of
atoms.) The quantum-mechanical processes can be reliably scaled from one
atom to another in computations. This is especially true along isoelectronic
sequences, for which the number of electrons attached to the nucleus is the
same. Such scalings may break down when the difference in nuclear charge
becomes too large, introducing new issues such as relativistic effects into the
calculation. The net effect is that laboratory measurements are essential in
determining those opacities that can be measured. In addition, these results
can validate computational approaches to calculating opacity of other ele-
ments, when such calculations can be scaled to the experiment.

The radiative transfer of energy through a star or a supernova is an exam-
ple of a process that is complicated and three-dimensional, that is difficult
to model, and that cannot be evaluated in a static experiment. Exploding
stars create a homologous expansion, with velocity, v, radial distance, r, and
time, t, related by v = r/t. As a result, each radiating region resides in a



6.2 Radiation Transfer 257

velocity gradient and sees plasma receding from it in all directions. In other
words, the absorbing regions are always red shifted relative to the emitting
regions. The relative motion of any two locations creates Doppler shifts that
move any specific emission line out of resonance with itself and (perhaps) into
resonance with other lines. For photons emitted in one region to escape the
star, they have to pass through “windows” in opacity, where the absorption
probability is low. An adequate radiative transfer calculation must include
the effects of the Doppler shifts in the opacity line and edge locations, due
to the expansion. In due course, laboratory observations may prove to be of
great value because of the near-impossibility of incorporating a fully correct
treatment of radiative transfer into a computer simulation of an entire sys-
tem. Experimental examples will be needed to validate (or invalidate) various
possible approaches.

At this writing a number of experiments have been conducted to mea-
sure the LTE opacities of a variety of materials (e.g., Fe, Ge, Na, Al) at
temperatures in the range of 10–75 eV and densities of 10–50 mg/cm3,
using either lasers or Z-pinches as the energy source. We discussed above
the difficulty of obtaining LTE conditions and this is a key issue for all of
these experiments. The most common approach uses hohlraums (see Sect. 8.2)
to provide an equilibrium radiation environment free of energetic electrons
or strong nonthermal emission, either of which could alter the conditions
of the sample. Measurement of this temperature is an essential detail. The
sample is “tamped” by surrounding it with a low-Z material. This prevents
rarefactions from reaching the sample and constrains it so that its density
remains uniform and changes slowly. At a chosen moment, one produces a
source of high-energy radiation that enters the hohlraum through a small
hole, irradiates the sample, and exits the hohlraum through another hole.
By making spectral measurements of this radiation, both through the sam-
ple and around the hohlraum, one can determine the spectral transmission
through the sample and thus the total spectral opacity.

As an example (1992), we show in Fig. 6.6 the results of this type of
measurement of the opacity of Fe at Te = 59 eV and ρ = 11 mg/cm3. The
electron temperature was measured using the spectrum from a Na dopant.
The 1D radiographic spatial imaging gave the sample density of the thin
Fe foil (sandwiched between tamping layers). Hence, the opacity of Fe was
measured for known conditions of Te and ρ. The experimental results shown in
Fig. 6.6 were compared with several different opacity calculations employing
different approximations. The conclusion of this work was an unambiguous
demonstration of the need to include quantum-mechanical term splitting in
the opacity calculations. Models that neglect this, such as DCA (panel e),
significantly underpredict the opacity.
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Fig. 6.6. Iron transmission spectra. Comparison of data (gray line) and calculations
for a plasma of 80.2% Fe plus NaF, of density 0.0113 g cm−3 and areal density 339
µg cm−2 at a temperature of 59 eV. The various models are described in Springer
et al. (1992). Reproduced with permission

6.2.4 Radiation Transfer in the Equilibrium Diffusion Limit

The discussion to this point has not assumed that the radiation is in equi-
librium with the matter, or that the radiation mean free path is short. That
is to say, we have not assumed that the system is in LTE. Yet there are
cases in which an LTE description is justified, such as a stellar interior or
an experiment in which an equilibrium region has been created. There are
also far more cases in which an LTE description may be the only way to
obtain an approximate answer through a tractable calculation. To describe
these systems, we will consider the radiation properties to be a function of
optical depth. We will take the point of view that the temperature can vary
slowly, but only so slowly that the temperature change is negligible over a
distance of one radiation mean free path (i.e., χ−1

ν ). In LTE, as in other cases
with Maxwellian electron distributions, the radiation source is the thermal
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source, Sν(τν) = Bν(τν). If the temperature were constant, then the solution
to (6.32) would be that Iν(τν) = Bν(τν). As a result Jν(τν) = Bν(τν) and
(6.35) would imply that there is no radiation flux. But suppose instead that
there is a temperature gradient, small in the sense described above so that
Sν can be described by a Taylor expansion relative to some initial location,
τν , as

Sν(τ ′
ν) =

∞∑
n=0

∂nBν(τν)
∂τn

ν

(τ ′
ν − τν)n

n!
. (6.47)

Equation (6.44) can then be integrated with τν → ∞ to find Iν(τ, µ), again
with µ = cos θ, giving

Iν(τν , µ) = Bν(τν) − µ
∂Bν(τν)

∂τν
+ µ2 ∂2Bν(τν)

∂τ2
ν

+ · · · . (6.48)

Note that for forward-going radiation (µ > 0), if ∂Bν/∂τν > 0 then Iν is
smaller than the local value of Bν . This is as it should be. One can then
apply the definitions of Jν ,Pν , and Fν to obtain

Jν(τν) = Bν(τν) +
1
3

∂2Bν(τν)
∂τ2

ν

+ · · · , (6.49)

pν(τν) =
4π

3c
Bν(τν) +

4π

5c

∂2Bν(τν)
∂τ2

ν

+ · · · , (6.50)

and

Fν(τν) = −4π

3
∂Bν(τν)

∂τν
− 4π

5
∂3Bν(τν)

∂τ3
ν

− · · · . (6.51)

Homework 6.7

Beginning with (6.47), derive (6.48) to (6.51).

Note that the leading term in the spectral radiation flux is the first deriv-
ative of Bν , which is small compared to Bν . However, the radiation flux is
c times the pressure (or c/3 times the energy density), while the material
energy fluxes are a much smaller multiple of the material energy density. As
a result, here again the radiation flux can become important at much lower
temperatures than those at which the radiation pressure does. If we recog-
nize that Bν is a function of T only and that T varies with position, and we
keep only the first term in (6.51), then we are led to write the total radiation
energy flux as

F R = −4π

3

[∫ ∞

0

1
χν

∂Bν

∂T
dν

]
∇T. (6.52)

This involves a rather different average than the Planck mean and absorption
opacities discussed above. Specifically, the Rosseland mean opacity is defined
by
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1
χR

≡
∫∞
0

1
χν

∂Bν

∂T dν∫∞
0

∂Bν

∂T dν
=

[
∂B

∂T

]−1 ∫ ∞

0

1
χν

∂Bν

∂T
dν, (6.53)

from which

F R = −4π

3
1

χR

∂B

∂T
∇T = −16σT 3

3χR
∇T ≡ −κrad∇T. (6.54)

We will call this the Rosseland heat flux. This equation defines the coeffi-
cient of radiative heat transport, κrad, valid only in the equilibrium diffusion
limit. It is worth noting that the Rosseland heat flux is the equilibrium heat
flux, σT 4, multiplied by a small quantity. The small quantity is the fractional
change in temperature per unit optical depth, defined here as (3/16) χR times
distance. Some characteristic values of χR/ρ, in cm2/g, for near-solid densi-
ties, are

χR/ρ ≈ 2 × 106ρ1/7T−2
eV for CH

χR/ρ ≈ 3 × 106T
−4/3
eV for Al

χR/ρ ≈ 2 × 108T−2
eV for Xe

χR/ρ ≈ 6 × 106ρ0.3T
−3/2
eV for Au.

(6.55)

Again these are from the SESAME tables (but from Lindl for Au). Note that
with these values κrad scales as T 4 to T 5. In astrophysical regimes where the
cooling function has a negative slope, κrad scales somewhat more rapidly, as
T 6 to T 7.

The thermal diffusive limit is actually more restrictive that it would ap-
pear from the above derivation. If we substitute from (6.49) for Jν into (6.38),
which assumes only that the scattering is isotropic, and if we further assume
that the variation in the opacities on the scale of the temperature gradient
is negligible, we find

∇ · F R = −4π

3
∇ ·

[∫ ∞

0

dν
κν

χ2
ν

∂Bν

∂T

]
∇T. (6.56)

This result is only consistent with (6.52) if the scattering opacity is much
smaller than the absorption opacity, so that κ/χν ∼ 1. Pause a moment here.
This is truly a bizarre result, because the derivations for equilibrium diffu-
sion seem completely general. Yet the calculation leading to (6.56) is more
fundamental, and only produces the same result in the case of small scatter-
ing. The solution to this dilemma is as follows. LTE can only exist, in the
presence of a temperature gradient, if scattering is much smaller than absorp-
tion. Otherwise the photons are transported down the density gradient much
faster than the material is heated, which will drive the radiation “tempera-
ture” out of equilibrium with the material temperature. Absorption may be
larger than scattering if free–free transitions, notably bremsstrahlung and in-
verse bremsstrahlung, dominate the radiation–matter interactions. This may
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often be the case in high-energy-density plasmas. But when bound–bound
transitions dominate the radiation–matter interactions then scattering will
dominate and LTE will be much less likely to occur.

Homework 6.8

Derive (6.56). Discuss the result.

6.2.5 Nonequilibrium Diffusion and Two-Temperature Models

The consequence of the discussion above is that there may be circumstances
in which the radiation transport is diffusive but the radiation and the matter
are not in equilibrium. Such systems are in fact quite common, both in the
laboratory and in astrophysics. The simplest treatment of them treats the
radiation transport as diffusive but does not assume that ER = 4πB(T )/c,
where T is the material temperature. Thus, from (6.42), the spectral radiation
flux is

F ν = − c

3χν
∇Eν , (6.57)

and the total radiation flux is

F R = − c

3

∫ ∞

0

∇Eν

χν
dν = − c

3χ̄
∇ER, (6.58)

which defines an averaged opacity, χ̄, that might be approximated as the
Rosseland mean opacity.

In this case we will anticipate our work in Chap. 7, including fluid motion
and radiation–fluid energy exchange in our result. For this purpose, we can
extract the radiation terms from the equation for the internal energy of the
gas and radiation (7.4), ignore heat conduction, use (6.58) for the radiation
flux, take pR = ER/3, and include the radiation–matter energy exchange to
obtain

DER

Dt
− 4ER

3ρ

Dρ

Dt
= ∇ ·

(
c

3χ̄
∇ER

)
+ 4κP σT 4 − cκEER, (6.59)

in which D/Dt is the convective derivative (see Chap. 7) and

κE =
∫ ∞

0

κνEνdν
/∫ ∞

0

Eνdν (6.60)

is yet another averaged opacity, perhaps of order κP . It is common to assign
a “temperature” to the radiation, defined by ER = 4σT 4

R/c, so that (6.59)
becomes an equation for the radiation temperature,

D

cDt
(σT 4

R) − 4σT 4
R

3ρ

Dρ

cDt
= ∇ ·

(
4σT 3

R

3χ̄
∇TR

)
+ κP σT 4 − κEσT 4

R. (6.61)
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There is a corresponding, simultaneous equation for the internal energy
of the gas:

ρ

[
Dε

Dt
− p

ρ2

Dρ

Dt

]
= 4κEσT 4

R − 4κP σT 4, (6.62)

which we can recognize as the generalization of the purely hydrodynamic
equation for energy to include sources and losses of energy from exchange
with radiation.

6.3 Relativistic Considerations for Radiative Transfer

While there are some systems in the universe, such as pulsar envelopes or ex-
periments with lasers at 1021 W/cm2, that are manifestly relativistic, most
laboratory and astrophysical systems seem at first glance manifestly nonrela-
tivistic. This, however, is often not true in at least two senses. First, because
spectral lines are very narrow, often having a normalized line width of order
10−4, Doppler shifts can complicate the transport of energy by line radiation
at velocities as small as 10−4c. Second, the Lorentz transformation between an
observer and a fluid, or between different parts of a fluid, introduces terms in
all orders of v/c, where v is a velocity difference between frames of reference.
But the moments of the nonrelativistic transfer equations already contain
terms that differ from one another by v/c, and the terms that are first order
in v/c at times become the dominant ones (for example if FR/ER < v/c).
As a result the leading relativistic terms, which are of order v/c, may con-
tribute as much to the radiative transfer as the nonrelativistic terms in the
equations. It turns out that the terms which matter, to this order, are just
those one would find from Galilean relativity.

We will not attempt a derivation of all the relations among relativistic ra-
diative transfer equations here. This is a large project, carried out for example
in Mihalas and Mihalas and references therein. Our goal, instead, is to in-
troduce the relativistic effects, discuss their origin, and discuss the equations
that result.

In discussing relativistic effects, we will write equations that relate quan-
tities in two frames of reference. The first frame, designated by the subscript
o, is the frame that is at rest locally within the fluid. This is the frame in
which the microscopic interactions of radiation and matter are correctly de-
scribed by nonrelativistic equations, sometimes known as the proper frame.
For example, emission from random processes is isotropic only in this frame.
The second frame, designated by no special subscript, is in motion with ve-
locity v relative to the first frame. Recalling that the phase space of radiation
intensity involves radiation (or photons) of frequency ν and direction n, the
Doppler shift and aberration are given by

νo = γrν(1 − n · v/c) (6.63)
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and

no =
ν

νo

[
n − γr

v

c

(
1 − γrn · v/c

γr + 1

)]
(6.64)

in which γr is the relativistic contraction factor, γr = 1/
√

1 − v2/c2. The
inverse transformations of these quantities are

ν = γrνo(1 + n · v/c) (6.65)

and

n =
νo

ν

[
no + γr

v

c

(
1 +

γrno·v/c

γr + 1

)]
. (6.66)

There are some aspects of these equations worth noting from the stand-
point of radiation transport. First, the Doppler shift depends on direction, so
that local emission in some frequency band appears distributed into a range
of frequencies when viewed in a moving frame of reference. Second, the mea-
sured direction depends on the frame of reference, so that isotropic emission
in the local frame of reference does not appear isotropic in another frame
of reference. The well-known “beaming effect” is present in (6.66) – as γr

becomes large, the radiation all is observed to lie near the direction of v in
the moving frame.

It is very helpful in working with relativistic systems to identify which
quantities are Lorentz invariant, as this greatly facilitates the conversion be-
tween frames of reference. From the above equations, one can show that

νdνdΩ = νodνodΩo. (6.67)

Homework 6.9

Demonstrate this.

In addition, photon number in a given volume must be independent of
frame of reference, from which one can obtain several relations of use in
radiative transfer. Specifically,

Iν(µ, ν)/ν3 = Iνo(µo, νo)/ν3
o , (6.68)

η(µ, ν)/ν2 = ηo(µo, νo)/ν2
o , (6.69)

and
νχ(µ, ν) = νoχo(µo, νo). (6.70)

Homework 6.10

Given these relations, show that the radiative transfer equation is relativis-
tically invariant.
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It may also be worthwhile for reference to provide here the result of the
Lorentz transformation from the frame moving with the material to the frame
of an observer moving at velocity v relative to the material, in planar geom-
etry, for the moments of IR. These are

ER = γ2
r

(
ERo + 2

v

c

FRo

c
+

v2

c2
pRo

)
≈ ERo + 2

v

c

FRo

c

FR = γ2
r

[(
1 +

v2

c2

)
FRo + vERo + vpRo

]
≈ FRo + vERo + vpRo

pR = γ2
r

(
pRo + 2

v

c

FRo

c
+

v2

c2
ERo

)
≈ pRo + 2

v

c

FRo

c
,

(6.71)

in which the second approximate equality gives the result to order v/c.
In the context discussed above, our interest here is in the relativistic effects

that are first-order in v/c. Dealing with strong relativistic effects is beyond
our scope. The fact that the radiative transfer equation is relativistically
invariant has less utility than we might wish for, because the emission and
opacity are very inconvenient in frames of reference in which they are not
isotropic in angle and frequency. This leads us to always want to evaluate
these quantities as functions in the local frame. So our first task is to obtain
a relation between the spectral intensity in an arbitrary inertial frame and
the plasma properties in a local frame, to first order in v/c. Accordingly, we
take

ν = νo(1 + n · v/c), (6.72)

from which one can relate the emission or opacity in the moving frame to the
corresponding quantity in the local frame, evaluated at the same frequency,
as

χ(n, ν) = χo(ν) − (n · v/c) [χo(ν) + νo(∂χo/∂ν)] (6.73)

and
η(n, ν) = ηo(ν) + (n · v/c) [2ηo(ν) − νo(∂ηo/∂ν)] . (6.74)

From these, one can obtain the radiative transfer equation, in Cartesian co-
ordinates, for an inertial frame, as

1
c

∂Iν(n, ν)
∂t

+ n·∇Iν(n, ν) = ηo(ν) − χo(ν)Iν(n, ν)+
(n · v

c

)[
2ηo(ν) − ν

∂ηo

∂ν
+

(
χo(ν) + ν

∂χo

∂ν

)
Iν(n, ν)

]
.

(6.75)

Homework 6.11

Derive (6.73), (6.74), and (6.75). Discuss the limits on v/c for this specific
description if the emission and absorption are dominated by (a) continuum
emission or (b) line emission.
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In (6.75) we have achieved our goal of relating the spectral intensity in a
moving, inertial frame to the plasma properties in a local frame where they
are angularly symmetric. By taking moments of this equation, as above one
can obtain the following equations for the radiation energy and momentum:

∂ER

∂t
+ ∇ · F R =

∫ ∞

0

[4πηo(ν) − cχo(ν)Eν ] dν+

v

c
·
∫ ∞

0

[
χo(ν) + ν

∂χo

∂ν

]
F νdν

(6.76)

and

1
c2

∂F R

∂t
+ ∇ · P R =

−1
c

∫ ∞

0

χo(ν)F νdν +
4πv

c2

∫ ∞

0

ηo(ν)dν

+
v

c
·
∫ ∞

0

[
χo(ν) + ν

∂χo

∂ν

]
P νdν. (6.77)

In the first of these equations, for example, the second term on the right-
hand side is new by comparison with (6.38). It can be essential. In the diffu-
sion regime, for example the two components of the integral in the first term
on the right-hand side are nearly in balance, differing only because of the
relativistic shift of Eν between the reference frame and the local frame. The
net remaining value of the first term is of the same order as the second term.

The ability to work with radiation in an inertial frame of reference moving
at a fixed velocity relative to a specific volume of plasma may be of use, but
is in fact insufficient for typical radiation hydrodynamic problems. What one
actually needs is the ability to always treat the radiation in the local frame
of reference, so the emission and opacity are isotropic, even as the plasma
velocity changes from place to place. An analysis in which one continuously
transforms the frame of reference as the radiation moves through the plasma
is described as an analysis in the comoving frame. This name is rather mis-
leading however, as it represents no fixed frame of reference and as any given
frame of reference may be accelerating and therefore not an inertial frame.
Instead, the “comoving frame” represents a continuously varying sequence of
frames of reference that are always at rest in the local plasma. This has the
effect of introducing terms into the radiation transfer equation that depend
upon the local fluid velocity, u, derivatives of the local fluid velocity, and
the local acceleration, a. We will not work through this derivation here (see
Mihalas and Mihalas) but will provide the resulting first two moments of the
radiative transfer equation, which are

ρ
D

Dt

(
ERo

ρ

)
+ ∇ · F Ro + P Ro: ∇u +

2
c2

a · F Ro

=
∫ ∞

0

[4πηo(νo) − cχo(νo)Eνo] dνo (6.78)

and
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ρ

c2

D

Dt

(
F Ro

ρ

)
+ ∇ · P Ro +

1
c2

F Ro·∇u +
1
c2

(ERoa + a · P Ro)

= −1
c
·
∫ ∞

0

χo(νo)F νodνo. (6.79)

In these equations the velocity terms mentioned above have been compactly
expressed through the division by ρ in the convective derivative and the terms
involving the tensor ∇u. Also, P Ro : ∇u is dyadic notation and could also be
written as (P Ro ·∇) ·u. Recall that these equations are only accurate to order
u/c. Mihalas and Mihalas give more general results in the nonaccelerating
limit of special relativity.

Comparing (6.78) with (6.38) and its derivation, one can see that one
would recover the latter from the former for a stationary medium with
isotropic scattering. The terms involving ρ and u in these equations arise
from the flux of radiative energy due to fluid motion and from adiabatic
work done by the radiation and the fluid upon one another. We could have
obtained these terms from a nonrelativistic derivation, but would have been
unsure of their correctness. The good news is that Galilean intuition suffices
for systems in which u � c. As mentioned above, these effects may not be
negligible. In particular uERo can exceed FRo under some circumstances. To
properly treat radiation in higher-velocity systems would require that one
revisit the derivation of radiative transfer under the conditions of interest.

Homework 6.12

Rework (6.78) into the form of a conservation equation and discuss the mean-
ing of the terms that result.
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It is fair to say that we never directly experience radiation hydrodynamic
phenomena – that is, phenomena in which the radiation directly participates
in the hydrodynamic evolution of a system. We do experience consequences
of radiative heat transport, as for example when heating by solar irradiation
produces wisps of fog above a wet road. And we are aware of some systems,
such as solar sails, in which radiation directly causes material motion. But
as we shall see, radiation hydrodynamic phenomena require temperatures of
millions of degrees, more or less, so they are outside the realm of our direct
experience.

One would like to know when radiation affects hydrodynamics in impor-
tant ways. This requires either that the radiation flux becomes comparable
with the material energy flux or that the radiation pressure becomes compa-
rable with the material pressure. Thus our first goal is to see when radiation
hydrodynamics matters.

To find the conditions under which radiation affects hydrodynamics by a
simple calculation, one must make some assumptions. Assume that the elec-
tron temperature and the radiation temperature are comparable and equal
to T . If the ion temperature matters, which it often does not, we also assume
it to be not too far from T . Further assume that the systems of interest are
optically thick, which matters in determining the radiation flux but also in
keeping the temperatures comparable. Under these conditions, the radiation
flux is σT 4. We can evaluate the material energy flux by examining (2.4),
finding it to be ρu[ε+(u2/2)+(p/ρ)], where u is some characteristic velocity.
Here we take u to equal the sound speed cs – any other reasonable number will
be within a small enough multiple of cs that the results will not be affected.
For the specific energy of the material, ε, we use the hydrogenic model dis-
cussed in Chap. 3. For specific conditions, we can then identify the boundary
in temperature above which the radiation flux dominates. Similarly, taking
the radiation pressure from (6.20) and the material pressure from (3.1), we
can identify the boundary in temperature above which the radiation pressure
dominates.
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Fig. 7.1. Radiation hydrodynamic regimes. The gray curves are for Xe and the
black curves are for CH

Homework 7.1

Carry out the calculations just described and compare the behavior of pure
hydrogen as opposed to C1H1 (used in Fig. 7.1).

Figure 7.1 shows the results of such a calculation for C1H1, assumed to
be fully ionized, and for Xe, assumed to be ionizing with Z = 0.63

√
T . In

the region to the right of a solid line, the radiation flux exceeds the material
energy flux. In the region to the right of a dashed line, the radiation pres-
sure exceeds the material pressure. This is the radiation-dominated regime
discussed briefly in Chap. 3. One sees that Xe is more radiative than C1H1;
the Xe curves are displaced to lower temperature. This is no surprise. Xe has
A = 131.3 and Znuc = 54. Over this range of temperatures it still has elec-
trons in s, p, d, and f shells, allowing very many x-ray transitions, while the
C has only six electrons. The C1H1 is assumed to be fully ionized; accounting
for the internal energy of the C properly would move the solid black curve
slightly to the right. Leaving aside the fine details, one can see that radiation
fluxes become important at temperatures of tens of eV, and that the exact
value depends on details. The plasma becomes radiation-dominated at tem-
peratures of hundreds of eV, again with exact values depending on details. In
the important case of plasmas near 1 g/cm3 in density, it takes temperatures
of about 2 keV to make the plasma radiation-dominated.

Stellar interiors include regions in which radiation affects the hydrody-
namics. This is not surprising as the essential behavior of stars is to release
energy in their cores and then to radiate it away from their surfaces. As a
result, radiative fluxes must exceed material energy fluxes, and they do, for
example, in the sun. Figure 7.2 shows results of a simulation of the sun. A
convective zone exists because diffusion of the radiation is not fast enough to
transport the energy generated by nuclear fusion to the solar surface. Larger,
hotter, stars include regions in which the radiation pressure exceeds the ma-
terial pressure. In addition, all supernovae heat the stellar interior into the
radiation-dominated regime, where it stays until it cools sufficiently through
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Fig. 7.2. Cut-away view of the Sun. Energy is released by fusion in the core, propa-
gates by radiative transfer in the radiative zone, and drives radiation-hydrodynamic
convection in the convection zone. From Sun, in the Encyclopedia of Planetary Sci-
ences, Chapman & Hall, 1997, used with permission

volumetric expansion. Some dense astrophysical environments, such as neu-
tron stars and black hole regions, can be strongly radiation-dominated, and
even relativistic. Here we will not consider the relativistic cases, as laboratory
experiments are a long way from accessing them.

Interstellar astrophysical systems, including the interstellar medium, in-
terstellar shocks, and molecular clouds, have densities more than 15 orders of
magnitude below those shown in Fig. 7.1. The curves there make it appear
that such systems would be in a radiative regime. However, such interstellar
astrophysical systems violate a key assumption of this figure. They always
have very small optical depth. The radiative flux from an optically thin sys-
tem, for thermal emission, equals κdσT 4, where κ is the absorption opacity
of the system and d is its size. However, many optically thin systems, es-
pecially in astrophysics, produce primarily line emission, in which case κd
would be an appropriate average over the spectral variation of the optical
depth and thermal spectrum. (The relation of κ and the cooling function,
Λ, is discussed in Sect. 7.2.2) Moreover, at low density the opacity decreases
as density squared while the material energy fluxes decrease linearly with
density. In this regime, the temperature required to enter radiative regime
must increase as density decreases. Curiously, this increases the shock veloc-
ity required for radiation fluxes to be significant into the range of >100 km/s,
which is just where it is for laboratory experiments with foams or dense gas.
The small optical depth and lack of sources or boundaries also implies that
the radiation “temperature” remains decoupled from and much smaller than
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the electron temperature. As a result, the radiation pressure never exceeds
the material pressure in interstellar astrophysical systems and the radiation-
dominated regime is genuinely difficult to reach in experiments.

However, the radiation flux may at times be essential to the dynamics
of such systems even at densities below 10−20 g/cm3. This can occur when
the energy input from the interactions of matter, such as pdV work, becomes
smaller than the radiative cooling. An astrophysical shock wave compresses
and heats the material it shocks, but after that there is often no further en-
ergy input. The material cools by radiation, however long this may take. The
shocked layer of material produced by a supernova is driven for a long time,
gaining energy from the pressure of the hot “bubble” created by the explo-
sion. But eventually this ends, and the layer subsequently cools by radiation,
eventually decreasing in temperature and increasing in density by orders of
magnitude. We discuss the dynamics of these astrophysical phenomena later
in the chapter, when we discuss optically thin radiative shocks.

7.1 Radiation Hydrodynamic Equations

Our first task is to develop the equations we will need to account for radia-
tion hydrodynamic phenomena in the high-energy-density regime. The simple
equations of Chap. 2 (2.27 and 2.28) are useful for considering the relative
contributions of the various processes that may occur in an energetic fluid
or plasma, all of which are included, for example, in many simulation codes.
However, these equations are rarely practical for simple calculations. In the
context of the present chapter we will ignore viscous effects and usually heat
conduction – these play a very limited role in most systems hot enough for ra-
diative effects to matter. We will also necessarily work with only the simplest
models of radiation transport. However, there certainly are cases in which
more-complicated models are needed to obtain an accurate description. A
wider range of such models is discussed in Mihalas and Mihalas.

7.1.1 Fundamental Equations

We will treat radiation here primarily as a fluid, able to carry momentum and
energy. When radiation becomes important, it effectively introduces an addi-
tional fluid species into the plasma. For nonrelativistic systems with isotropic
radiation fields, the momentum equation remains quite simple. The momen-
tum of the radiation is negligible compared to that of the fluid in this limit.
The effect of the isotropic radiation field on the matter can be expressed as
a gradient in the scalar radiation pressure. The momentum equation then
becomes

ρ
∂

∂t
u + ρu · ∇u = −∇(p + pR), (7.1)
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in which pR is the scalar radiation pressure. There are usually no other sig-
nificant forces in laboratory systems, but there might be other forces such as
gravitation in an astrophysical problem. In this case the right-hand side will
have additional terms.

To obtain useful energy equations, we need generalized versions of (2.13)
and (2.14). To obtain them, we rearrange (2.28), dropping the terms involving
viscosity, to find

∂

∂t

(
ρu2

2
+ ρε + ER

)
+ ∇ ·

[
ρu

(
ε +

u2

2

)
+ (ER + p + pR) u

]

= −∇ · (F R + Q) . (7.2)

If there are additional forces such as gravitation, they will introduce terms
relating to both potential energy and work into this equation. Note that this
equation involves fundamentally a Galilean treatment of the radiation energy
density. In particular, it convects with velocity u. This is certainly not valid
for strongly relativistic fluid velocities (or frames of reference), but is accurate
to order u/c, as we found in Sect. 6.3.

From the dot product of u with the momentum equation, one can find
the mechanical energy equation

ρ

(
∂

∂t
+ u · ∇

)(
u2

2

)
= ρ

D

Dt

(
u2

2

)
= −u · ∇(p + pR), (7.3)

in which we introduce the common notation that D/Dt represents the total
derivative. Subtracting this equation from (7.2), gathering all the derivatives
of density, which turn out to cancel through the use of the continuity equation,
and also using the continuity equation to replace ∇ · u, one is left with this
equation for the internal energy of the gas and the radiation energy:

ρ
D

Dt
ε +

D

Dt
ER − (ER + p + pR)

ρ

D

Dt
ρ = −∇ · (F R + Q) . (7.4)

This equation can be rearranged into several useful forms. One that we will
make use of involves the total energy density, and is

D

Dt
(ρε + ER) − (ρε + p) + (ER + pR)

ρ

D

Dt
ρ = −∇ · (F R + Q) . (7.5)

Note that up to this point, we have assumed only that the system is not
relativistic. We have made no assumptions about the equation of state. In
nearly all applications one could also drop Q from this equation, but we
keep it because it will be mathematically simple to do so. We also note that
formally the radiation quantities in these equations should be evaluated in a
frame of reference moving with the fluid – the comoving frame discussed in
Sect. 6.3. For problems that can be addressed with the above equations, one
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can generally ignore this distinction at least until it is necessary to consider
what will be detected by an external observer.

Equation (7.5) can be expressed more simply if there is a simple relation
between pressure and energy density. Let us explore this. On the one hand,
if the radiation pressure is negligible and the matter is a polytropic gas, then
ρε = p/(γ − 1) and the left-hand side of (7.5) reduces to that of (2.14) with
an appropriate value of γ. On the other hand, if the material pressure is
negligible and the radiation pressure is dominant, then we showed in Chap. 3
that the same relation applies, so one also recovers the left-hand side of (2.14)
with γ = 4/3. One can also see from (7.3) and (7.4) that, when radiation is
dominant, the momentum and energy equations can be placed in the form of
the Euler equations, with radiation pressure replacing the material pressure.

7.1.2 Thermodynamic Relations

For the intermediate cases we return to the discussion of Sect. 3.3 for media
with variable polytropic indices. We will evaluate the behavior for thermal
radiation, thus assuming optically thick, near-equilibrium plasmas. The total
pressure, p̃, is the sum of the plasma pressure and the radiation pressure, so
the equation of state is

p̃ =
ρ(1 + Z)kBT

Amp
+

4σ

3c
T 4. (7.6)

The total specific energy density, ε̃, is the sum of the contributions from
thermal particles, radiation, and internal energy, again designated as R(T ).

ε̃ =
3
2

(1 + Z)kBT

Amp
+

R(T )
Amp

+
4σ

ρc
T 4. (7.7)

We then can use a hydrogenic model for R, as discussed in Sect. 3.3, to
find

γ = 1 +
p̃

ρε̃
=

(1 + Z) [15 + (EH/kBT )Z(1 + 2Z)] + 32α
(1 + Z) [9 + (EH/kBT )Z(1 + 2Z)] + 24α

, (7.8)

where

α =
σT 4/c

nikBT
(7.9)

is proportional to the ratio of radiation energy density to material energy
density and ni is the number density of the ions. Recall that this is the value
of γ that is relevant to shock transitions. To find the value of γ3, required for
heat transport calculations, we need the specific heat at constant volume,

cV =
(

∂ε̃

∂T

)
ρ

=
3
2

ni [1 + Z + T (∂Z/∂T )ρ] kB

ρ
+

niR
′(T )
ρ

+
16σ

ρc
T 3, (7.10)

in which R′(T ) is the derivative of R with respect to T , and the partial
derivative of p̃ with respect to T at constant density, is
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(
∂p̃

∂T

)
ρ

= ni [1 + Z + T (∂Z/∂T )ρ] kB +
16σ

3c
T 3. (7.11)

This then gives

1
(γ3 − 1)

=
ρcV(

∂p̃
/
∂T

)
ρ

=
3 [2(R′(T )/kB) + 3 [1 + Z + T (∂Z/∂T )ρ]] + 96α

6 [1 + Z + T (∂Z/∂T )ρ] + 32α
(7.12)

for γ3. Note that while γ depends on R, which increases to a maximum and
then remains there as T increases, γ3 depends on R′, which drops abruptly to
0 when the plasma is fully ionized. Note also that for Z ∝

√
T , T (∂Z/∂T )ρ =

Z/2. One can rearrange this last equation to have

cV =
1

(γ3 − 1)
1
ρ

(
∂p̃

∂T

)
ρ

, (7.13)

a form that is useful for applications when one already has a sufficiently
accurate value for γ3.

We also need the sound speed, from (3.72), for calculations involving
acoustic waves. To evaluate this, we need

(
∂p̃

∂ρ

)
T

=
(1 + Z)kBT

(Amp)
(7.14)

and (
∂ε̃

∂ρ

)
T

=
−4σT 4

cρ2
. (7.15)

From these, one obtains a rather messy expression of for γs:

γs =
45(1 + Z)2 + 18(R′(T )/kB)(1 + Z) + 480(1 + Z)α + 512α2

3(3(1 + Z) + 4α)(3(1 + Z) + 2(R′(T )/kB) + 32α)
. (7.16)

Figure 7.3 shows values of γ, γs, and γ3 for near-equilibrium radiating
plasmas composed of three different elements. Here we have assumed Z =
0.63

√
T with T in eV until T = 2.5Z2

nuc, above which we have taken Z = Znuc,
the nuclear charge. We have evaluated R as in Sect. 3.3, using a hydrogenic
model of the ions and ignoring excited states. One can see in the figure the
abrupt change in γs and γ3, but not γ, when the plasma becomes fully ionized.
It is not a terrible assumption to take γs = γ3 = γ, except just above the
temperature where an element becomes fully ionized. We ignore this regime
in the applications. It is worth noting, though, that using a single value of
γ does not permit one to use the simple equations of Sect. 3.1.1. One still
must evaluate quantities such as the specific heat properly for the radiative
regime.

To go beyond equilibrium models, one has the same sorts of choices we ex-
plored in Chap. 2 (and Sect. 6.2.4) regarding how to treat the entire physical
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Fig. 7.3. Values of γ (solid curve), γs (dashed curve), and γ3 (thick gray curve)
for carbon (top), aluminum (middle), and xenon (bottom)

system. Just as we saw there that there is a choice between a single-fluid and
a multiple-fluid treatment of the particles, there is a similar choice regarding
the radiation, especially with regard to the energy equation. A common type
of model in simulations is the single-fluid, three-temperature model discussed
in Chap. 2. Such models use a single continuity equation and a single mo-
mentum equation, but make the pressure the sum of the electron, ion, and
radiation pressures. Then one works with separate energy equations for the
electrons, the ions, and the radiation, keeping track of the energy exchange be-
tween these species. Such models often employ a generalized nonequilibrium
diffusion treatment of the radiative energy transport, along the lines discussed
in Sect. 6.2.4. Alternatively, they may employ more-sophisticated radiation
transport methods in connection with a single-fluid, two-temperature (elec-
tron and ion) treatment of the matter. Such models, even with a diffusive
treatment of radiation heat transport, are comparatively tractable and often
give qualitatively correct results.

7.2 Radiation and Fluctuations

Strong radiation, when present, affects every hydrodynamic process that oc-
curs in a medium. Much of the material in this chapter involves the examina-
tion of how radiation can alter the behavior of phenomena we have already
explored, such as acoustic waves and shocks. Some additional phenomena,
including thermal instabilities and diffusive heat waves, have analogues in
systems with heat conduction.

7.2.1 Radiative Acoustic Waves; Optically Thick Case

To see the effect of radiation on acoustic waves, we will begin by examining
what would happen deep within an optically thick, near-equilibrium, radiat-
ing medium such as a stellar interior or an experimental volume that is hot
enough and dense enough. We begin with the limit in which the system is
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so near equilibrium and so optically thick to the radiation that B ∼ JR. In
this limit the radiative flux is given by (6.54). Accordingly, we use the results
from the previous section, along with (3.71) through (3.73), with a diffusive
model for the heat transport so that

ρ
Dq

Dt
= −∇ · F R = ∇ · (κ̃∇T ) , to obtain (7.17)

Dp̃

Dt
− γsp̃

ρ

Dρ

Dt
= (γ3 − 1)∇ · (κ̃∇T ) , (7.18)

in which κ̃ = κth + κrad, the sum of the thermal and radiative coefficients
of heat conduction. We linearize this equation, taking p̃ = p̃o + p̃1, ρ = ρo +
ρ1, and T = To + T1, working in the comoving frame and assuming that
the zeroth-order gradients of temperature, velocity, and density are zero, to
obtain

∂p̃1

∂t
− γsp̃o

ρo

∂ρ1

∂t
= (γ3 − 1)κ̃∇2T1. (7.19)

We then need to eliminate one variable by linearizing the equation of
state (7.6). We choose to eliminate T1, but to do so we have to evaluate the
variation in Z. Here we choose Z ∝

√
T in the ionizing regime. Then we find

p̃1 − po
ρ1

ρo
= α

T1

To
, where (7.20)

α =
16σT 4

o

3c
+

ρo(1 + βZo)kBTo

Amp
, (7.21)

with β = 1 in a fully ionized plasma or 3/2 in an ionizing plasma. We note
that po in (7.20) is the particle pressure and that α has units of pressure.
Substituting for T1 in (7.19), we have

∂p̃1

∂t
− (γ3 − 1)κ̃To

α
∇2p̃1 =

γsp̃o

ρo

∂ρ1

∂t
− (γ3 − 1)κ̃To

α

po

ρo
∇2ρ1. (7.22)

Note that the coefficient in the second term on the left-hand side has units
of cm2/s, making it some sort of generalized kinematic diffusion coefficient
(see Chap. 2). We can arrive at an equation that includes acoustic waves
by noting that the linearized versions of the momentum equation (7.1) and
the continuity equation imply that ∂2ρ1/∂t2 = ∇2p̃1, which enables us to
differentiate (7.22) twice with respect to t to find

[
∂2

∂t2
− γsp̃o

ρo
∇2

]
∂p̃1

∂t
=

(γ3 − 1)κ̃To

α

[
∂2

∂t2
− po

ρo
∇2

]
∇2p̃1. (7.23)

This is a fourth-order wave equation describing radiation-modified acoustic
waves and related waves. We perform a plane-wave analysis as in Chap. 2 to
find the dispersion relation, which is
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[
1 − γsp̃o

ρo

k2

ω2

]
= −i

(
(γ3 − 1)κ̃To

α
ω

k2

ω2

)[
1 − po

ρo

k2

ω2

]
. (7.24)

One can simplify this by defining η = 4σT 4/(3cpo) to capture the relative
importance of radiation and γsv

2
n = (ω/k)2(ρo/po) giving vn = 1 when the

phase velocity equals the usual, isentropic sound speed, so that (7.24) can be
written [

1 − (1 + η)
v2

n

]
= −i

[
ωn

v2
n

] [
1 − 1

γsv2
n

]
, (7.25)

in which the normalized frequency, ωn, is given, assuming κ̃ = κrad, by

ωn =


 (γ3 − 1)[

1 + 1
4η

(
1+βZo

1+Zo

)] ω

νe(c2
s/c2)


 , (7.26)

where we have introduced an extinction rate νe = cχR to clarify the normal-
ization. It is evident that as radiation becomes negligible so η → 0, ωn → 0
and the phase velocity assumes its usual value (vn = 1). When η is not small,
the behavior depends on ωn. At any given η, ωn defines a frequency scale,
so that “low” frequencies make this term small and “high” frequencies make
it large. The high-frequency regime is the one in which thermal conductivity
is very effective on the scale of the wavelength, smoothing the temperature
fluctuations that acoustic waves otherwise produce. The waves in this regime
have phase velocity (cs/

√
γ). Such waves are known as isothermal acoustic

waves, as this is the phase velocity found from the Euler equations by assum-
ing the plasma to be isothermal.

Homework 7.2

Derive the dispersion relation for isothermal acoustic waves from the Euler
equations. That is, demand constant temperature and see what happens.

In general, (7.25) has four roots, corresponding to two pairs of oppositely
propagating waves. The roots are complex, giving the phase velocity and
the damping, both normalized to the nonradiative, isentropic sound speed.
[The spatial damping rate, normalized by the wavenumber, is the ratio of the
imaginary root of (7.25) to the real root.] Figure 7.4 shows the normalized
phase velocity and spatial damping rate, as a function of ωn, for values of the
parameters shown in the caption. The weakly damped root with a normalized
phase velocity near 1 is the acoustic wave. The other root, often described as
a thermal wave, is very strongly damped except at very low frequency, where
its phase velocity becomes negligible. It corresponds to a strongly damped
perturbation in temperature and the other quantities.

For typical laboratory values (at approximately 1 g/cm3) of χR ∼ 104

cm−1, cs ∼ 30 km/s, and γ3 ∼ γs ∼ 1.3, ωn = 1 when ω ∼ (3/η)× 106 rad/s,
which corresponds to wavelengths of order 2πη cm. Thus, once η decreases
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Fig. 7.4. Acoustic waves in the radiation diffusion limit. (a) The phase velocity nor-
malized by the nonradiative, isentropic sound speed. (b) The spatial damping length
normalized by the wavenumber. Parameters were γ3 ∼ γs ∼ 1.3, β = 1, andη = 0.01

below about 10−5 (at approximately 100 eV), so the wavelength becomes
shorter than 1/χR, the acoustic waves will be in the “high-frequency regime.”
For stellar interiors, one might have χR ∼ 10 cm−1, cs ∼ 100 km/s, and
γ3 ∼ γs ∼ 1.3, so ωn = 1 when ω ∼ (3/η) × 104 rad/s, which corresponds
to wavelengths of order 600 η cm. Thus, only very short wavelengths, by
comparison to the stellar radius, will be in the “high-frequency” regime.

Homework 7.3

Figure 7.4 shows the wave properties as ω varies for fixed η. Consider how
the wave properties vary with η for β = 1 and fixed ω/(νec

2
s/c2). Plot the

normalized phase velocity and damping length for 0.01 ≤ η ≤ 10 and discuss
the results.

7.2.2 Cooling When Transport Matters

We next turn to systems that are not quite so optically thick, so that B �= JR

and radiation transport is significant. It is not immediately clear what may
happen in this case. The question is where the radiation goes, how is it
absorbed, and what are the consequences. We assume that the radiation is in
steady state, as it equilibrates rapidly on the timescale of material motion. We
further assume that the plasma particles are in near-equilibrium distributions,
so they emit at the equilibrium rate. Under these assumptions, the divergence
of the radiative flux is 4πκ(B − JR) as given by (6.38) for steady state, and
in applications we will approximate κ ∼ κp, the Planck mean opacity. Before
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we consider the dynamics of fluctuations in this context, we need to know
the rate of cooling produced by a plane-wave fluctuation in temperature and
thus thermal emission. In the next section, we calculate this.

Cooling of Temperature Fluctuations

We consider a system with no zeroth-order gradients. Such a system will
be in a steady-state (or an equilibrium) in which the sources and losses of
thermal radiation are in balance. Our goal is to determine the radiative cool-
ing produced by a plane-wave fluctuation in the emission. Formally we write
B = Bo + B1 and B1 = B̂ exp[ik(z − z1)], which defines the z-axis to lie
along the wave vector k of the fluctuation. Our convention will be that the
physical quantity represented by any variable, a, is (a + a∗)/2. We then seek
the radiation intensity due to B1, ignoring the steady-state contribution due
to Bo. Equation (6.44) then describes the incremental radiation intensity, I1.
We assume the medium is uniform and refraction is negligible, and we eval-
uate the intensity by integrating in the +z direction along some ray, so we
have

I1(z) =
∫ z

zo

dz′

µ
κB̂eik(z′−z1)e−κ(z−z′)/µ + I(zo)e−κ(z−zo)/µ, (7.27)

where µ is the cosine of the angle of the ray relative to the z-axis. It is
consistent with our context to take zo to be a large negative number, so that
|κzo|  10. Then, after integrating, (7.27) becomes

I1(z, µ) =
κB̂

(iµk + κ)
eik(z−z1) =

[
(κ − iµk)

(µ2k2 + κ2)

]
κB̂eik(z−z1). (7.28)

When we integrate I1 to find J1 the imaginary term, which is odd in µ,
integrates to zero, and we are left with

J1(z) =
1
2

∫ 1

−1

dµI1(z, µ) = B̂eik(z−z1)
κ

k
Cot−1

(κ

k

)
. (7.29)

This is the result we need to evaluate the heat input to the matter in the
plasma, from the steady-state limit of (6.38), as the negative of the input to
the radiation.

For systems in which the radiation pressure is negligible, the impact of
the radiation is through the heat it transports. It is then useful to express
this result in terms of the fluctuation of the temperature, T1. We treat the
incremental energy loss rate, which is −∇ · F R, as a damping rate on the
incremental local energy density, ρcV T1. Thus we have, again in the comoving
frame of a uniform medium,

∂T1

∂t
= −ν1T1 =

4πκ

ρcV
(JR − B) . (7.30)
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Just as we have expanded the other physical parameters, we expand JR

as JR = Jo + J1, where J1 is the deviation in JR due to the temperature
fluctuation from (7.29). Since Jo = Bo the first-order expression for the right-
hand side is κ(J1 − B1), where κ is the zeroth-order value of κ. In addition,
it is clear from (7.30) that T1 must have the same plane-wave dependence as
J1 and B1, so we have

ν1 =
4πκB̂1

ρcV T̂1

[
1 − κ

k
Cot−1

(κ

k

)]
=

16σκT 3
o

ρcV

[
1 − κ

k
Cot−1

(κ

k

)]
. (7.31)

This result is plotted in Fig. 7.5. At small κ/k, ν1 becomes independent
of k and can be designated as

ν =
16σκT 3

o

ρcV
. (7.32)

As κ/k increases, the damping is smaller. Consider this further. At small κ/k,
which is the optically thin limit for the perturbation, the radiation travels
many wavelengths before it is absorbed. The emission is small and the ab-
sorption is spatially uniform. (Thus, if one writes the equation for To, it will
have a higher-order heating term.) As κ/k becomes larger, the absorption be-
comes increasingly local so the energy from any given temperature maximum
stays increasingly near that maximum, slowing the cooling. At very large
κ/k, there is a net flow of energy from hot regions to cool regions within each
wavelength. However, in this limit JR also approaches B and the transition
to a diffusive regime. The frequency of a fluctuating perturbation also must
be considered. At high enough frequency, ignoring the first term in (6.38) is
no longer justified. One can estimate when this might be important by taking
ER ∼ FR/c, ∇ → k, and ∂/∂t → ω in the two terms on the left-hand side
of (6.38). They become comparable when ω/k ∼ c. This is not a surprising
result. We are now ready to apply the cooling rate of (7.31) to two cases of
interest.
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Fig. 7.5. Radiative cooling of optically thin fluctuations
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Cooling of Thin Layers

We have seen that faster shock waves produce higher postshock temperatures,
and also that the opacity decreases as the temperature increases. As a result,
experiments may produce optically thin shocked layers that endure for some
time. The shocked layers produced by interstellar shocks in astrophysics are
optically thin as well. Such layers may radiate so strongly that they cool
substantially, their density profiles change, and more complicated dynamics
also become possible. We will explore the profiles of the resulting cooling
layers in our discussion of radiative shocks. It is often helpful, though, to
evaluate the cooling rate of a hot, thin layer. If the corresponding cooling
time is long compared to the duration of the system, then changes in layer
structure due to the radiation will be minimal.

The cooling of a thin, planar layer of infinite lateral extent also provides
a nice application of the radiative transfer equation. For a planar layer of
thickness d, we use (6.45), writing

IR =
∫ d

0

ρκmBe−(zρκm/µ) dz

µ
= B

(
1 − e−(dρκm/µ)

)
. (7.33)

We use this to find the radiation flux emerging from one surface of the layer,
as it was defined in (6.9), but integrating over only the one hemisphere of
outgoing radiation. This gives

FR = 2π

∫ 1

0

IRµdµ = πB
[
1 + e−τ (τ − 1) − τ2E1(τ)

]
, (7.34)

in which τ = dρκm is the optical depth of the shocked layer based on its
thickness and E1(τ) is the exponential integral function with n = 1. The
total energy flux removed from the layer is twice this value, as radiation
leaves from both sides. Figure 7.6 shows the radiative flux, normalized to
σT 4, as a function of optical depth. One sees that the flux increases linearly
from zero with optical depth at small optical depth but soon saturates and
approaches σT 4.

From Fig. 7.6, one might expect cooling to be fastest when a layer is
of order one optical depth thick, because one then extracts radiation from
the entire volume but at a fairly high rate. This expectation would be false,
however, because the amount of material to be cooled increases faster than
the radiation flux. We can see this as follows. The radiation cooling rate νrad

is the ratio of twice the radiative flux from a single surface to the energy
content per unit area of the layer

νrad =
2FR

ρdcV T
= ν∗

rad

[
1 + e−τ (τ − 1) − τ2E1(τ)

]
τ

, (7.35)

in which the normalizing factor ν∗
rad is
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Fig. 7.6. Radiative flux from optically thin layer. The ordinate shows the radiative
flux leaving one surface of the layer, normalized by πB = σT 4. The flux increases
as the optical depth increases

ν∗
rad =

2Amp

(Z + 1)kB
σT 3κm = 2.2

A

(Z + 1)
T 3κm, (7.36)

in which the second equality gives ν∗
rad in s−1 for T in eV and κm in cm−1.

Figure 7.7 shows the corresponding normalized cooling rate. Its limiting value
as the optical depth becomes very small is 2. It decreases as optical depth
increases, reaching about 0.1 for an optical depth of 10. Beyond that point
the normalized cooling rate changes slowly, scaling as 1/ τ at large τ . Thus,
if T ∼ 10 eV and κm ∼ 106 cm2g−1, one has ν∗

rad ∼ 109 s−1 or ns cooling
times for τ ∼ 0.5. The cooling times will be shorter for smaller optical depth,
but only by up to a factor of 2, and longer for larger optical depth.
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Homework 7.4

We did not explore the angular variation in the contributions to (7.34). One
might imagine that the largest contributions could come at grazing angles,
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where µ is very small and the optical depth along a line of sight becomes large.
The model used here would be less realistic if most of the emission came at
grazing angles, because real systems will have layers that are not truly planar
and certainly are not infinite in extent. Use a computational mathematics
program to derive (7.34). Then modify the calculation to explore how large
the contribution is from such grazing angles. Conclude whether or not the
results above might be reasonable estimates for real layers.

It may be useful to develop a comparison of the cooling rate just found
and the standard expression for the astrophysical cooling function, Λ. The
cooling function Λ is the power loss per unit volume per unit electron density
per unit ion density, in ergs-cm3/s or equivalent. Thus, the power loss per unit
volume is neniΛ. The corresponding cooling rate, ν)astro, is neniΛ/(ρcV T ).
Setting this equal to ν∗

rad, we find the opacity κastro = ρκm corresponding
to the optically thin astrophysical case, as κastro = neniΛ/(2σT 4). Note also
that one can identify the emissivity of the thin layer as κastrod.

7.2.3 Optically Thin Acoustic Waves

The diffusive, near-equilibrium regime of Sect. 7.2.1 is not easily achieved in
the laboratory or often encountered in astrophysics except within stars. Much
more common are systems hot enough that radiative cooling matters, but
optically thin, or at least not very thick, so that (7.30) and (7.31) describe the
cooling. Let us consider how acoustic waves behave in this regime, in the limit
that the system is so optically thin that ν1 = ν from (7.32). Then from (3.71),
and with the specific infinitesimal heat flow dq = cV ∂T1/∂t = −νcV T1, we
obtain

Dp

Dt
− γsp

ρ

Dρ

Dt
= −ν

ρ(1 + βZ)kBT1

Amp
, (7.37)

in which we have used (7.10) for negligible radiation to evaluate ∂p/∂T )ρ and
have evaluated the isentropic sound speed for a polytropic gas. Here again,
as in (7.21), β = 1 for an ionized plasma, 3/2 for an ionizing plasma with
Z ∝

√
T , and some other value or function in more general cases. We once

again linearize for an initially uniform plasma, using (7.20) and (7.21) for
negligible radiation, to find

T1

To
=

(1 + Z)
(1 + βZ)

[
p1

po
− ρ1

ρo

]
, (7.38)

from which we obtain from (7.37) in the comoving frame and linearizing

∂p1

∂t
− γspo

ρo

∂ρ1

∂t
= −ν

(
p1 −

po

ρo
ρ1

)
. (7.39)

Here we again use the result from the continuity and fluid momentum equa-
tions that ∂2ρ1/∂t2 = ∇2p1, to find
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[
∂2

∂t2
− γspo

ρo
∇2

]
∂p1

∂t
= −ν

[
∂2

∂t2
− po

ρo
∇2

]
p1. (7.40)

The corresponding dispersion relation is

−iω

[
−ω2 +

γspo

ρo
k2

]
= −ν

[
−ω2 +

po

ρo
k2

]
, (7.41)

which can be solved for the normalized inverse phase velocity, csk/ω, to obtain

c2
sk

2

ω2
=

1
1 + ν2/(γ2

sω2)

[
1 + γs

(
ν

γsω

)2

+ i(γs − 1)
ν

γsω

]
. (7.42)

Homework 7.5

It is curious that (7.39) and (7.41) do not depend on β, so that these waves
seem not to care whether the system is fully ionized. Beginning with (7.37),
derive (7.41) and discuss why there is no β dependence.

One sees in (7.42) that one recovers ordinary isentropic acoustic waves
as the cooling rate goes to zero, and damped, isothermal acoustic waves
as the cooling rate becomes large. Figure 7.8 shows how the phase velocity
and damping rate implied by this dispersion relation depends on the natural
normalized frequency for (7.42), γsω/ν. The phase velocity increases from
the isothermal sound speed at low normalized frequency to the isentropic
sound speed at high normalized frequency. In both these limits, the spatial
damping rate is small. The spatial damping rate increases somewhat during
the transition.

Returning to (7.42), the limiting behavior in this regime is easy to re-
cover and merits discussion. In the limit of very high frequency or very small
damping, we evidently recover ordinary acoustic waves. For a high frequency
with ν/ω � 1, we find

k =
ω

cs

[
1 + i

1
2

ν

ω

(γs − 1)
γs

]
, (7.43)

corresponding to damped sound waves with a characteristic, very-long damp-
ing length of (2γscs/ν)/(γs − 1). The opposite limit, in which ν/ω  1, is
more complicated because at a low enough frequency the waves will experi-
ence an optically thick medium and the present calculation will not apply.
Assuming that over some range of frequencies this limit does make sense, one
can see that k will be

k =
√

γsω

cs

[
1 + i

1
2

ω

ν
(γs − 1)

]
, (7.44)



284 7 Radiation Hydrodynamics

0.88

0.92

0.96

1

0.1 0.2 0.5 1 2 5 10

−0.06

−0.04

−0.02

Normalized frequency (γsω/ν)

P
ha

se
 v

el
o

ci
ty

D
am

p
in

g

(a)

(b)

Fig. 7.8. Acoustic waves in the optically thin limit. The phase velocity, normalized
to the isentropic sound speed, cs, and the spatial damping rate, normalized to the
wavenumber k vs. normalized frequency

and that the damping length is [2cs/(ν
√

γs)](ν2/ω2)/(γs − 1). This damping
length is also quite long, compared to the wavelength of the fluctuations.
In this limit we have weakly damped, isothermal acoustic waves with phase
velocity (cs/

√
γ). Physically, in this case the radiation damps out the tem-

perature fluctuations at a rate much faster than the wave frequency.
To see the implications of this, consider acoustic waves in a CH plasma at

T = 100 eV. With κP = 2 × 105ρ/TeV , ρ = 1 g/cm3, the radiative damping
rate from (7.32) is just over 109 s−1. If the sound speed is about 106 cm/s (10
km/s), then acoustic waves with wavenumbers of 0.001 cm−1 will be the most
damped. The corresponding wavelength of order 100 m is large compared to
experiments, so this result is most relevant to the gradual damping of large-
scale structures in the plasma. The waves inside the plasma, having larger
wavenumbers, will be isentropic acoustic waves.

Our two treatments of radiative acoustic waves, in this section and
Sect. 7.2.1, show rather different behavior, because they apply to different
regimes. The lowest frequencies, in any medium, are optically thick, in the
sense that the absorption will occur in a very small fraction of a wavelength,
so the description of Sect. 7.2.1 will apply. The highest frequencies are op-
tically thin, so the description of the present section will apply. As a re-
sult, Fig. 7.8 connects naturally to Fig. 7.4, because increasing the frequency
also takes one from an optically thick to an optically thin regime. Overall,
acoustic waves progress from isentropic to isothermal and back to isentropic
as frequency increases. The transition between the two regimes of optical
depth, and the even-more-complicated case of frequencies so high that the
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propagation time of the radiation matters, are discussed in detail in Mihalas
and Mihalas.

7.2.4 Radiative Thermal Instability

An important application of cooling by radiation is the radiative thermal
instability. This regulates the pulsations of Cepheid variable stars and creates
structures within high-energy-density plasmas.

As we shall see, this instability occurs when a finite region of material
cools by radiating, and when the derivative of the opacity with temperature
has a certain relation to the other quantities. The radiative heat input to the
matter is the negative of the input to the radiation from (6.38). For simplicity,
we will assume that any adiabatic work is negligible, so that

∂ε

∂t
=

dq

dt
=

4πκ

ρ
(JR − B) + q̇ext, (7.45)

where q̇ext is the heating rate from external sources such as thermal heat
conduction and one would have dq/dt < 0 for net radiative cooling. Any
adiabatic energy input would be added to both the expressions to the right
of the first equal sign. We will then explore the evolution of temperature
fluctuations under such conditions, also assuming the medium to be spatially
uniform. We then Taylor-expand the equation for the temperature to find

ρcV

4π

∂T

∂t
= κo (JRo − Bo) +

q̇ext

4π
+

∂κ

∂T
(JRo − Bo) (T − To) + κo

∂ (JR − B)
∂T

(T − To) + . . . ,

(7.46)

where the derivatives are as usual evaluated at To. Here T = To + T1, and
(7.46) shows that the evolution of To is from the first two terms on the right-
hand side so that To will tend to some steady-state value. The corresponding
equation for T1, with a damping rate ν2, is

∂T1

∂t
= −ν2T1 =

4π

ρcV

[
∂κ

∂T
(JRo − Bo) + κo

∂ (JR − B)
∂T

]
T1, (7.47)

in which we can obtain (JRo −Bo) from the energy input and ∂(JR −B)/∂T
from (7.30) and (7.31), to find

ν2 =
q̇ext

cV T

∂lnκo

∂lnT
+ ν

(
1 − κ

k
Cot−1

(κ

k

))
. (7.48)

Note that the “damping rate,” ν2, can be positive or negative depending
on the sign and magnitude of ∂κ/∂T . If ν2 is negative then one has a thermal
instability, meaning that small temperature fluctuations grow with time. For
positive q̇ext, this occurs for ∂κo/∂T < 0. This is sensible because, while the
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heat input does not change, a temperature increase leads to less radiative
cooling and thus a further temperature increase (and vice versa). Of course,
this will soon cause the assumption that the medium is uniform to become
invalid, as the hotter regions will compress the less hot ones.

The general structure of κo is to decrease with T out to some small number
of keV, and then to increase as bremsstrahlung and perhaps synchrotron ra-
diation become significant. In addition, when an important ion in the plasma
just begins to open up a closed shell of electrons, there can be an increase in
κo with T over some range of temperatures. Curiously, this means that many
high-energy-density plasmas are in the unstable regime, as are astrophysi-
cal plasmas with temperatures below 1 keV. In addition, even without an
external heat source, one finds that temperature fluctuations relative to the
steadily decreasing temperature will grow with time. However, the growth
rate is relatively slow, as the derivative in (7.48) is typically −1 to −2, so
that any unstable structure will typically evolve on the same timescale as the
plasma evolves. As a result, the thermal instability only occasionally becomes
important. Structure in the long-term evolution of conductively heated, ra-
diatively cooled high-Z plasmas has been attributed to this instability. Also,
one can sometimes see a variant of it in the simulated evolution of initially
uniform plasmas that are cooling after being heated by radiation. Since the
radiative damping is smallest at the largest k, this will tend to create fluctu-
ations on the scale of the zones in a simulation.

Beyond the thermal instability, structure in κo can lead to other effects in
the plasma evolution. For example, nonlinear oscillations in temperature can
arise in a system that is steadily heated. This occurs in the visible layers in
Cepheid-variable stars, steadily heated from within, which operate in a range
of temperatures where the opacity of Fe has maxima and minima. When the
visible layer of the star is at a temperature where ∂κo/∂T > 0, the stronger
radiative cooling can cause the temperature to decrease, overshooting the
minimum in κo, so that ∂κo/∂T < 0, in response to which the temperature
increases, again causing κo to overshoot the minimum. The result is a steady
oscillation in temperature and luminosity. Figure 7.9 shows the experimen-
tally measured transmission through a sample of Fe at a temperature near
100 eV. High transmission corresponds to low opacity. One can see that the
opacity fluctuates with temperature.

As another example, the presence of a region where ∂κo/∂T > 0 over
some narrow range of temperatures in the plasma expanding from a laser-
heated surface can lead to a local density maximum. The pressure of the
adjacent regions compresses the region where the radiation losses are larger.
In the context of laser fusion (see Hazak et al.), such structures have been
designated radiative plasma structures.
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Fig. 7.9. Opacity of Fe. The plot shows transmission through a sample reported
by DaSilva et al., Phys. Rev. Lett. 69, 493 (1992)

7.3 Radiation Diffusion and Marshak Waves

When a cool region warms by the transport of radiative heat from a hot
region, this transport is often diffusive. The mean-free path of the radiation
in the cool material can be quite short. However, the mean-free path often
increases rapidly with temperature, so that diffusive heat transport is more
complicated than simple diffusion. Diffusion in the presence of a variable
diffusion coefficient is often referred to as nonlinear diffusion. Nonlinear dif-
fusion is fundamental to high-energy-density plasmas, because they are ion-
izing. The opacity of each ionization state is different. In general, as material
ionizes the spectral regions of largest opacity shift to higher energy, because
more energy is needed to access the bound-free and bound–bound transitions
of the more highly ionized state. In addition, even ordinary bremsstrahlung
absorption is nonlinear. Its opacity decreases with increasing temperature as
1/T

3/2
e for otherwise fixed conditions. Two kinds of nonlinear-diffusion prob-

lems merit our attention here. In the first, a constant-temperature source
drives a radiative heat wave, known as a Marshak wave, into a cooler mate-
rial. In the second, a finite amount of energy is spread through the material
by radiative diffusion. We consider these in turn.

7.3.1 Marshak Waves

The Marshak wave describes the solution to a simple problem that nonethe-
less has great relevance to many real situations. The simple problem is the
near-equilibrium diffusion of radiative energy into an initially cold mater-
ial, through an initially sharp boundary, from a constant-temperature energy
source. Marshak was the first to show that this problem admits self-similar
solutions. The medium is assumed to be at rest and to remain at rest. We
will revisit this assumption later, but note here that it would be a poor as-
sumption if the temperature were high enough that the radiation pressure
was the dominant pressure. Thus, Marshak waves are relevant to the com-
mon situation that the radiative heat transport is essential but the radiative
pressure is small.
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An essential example of this is the heating of a high-Z material wall by a
sustained radiation source, such as the emission of thermal x-rays from laser-
heated regions on the wall. An enclosed structure within which this occurs is
known as a hohlraum. We will discuss hohlraums further in Chap. 8. They are
of real importance for inertial fusion and for other experiments that require
a sustained radiation environment.

To obtain a solvable description of the Marshak-wave problem, we assume
that the radiative coefficient of heat conductivity scales as κrad ∝ Tn. This
is reasonable, with n ∼ 4 to 5 for typical materials in high-energy-density
systems (in contrast, n ∼ 6 to 7 in typical astrophysical systems). We further
assume constant density and specific heat. Given the assumptions, we want to
examine the behavior of a system for which the first law of thermodynamics
becomes

ρ
∂ε

∂t
= ρcV

∂T

∂t
= ∇ · κrad∇T =

To

n + 1
κrad

)
To
∇2

(
T

To

)n+1

. (7.49)

With f = T/To and W = κrad)To
/[ρcV (n + 1)], this can be written as

∂f

∂t
= W∇2fn+1. (7.50)

This equation has only the one-dimensional parameter, W , so recalling Chap.
4 we can expect to find a planar similarity solution with similarity variable
ξ = x/

√
Wt. This gives

−ξ

2
df

dξ
=

d2fn+1

dξ2
. (7.51)

Homework 7.6

Beginning with ρ(∂ε/∂t) = ∇ · (κrad∇T ) derive (7.51).

Note that f = 1 at ξ = 0. One can show that the second derivative of
f remains negative so that f eventually reaches zero at some ξ = ξo. This
makes possible a simple, approximate calculation. One can assume that the
radiative heat flux must be constant from the source location to the end of
the heat wave. This must be approximately true; otherwise, the temperature
somewhere would increase above the source temperature or decrease below
that of its surroundings. The radiative flux, in terms of the variables just
defined, is

FR = −κrad
∂T

∂x
= − To

n + 1
κrad

)
To

∂fn+1

∂x
= −ρcV To

√
W

t

dfn+1

dξ
. (7.52)

Even though f(ξ) retains the same shape, the flux decreases with time as
the physical temperature gradient at the boundary decreases. If we assume
that the flux at any given time is constant throughout the wave, then recalling
that f = 0 at ξ = ξo we find
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f(ξ)n+1 = C (ξo − ξ) = (1 − ξ/ξo) , (7.53)

with C a constant equal to 1/ξo because f = 1 at ξ = 0. This is equivalent
to

T = To (1 − ξ/ξo)
1/(n+1)

. (7.54)

Figure 7.10 shows the temperature profile from the constant-flux model
and from the solution of the more exact equation (7.51), for some values of
n. The constant-flux model is sufficiently accurate for nearly all purposes, as
the other assumptions in the Marshak-wave model are certainly not exact
(e.g., see the next section for a discussion of ionization).
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Fig. 7.10. Marshak-wave temperature profiles. The normalized temperature, f =
T/To, decreases nonlinearly as ξ/ξo approaches 1. The gray curves give the tem-
perature profiles from the constant-flux model for n = 3, 4.5, and 7 from bottom
to top. The black curves give the corresponding numerical solutions

Continuing with the constant-flux calculation, we can find ξo by realizing
that the flux through the initial boundary must equal the rate of increase of
energy, Ew, in the wave, or

∂Ew

∂t
=

∂

∂t

[
dx

dξ

∫ ξo

o

ρcV Tdξ

]
=

ρcV To

2

√
W

t

(
n + 1
n + 2

)
ξo. (7.55)

Setting this equal to the flux at x = 0, and knowing from (7.53) that
∂f (n+1)/∂ξ = −1/ξo, we find

ξo =
√

2
√

(n + 2)/(n + 1). (7.56)

Figure 7.11 compares this value of ξo with a more exact solution. One sees
that the constant-flux model underestimates the extent of the heat front by
roughly 10%. Here again, this is a small effect compared with other probable
differences between a real situation and a Marshak-wave model.

The position of the radiation wavefront, xo, from the constant flux model,
is

xo =

√
(n + 2)

(n + 1)

√
κrad

)
To

ρcV

√
2t, (7.57)
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Fig. 7.11. The lines show the value of ξo from the constant-flux model (grey curve)
or a numerical solution (black curve) for traditional Marshak waves. The dashed
line shows the result for an ionizing radiation wave

and the front velocity uo is

uo =

√
(n + 2)

(n + 1)

√
κrad

)
To

ρcV

1√
2t

. (7.58)

Note that this velocity decreases from infinity to very small values as time in-
creases. Of course, the physical velocity is never infinite, because the assump-
tions of the model break down as t approaches zero. However, the behavior
of the velocity has important consequences for real systems.

At first, the velocity of the radiation front far exceeds any other velocity
in the system. In this regime, and formally until the velocity drops to equal
the sound speed in the radiation-heated medium, the wave is known as a
supersonic radiation wave. During this period, the radiation wave reaches any
location in the medium first and is affected only by changes in the radiation
source.

The velocity of the radiation wave eventually drops below the sound speed
in the radiation-heated medium, at which time it becomes a subsonic radia-
tion wave. During this period, the wave can be overtaken first by shock waves
and later by sonic disturbances. In a real system, the advent of a radiation
flux is rarely if ever the only process to occur at the boundary. Whether one
considers the birth of a star or any other release of energy within an opti-
cally thick environment, or the initiation of an x-ray source within a high-Z
container, the inner boundary of the affected material is also disturbed. Very
often, the absorption of radiation produces ablation at this boundary, launch-
ing a shock wave into the material. The location of the shock wave is initially
proportional to t, and it slows very gradually. The shock wave initially com-
presses the material between the radiation source and the front, decreasing
the thickness of the heated layer but increasing its density. The resulting
change to the shape of the radiation wave will depend on the density depen-
dence of the opacity. After the shock wave overtakes the radiation wave, the
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shock wave will strengthen, because the preshock temperature will be lower,
and the radiation wave will very likely slow even further as it penetrates
higher density matter.

Homework 7.7

Work through the constant-flux model, providing all the missing mathemat-
ical steps. Then plot the positions vs. time of the radiation wave and of a
disturbance (in the radiation-heated material) moving at Mach 1 or Mach
10. Discuss the results.

Equation (7.51) can be solved numerically but to do so one must find
workable boundary conditions. One knows that f = 1 at ξ = 0 and that
f = 0 at ξ = ξo, but one does not know ξo, the value of ξ corresponding
to the head of the wave. One does know that the flux through ξ = 0, from
(7.52) evaluated at ξ = 0, must equal the time rate of increase in the energy
content of the radiation wave, Ew. Generalizing (7.55) and using (7.52), one
has (

df

du

)
u=0

=
−ξ2

o

2(n + 1)

∫ 1

0

f(u)du, (7.59)

in which u = ξ/ξo. One can then solve (7.51) and (7.59), with independent
variable u, iteratively for ξo and for the value of the integral in (7.59), by
seeking conditions such that f = 0 at ξ = ξo. This procedure produced the
numerical curves shown in Figs. 7.10 and 7.11.

7.3.2 Ionizing Radiation Wave

The largest error in the Marshak-wave model, especially in a laboratory en-
vironment, is the assumption that the specific heat at constant volume, cV ,
is constant. This is very much not true, as cV depends on Z, through both
the thermal energy and the ionization energy, and Z is not constant. We can
describe a wave in which cV and Z change through ionization as an ionizing
radiation wave. (This should not be confused with an ionization front, dis-
cussed Sect. 7.5.) To obtain an evaluation of the difference between such a
wave and a Marshak wave, we can revisit the analysis of the previous section.
Assuming Z ∝

√
T and a hydrogenic model of the ion, we have

cV =
3
2

(1 + (3/2)Z)kB

Amp
+

kBEH

12T

(Z + 6Z2 + 12Z3)
Amp

. (7.60)

This would not admit a self-similar solution if all the terms in cV were im-
portant. However, for Te > 10 eV, the terms of highest order in Z dominate.
In this regime we can take cV = cV o

√
T/To, where cV o is the value of cV

when T = To. One then can show, just as in (7.49)–(7.51), that

−ξ

2
df

dξ
=

1√
f

d2fn+1

dξ2
, (7.61)
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with the same definitions of f and ξ. Once again, this can be integrated
numerically. Alternatively, one can develop a constant-flux description of this
system. The flux becomes

FR = −ρcV oTo

√
W

t

√
f

dfn+1

dξ
. (7.62)

Holding this constant and integrating with f = 1 at ξ = 0 gives

T = To (1 − ξ/ξo)
2/(2n+3)

, (7.63)

from which we integrate to get the increase in energy

∂Ew

∂t
=

∂

∂t

[
dx

dξ

∫ ξo

o

ρcV Tdξ

]
=

ρcV oTo

2

√
W

t

(
2n + 3
2n + 6

)
ξo. (7.64)

Setting this equal to the flux, we find

ξo =
2
√

(2n + 6)(n + 1)
2n + 3

and (7.65)

xo =
2
√

(2n + 6)
(2n + 3)

√
κrad

)
To

ρcV o

√
t. (7.66)

Figure 7.11 shows the value of ξo at the front from (7.65). The Marshak wave
will be shorter in an ionizing system than in a system with constant specific
heat. Figure 7.12 compares the shape of this wave (from 7.63) with the shape
of a traditional Marshak wave. One sees no dramatic differences.
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Fig. 7.12. Ionizing radiation wave profiles. The normalized temperature f = T/To

is somewhat flatter in an ionizing medium than it is in the fixed-Z case of the
traditional Marshak wave. Here the gray curves give the temperature profiles from
the ionizing model for n = 3, 4.5, and 7 from bottom to top. The black curves give
the corresponding numerical solutions for the traditional Marshak wave
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7.3.3 Constant-Energy Radiation Diffusion Wave

Now we turn to the second case of common interest. A finite event, such as
a laser pulse, a Z-pinch implosion, or an astrophysical burst, may produce a
definite amount of radiation. If the radiation is released into a uniform near-
equilibrium medium in which the radiation pressure is negligible and the
radiation transport is diffusive, then the same fundamental equations apply
as in the Marshak-wave case. We consider the planar case here. (Zeldovich
and Raizer discuss the spherical case.) One still has, from (7.49),

∂T

∂t
=

κrad

)
To

ρcV (n + 1)Tn
o

∇2Tn+1 = Y ∇2Tn+1, (7.67)

thus defining Y where, if T is in energy units, then Y has units of cm2 s−1

energy−n. Note that ρcV T is the energy per unit volume so T is the energy
per unit volume per unit ρcV . However, the total energy per unit area is
also fixed so this is a problem with two independent dimensional parameters.
Defining the energy per unit area per unit ρcV as Q =

∫
Tdx, which has units

of cm1 energy1, the quantity QnY t has units of cm(n+2). Thus, an effective
dimensionless similarity variable is

ξ = x/ (QnY t)1/(n+2)
. (7.68)

As a result, we expect that the position of any point on the heat wave, where
for example the temperature is some fraction of the maximum temperature,
will be ∝ t1/(n+2). Since n is typically 4 or 5, such diffusion waves propagate
much more slowly than Marshak waves. However, in contrast to the Marshak
case there is no fixed temperature that makes a natural normalization for T .
Indeed, we need a time-dependent normalization for T since the maximum
temperature must decrease with time as energy is carried outward. However,
the normalization of T need not be spatially dependent, as all the spatial
dependence can be in the evolution with ξ. To see what normalization makes
sense, we consider the spatial derivative of a normalized function, f , finding

∂f

∂x
=

1

(QnY t)1/(n+2)

df

dξ
. (7.69)

We can also see that the right-hand side (RHS) of (7.67), in terms of ξ,
becomes

RHS =
Y

(QnY t)2/(n+2)

d2

dξ2
Tn+1. (7.70)

Since the time derivative on the left-hand side of (7.67) will introduce a factor
of 1/t, it makes sense to multiply (7.70) by t, from which we can find that
an effective normalization for T , with consistent units, is [Q2/(Y t)]1/(n+2),
so f = T/[Q2/(Y t)]1/(n+2). It is important to note that the denominator in
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the definition of f is not some initial temperature To. Rather, the value of f
that we will find at ξ = 0 will give To as a function of time when multiplied by
this denominator. Because f is not time independent, to develop the equation
for f we must observe that

1

[Q2/(Y t)]1/(n+2)

∂T

∂t
=

∂f

∂t
− f

(n + 2)t
. (7.71)

We also have the usual type of relation between derivatives in t and ξ,
∂f

∂t
=

−1
n + 2

ξ

t

df

dξ
, (7.72)

so (7.67) becomes

f + ξ
df

dξ
+ (n + 2)

d2

dξ2
fn+1 = 0. (7.73)

The solution to this equation is

f(ξ) =
[

nξ2
o

2(n + 2)(n + 1)

]1/n [
1 − (

ξ

ξo
)2
]1/n

. (7.74)

This has a fixed shape in ξ, as expected. The time dependence is entirely
included in the normalization of T , as it should be, so T (0) ∝ t−1/(n+2).

Homework 7.8

Show that (7.74) is a solution to (7.73). Clearly annotated work with a com-
putational mathematics program is preferred.

Figure 7.13 shows the shape of the constant-energy radiation diffusion
wave and compares it to that of the Marshak wave. Note that the absolute
value of To decreases in time for the constant-energy wave though not for the
Marshak wave. The constant-energy wave produces a much flatter temper-
ature profile. Both waves have the very steep front that is characteristic of
nonlinear diffusion waves.

The value of ξo must be determined from an integral of the total energy.
The definitions of Q and f imply that the correct normalization is

1 =
∫ ∞

−∞
f(ξ)dξ =

[
n

2(n + 2)(n + 1)

]1/n

ξ(2+n)/n
o

√
π

Γ
(
1 + 1

n

)
Γ
(

3
2 + 1

n

) . (7.75)

Figure 7.14 shows the value of ξo as a function of n. One sees that ξo ∼ 1
to within 10% over the range of interest for radiation waves in high-energy-
density plasmas. We can use this value to evaluate the location of the heat
front, obtaining (7.76). Note that in a real problem one probably knows Q
and does not know To, but does know κrad)To

/Tn
o . The heat front location is

xo = ξo (QnY t)1/(n+2) ≈
[(

Q

To

)n κrad

)
To

ρcV (n + 1)

] 1
(n+2)

t1/(n+2). (7.76)
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Fig. 7.13. Radiation diffusion wave profiles. The normalized amplitude, T/To, is
shown against the normalized similarity variable, ξ/ξo, for both constant-energy
radiation diffusion waves (gray) and Marshak waves (black). In each case, from
bottom to top, the curves correspond to n = 3, 4.5, and 7
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Fig. 7.14. Wavefront location for a constant-energy diffusion wave

Homework 7.9

Consider a gold container shaped so that a planar approximation is rea-
sonable, having planar walls spaced 1 mm apart in vacuum. Assume ρ =
20 g/cm3 and treat cV = 1012 ergs/(g eV) as constant. Use other parameters
from Chap. 6 as appropriate. Suppose 100 kJ/cm2 is the initial energy con-
tent of the vacuum between the walls and that the initial wall temperature
is negligible. Approximate the heat front in the walls as a square wave. From
zero to 10 ns, find the position of the heat front and the temperature of the
surface as a function of time. Plot the ratio of the energy content of the walls
to the energy content of the vacuum. Discuss the result.

Homework 7.10

Develop the equivalent of (7.76) for a spherically symmetric system.

This concludes our discussion of radiation diffusion waves. We discuss the
related topic of ionization fronts at the end of this chapter.
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Fig. 7.15. An image of the supernova remnant SNR 1987A, taken in November
2003. Credit: NASA, P. Challis, R. Kirshner (Harvard-Smithsonian Center for As-
trophysics) and B. Sugerman (STScl)

7.4 Radiative Shocks

A radiative shock is one in which the structure of the density and temperature
is affected by radiation from the shock-heated matter. This simple definition
covers an enormous range of phenomena, all at a high enough temperature
that we are fortunate not to encounter them in ordinary life. Yet radiative
shocks can readily be produced in high-energy-density experiments, and they
are frequently encountered in astrophysics. An astrophysical example is found
in the supernova remnant developing from SN 1987A, shown in Fig. 7.15. The
bright spots in this image are produced by the collision between the ejecta
from the star and matter at the edges of the inner ring that encircled the star.
Analysis of spectra has shown that the shock waves being driven into the ring
are radiative, at least in places. The presence of bright spots, rather than a
continuous ring of emission, indicates that there are spikes of dense material
at the inner edge of the ring. These might be a result of the Rayleigh–Taylor
instability during ring formation.

7.4.1 Regimes of Radiative Shocks

Here we discuss the conditions under which a radiative shock occurs, and the
physical conditions that determine its structure. In the introduction to this
chapter (see Fig. 7.1) we found, depending in detail on density and material,
that the radiative flux and pressure became important at temperatures of tens
of eV and hundreds of eV, respectively. Shock waves can provide the heating
that pushes a plasma into a radiative regime, or they can occur within a
plasma that is already in a radiative regime. In order for a shock to push a
plasma into a radiative regime, it must at minimum be fast enough that the
radiative fluxes, which scale as the fourth power of the temperature and thus
the eighth power of shock velocity, exceed the material energy fluxes, which
scale as the third power of shock velocity.

In the nonradiative regime, the immediate postshock temperature Ts is
given by (4.20), which we rewrite here as
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RTs =
2(γ − 1)
(γ + 1)2

u2
s, (7.77)

in which us is the shock velocity and it will be useful at times below to
work with the gas “constant” R = kB(Z + 1)/(Amp), which in general is
temperature dependent. Note that RTs has units of energy per unit mass.
For γ = 4/3 and Z + 1 = A/2, Ts is 6.4 eV at us = 100 km/s, which is one
reason why radiative effects are rarely important for shock velocities much
below 100 km/s.

The average number of electrons that share energy with each ion is Z, but
this can be a source of difficulty in shock waves. We have already discussed
how Z can vary with temperature, in Chap. 3. In addition, the shock heats
the ions and then the electrons and ions equilibrate, so that in sufficiently
low-density matter Z would be zero immediately following the density jump.
Thus, in general, one may need to allow separate temperatures for ions and
electrons, a point we return to in Sect. 7.4.9 (which was also discussed pre-
viously in Sect. 2.3.3 with reference to Fig. 2.3). It is the electrons, though,
that couple significantly to the radiation. Here for simplicity we assume im-
mediate equilibration of ions and electrons. In practice, this means that the
equilibration zone just behind the shock (the jump in density and ion temper-
ature) where ions and electrons equilibrate is ignored. The radiation from this
equilibration zone increases as the fourth power of the electron temperature,
so that most of the equilibration zone is not a significant contributor to the
radiation dynamics. In addition, as we will see in Sect. 7.4.9, the equilibration
zone is quite small.

Figure 7.16 shows the temperature implied by (7.77), for Xenon and C1H1.
For a plasma of C and H, one replaces A by (1+12) = 13 and takes Z = 1+ZC ,
where H is assumed to be ionized and ZC is the average ionization of the car-
bon. This modifies the result at low temperature, but makes little difference
on a log–log plot. This equation only applies while the radiation pressure
remains negligible. When radiation pressure matters, a more careful calcu-
lation based on the fundamental equations would be needed. But the figure
suffices to indicate the conditions required to reach the radiative regime. In
round numbers, one needs shock velocities of tens of km/s to reach temper-
atures of tens of eV where radiative fluxes matter, and of hundreds of km/s
to reach temperatures of hundreds of eV where radiative pressure matters.
The velocities required with xenon are smaller than those required with CH,
by a factor of a few.

By the time that radiative fluxes exceed material energy fluxes, the radia-
tion will have affected the medium ahead of the density increase produced by
the shock. The affected region is a radiative precursor, which we discuss as a
separate topic in Sect. 7.4.3. To connect our discussion with other usage, we
should begin by identifying two possible types of “radiative precursors.” The
first we will call a transmissive precursor. The most familiar example is light-
ning. One sees a precursor – the lightning flash – before the resulting thunder,
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Fig. 7.16. Postshock temperatures, for Xenon (dashed) and C1H1 (gray). This
figure ignores the role of radiation pressure at high velocity

which has evolved from the shock wave, arrives. In this case the precursor is
created by the explosion that drives the shock and not by the shock itself.
A second example would be an explosion in the atmosphere strong enough
to drive a radiative shock. In this case, some of the radiation from the shock
itself could be seen far beyond the volume directly affected by the radiative
shock. Thus, one would say that a transmissive precursor is radiation from a
shock front or its source that is weakly absorbed while propagating. Thus, it
can be seen at a long distance. This type of precursor is not of much interest
to us, although we will discuss it briefly below.

The second type of precursor is of much more interest to us and we call
it an absorptive precursor. In this type of precursor, the radiation is ab-
sorbed and is intense enough to affect the upstream medium, principally by
increasing its temperature. Unless we specify otherwise, when we write of a
“precursor” or “radiative precursor” in the following, we refer to this type
of precursor. An important issue for precursors is that of geometry. In order
for the precursor to remain planar, a real experiment would need a radiation
source whose lateral size substantially exceeded the steady-state precursor
length. This is a very demanding constraint. Spherical experiments can avoid
this constraint but suffer severely from the dilution of their energy in the
three-dimensional expansion.

The concept of a shock inherently involves some separation of physical
scales, as we discussed in Chap. 4. In ordinary hydrodynamic shocks, the
scale on which viscous diffusion matters must be much smaller than the
global scale of the flow. Radiation introduces another scale into the prob-
lem, fundamentally related to optical depth. (Likewise, electron-ion energy
exchange (Sect. 7.4.9), heat conduction, or magnetohydroynamic effects also
introduce additional scales under various circumstances.) Yet the physical
scale over which the radiation matters is much larger than the scale of any
viscous effects. As a result, there are two ways to think about the entire sys-
tem including the effects of radiation both upstream and downstream of the
density increase associated with the shock.
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On the one hand, if one views the medium as infinite (measured in optical
depths), then one may take the point of view that the radiation alters the
structure of the shock transition, extending it in space over a (potentially
large) number of radiation mean-free paths. In this case one will speak of the
“shock” as the entire region between a distant, undisturbed upstream region
and a distant, steady-state downstream region. One would then speak of the
comparatively localized density increase as the “density jump” or the “vis-
cous shock transition.” This is the viewpoint taken in much prior literature,
including Zeldovich and Raizer and Mihalas and Mihalas.

On the other hand, and as is discussed in the Introduction to this chapter,
the system may be optically thin. It may be thin in the upstream direction,
the downstream direction, or both. What specifically this means is that the
sum of radiation from distant sources and radiation returning to the shock
from any matter it has heated is negligible. Whenever the entire region af-
fected by radiation from the shock is not well isolated from other influences,
it seems more natural to speak of the “shock” as the region across which the
rapid density increase takes place. This use of “shock” is more common in
discussions of optically thin astrophysical shocks, as for example in Shu. In
this case, the interactions of the radiation and the surrounding medium may
affect both the upstream and the downstream conditions.

Optical depth provides an effective way to classify radiative shocks. We
saw in Chap. 6 that the treatment of radiation transport depends on the
structure of the medium within which the transport occurs, and in particular
on optical depth. The different regimes of radiation transport correspond to
major differences in shock behavior. In one limit – that of very small opti-
cal depth, where the radiation serves only to cool the shocked layer – the
shocked layer can evolve to become orders of magnitude denser than the
preshock medium. In another limit – that of an optically thick and radiation-
dominated plasma – the increase in density is limited to a total of a factor of
7. (Recall from Chap. 3 that the radiation-dominated plasma behaves like a
polytropic gas with γ = 4/3.) An effective way to categorize radiative shocks
and their behavior is to plot them in a space defined by the optical depth of
the upstream and downstream regions. Figure 7.17 shows a qualitative de-
piction of this space. We next briefly discuss each of the four labeled regions.

Thick-Thick Shocks

In regime A, both the downstream and the upstream regions are optically
thick. This is the realm in which it makes the most sense to treat the viscous
density increase and all the radiative effects as part of a single, extended,
shock structure. Many of the features of this structure can be found from a
theory that assumes the medium to be in LTE everywhere. We discuss this
regime in Sect. 7.4.6. For typical ideal gases with γ ≥ 4/3, the density ratio
never exceeds 7. In addition, under some circumstances the density transition
is continuous, with no localized jump. Astrophysical environments in which
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Fig. 7.17. Radiative shock regimes, identified in a space based on optical depth.
The four regimes corresponding to the corners of this plot are discussed in the text.
The curve shows the qualitative trajectory of a supernova blast wave

such shocks exist are necessarily both hot and dense. Shocks in stellar interiors
are of this type, as is the blast wave within the exploding star in a supernova.
Such shocks may also exist within some astrophysical “compact objects,” such
as pulsars, but their treatment would have to be relativistic. It is difficult,
however, to imagine planar laboratory experiments in this regime other than
transiently and in special cases. One difficulty is that the precursor length
increases so strongly with shock velocity (see Sect. 7.4.4) that one could not
produce a measurable precursor of finite length for realistic variations of the
experimental parameters. There may be more potential for experiments in
spherical geometry, but the challenge of producing a system many optical
depths in scale will remain substantial.

Thick-Thin Shocks

In regime B the downstream region is optically thick but the upstream re-
gion is thin. We discuss this regime in Sect. 7.4.6. There is a cooling layer
downstream of the viscous shock transition, followed by a steady downstream
final state. This regime is common in experiments, in which an optically thick
piston (and in some cases optically thick shocked material) drives a radia-
tive shock into a medium whose depth is small compared to the steady-state
precursor length. The upstream medium is then quickly heated so that it
becomes optically thin. Astrophysical examples of such systems include the
blast wave in a supernova as it emerges from the star and the accretion shocks
produced in some binary systems.

Thin-Thin Shocks

In regime C, discussed in Sect. 7.4.5, both downstream and upstream re-
gions are optically thin. Such shocks are the most-commonly observed in
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astrophysics, in part because they are easy to see (as the radiation escapes).
Supernova remnant (SNR) shocks in dense enough environments are of this
type – it is thought that Type II supernovae from red-supergiant precursor
stars produce such conditions. Many shock-cloud interactions, including some
of those driven by SNR shocks, are also of this type. Shocks that propagate
up jets (or are driven by clumps propagating up jets) may be of this type.
In such shocks, the entire downstream region is a radiative cooling layer,
and it ends (in large enough systems) when the downstream temperature
reaches a value determined by local sources and losses of energy rather than
by the shock. The density increase associated with such shocks is formally
unbounded in the sense that it is limited only by external factors, such as
the compression of an initially negligible magnetic field or the presence of a
limiting temperature due to other energy sources. Some experiments, with
shocks in sufficiently low-density gases, may produce these conditions.

Thin-Thick Shocks

Regime D is not trivial to produce in steady state, as it would require that
the shocked material become optically thin when it is shocked while simul-
taneously remaining optically thick in the upstream region, over a sufficient
distance to sustain a steady precursor. Such a change in optical depth can
be produced in ionization fronts driven by radiation, discussed in Sect. 7.5
and in Sect. 8.2.3. Obtaining this response in a shock involving flowing ma-
terial is more difficult. It might occur, for example, if a very-high-velocity,
low-density incoming flow impacted a comparatively dense material. If such a
system could be produced, it would have a very dense shocked layer as energy
continued to be lost in the downstream direction. Two transient examples are
certain shock-cloud collisions and certain experiments. A shock-cloud colli-
sion in which the cloud was dense enough and large enough to be optically
thick for some time would be of this type. The collision of SNR 1987A with
its inner “ring” may be of this type. An experiment might be in this regime
while a hot, thin layer of gas drives a shock through a much larger volume of
gas. All these cases seem likely to transition to the thin–thin regime if driven
harder or longer, and they may never develop a thick upstream region in the
sense discussed above.

7.4.2 Fluid Dynamics of Radiative Shocks

It turns out that several important properties of radiative shocks are indepen-
dent of the details of the radiation transport. In this section, for a polytropic
gas, we consider how the fluid properties must vary within radiative precur-
sors and radiative shocks. That is, we will consider what things must be truly
independent of the details of the radiative transport. Our conclusions here
will apply even to shocks whose transport is far more complex than are the
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models we use later. One example of such a complex situation would be the
transport of energy by line radiation in the presence of significant Doppler
shifts. We will frame this discussion in the radiative flux regime, assuming the
radiation pressure and energy density to be negligible. We analyze a planar
system in steady state, working as usual in the shock frame. In this case the
divergence of the flux terms in the conservative form of the mass, momentum,
and energy equations must be zero. We will work in our usual shock frame
as described in Chap. 4 so that the incoming fluid has a negative velocity.
The mass flux ρu must be constant everywhere and equal to its value in the
region beyond the precursor, −ρous, where the far upstream density is ρo and
the shock velocity is us. The constancy of momentum flux gives

p + ρu2 = ρou
2
s + po, (7.78)

in which the initial upstream pressure is po. The continuity and momentum
relations thus give

p

ρou2
s

= 1 − ρo

ρ
+

po

ρou2
s

and (7.79)

RT

u2
s

=
ρo

ρ

(
1 +

po

ρou2
s

)
−

(
ρo

ρ

)2

, (7.80)

where we have used p = ρRT so RT is proportional to the thermal energy per
unit mass of the plasma at temperature T and R = (1+Z)kB/(Amp). These
results are shown in Figs. 7.18 and 7.19. We use as the independent variable
the inverse compression, ρo/ρ. It is worth noting that radiation does not enter
into these relations (so long as pR � p), and that these figures apply both to
nonradiative shocks and to shocks in the radiative flux regime. Whether in the
precursor or across the shock jump, a change in compression corresponds to
an increase in pressure and a change in temperature as shown. The pressure
increases continuously as ρo/ρ decreases, and so places no constraints on
the shock transition. In contrast, the competition between heating and pdV
work of compression creates the maximum in the thermal energy in Fig. 7.19.
A formal discontinuity in density occurs only if the initial and final states
of the viscous density transition are on opposite sides of the temperature
maximum seen in this figure. (The temperature cannot increase and then
decrease across the density transition, without unphysical consequences for
the radiation flux.) In sufficiently weak shocks, the inverse compression can
remain to the right of this maximum, producing a continuous transition. This
also can occur in radiation-dominated shocks under certain conditions.

The radiation flux enters into the energy flux equation, which for a poly-
tropic gas gives(

γp

γ − 1
+

ρu2

2

)
u + FR = −ρou

3
s

2

(
1 +

2γ

γ − 1
po

ρou2
s

)
+ Fo, (7.81)

in which ρo, po, and Fo are the density, pressure, and radiation flux, respec-
tively, in some presumably steady upstream state. Note that the negative sign
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on the first term on the right-hand side is the consequence of the flow velocity
being negative (according to our standard conventions for shocks throughout
this book) and of taking the “shock velocity,” us, as a positive quantity.

One must understand the physical context in order to set Fo. There are
three limiting cases in which Fo has some specific value for specific rea-
sons. First, in a shock wave that is fully contained within an optically thick
medium, it is sensible to consider the upstream state to be beyond the reach
of any radiation, so one takes Fo = 0. In this case, the energy flux into the
system is the (negative) value of the material energy influx. Second, in a pla-
nar shock of infinite lateral extent with an upstream region that has limited
optical depth, Fo will correspond to the radiation lost upstream beyond some
location that is identified as a reasonable, steady initial state. In this case,
the values of density and temperature at this location may have evolved to
this state (from some other values) during the initiation of the shock. In ad-
dition, the net energy influx to the rest of the system in this case is reduced
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by comparison with the first case. It is the difference between the incoming
material energy flux and the outgoing radiation flux. Third, one may have a
(more or less) planar shock of finite lateral extent. This is relevant to var-
ious experiments that produce optically thin upstream regions. In this case
Fo represents the sum of the energy lost beyond some designated axial po-
sition and the energy lost radially before reaching that position. This is the
case because (7.81) keeps track of energy conservation, so that any energy
removed from the radiation flux must be absorbed in the matter. As a result,
when absorption decreases the upstream radiative energy flux, the returning
material energy flux (from further upstream) must also decrease. In contrast,
when lateral losses decrease the upstream radiative energy flux, the material
energy flux does not decrease.

Homework 7.11

Demonstrate this point explicitly by considering a system having a planar
flow of material within a cylinder of some diameter and of finite length yet
losing radiation both radially and axially, and integrating over the cylinder.

To further clarify what the radiation is doing, it is worthwhile to discuss
the recycling of energy that occurs in radiative shocks. The flow of energy
through the system involves the following sequence as the shock is established.
One begins with incoming mechanical and internal energy from far upstream.
In the shock and the shocked matter, the plasma converts the mechanical
energy to additional internal energy and to radiation. Some of the radiation
flows away downstream with the material. The rest of the radiation flows
upstream. If absorbed there (reducing FR where the absorption occurs) the
radiation adds internal energy to the incoming material. In a steady state
with any upstream heating by radiation, the mechanical and internal energy
incoming to the shock is larger than its initial value before the shock was
established. Thus, the elements of the shock as a system include incoming
material energy, recycling of energy by upstream absorption of radiation, the
escape of radiation upstream including perhaps radially, and the escape of
radiation and material energy downstream.

Returning to (7.81), in the absence of a heat flux (FR and Fo here, but
this could be any heat flux), this equation provides a second, redundant
condition for the pressure. The simultaneous solution of (7.79) and (7.81)
then determines the only possible compression at the shock. The presence of
the heat flux opens a larger range of possibilities. Equations (7.79) and (7.81)
imply

FR − Fo =
ρou

3
s

2

[
2γ

γ − 1
ρo

ρ
− γ + 1

γ − 1

(
ρo

ρ

)2

− 1 − po

ρou2
s

2γ

γ − 1

(
1 − ρo

ρ

)]
.

(7.82)
We will use this equation extensively in what follows, choosing Fo according
to the discussion above.
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Homework 7.12

Derive (7.82).

Figure 7.20 shows the dependence of the net radiation flux (FR − Fo) on
the inverse compression, for po = 0. The flux is normalized to the incoming
kinetic energy flux, ρou

3
s/2. Note that this curve depends on γ while the

previous figures for pressure and the specific thermal energy RT do not.
The net, normalized radiation flux rises above zero only in the presence of
energy recycling in the plasma, when shock-heated matter emits radiation
that warms upstream matter which then carries the energy back to the shock.
A rather magical physical system, with multiple independent recycling loops,
would be needed to drive the flux above 1. The net, normalized radiation
flux reaches –1 if all the energy entering the system is finally radiated away
downstream or otherwise lost, corresponding to a state of formally infinite
compression and zero temperature.
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Fig. 7.20. Radiative flux in radiative shocks, normalized to ρou
3
s/2, against the

inverse compression, ρo/ρ, for γ = 4/3. The gray line shows a characteristic shock
trajectory

Figure 7.20 is tremendously important for understanding the properties
of radiative shocks. We discuss some aspects of this now, but we will return
to this type of figure repeatedly in what follows. The general behavior of a
radiative shock is shown as a trajectory on this figure. There is some compres-
sion in the precursor region, as (FR −Fo) increases from zero to a maximum
that equals the value of (FR − Fo) entering the precursor from the shocked
region. Because (FR − Fo) is continuous across the viscous shock transition
(the density jump), this value of (FR − Fo) then fixes the compression pro-
duced by this transition. Further evolution may also occur after the density
jump. The nature of this evolution depends on the downstream boundary
condition. This boundary condition could correspond to (a) a positive radia-
tion flux if there is a bright source downstream of the shock, (b) a radiation
flux of zero if the downstream region is optically thick, or (c) a negative radi-
ation flux if the shocked matter also cools by emitting radiation that is lost
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from the system. The value of the inverse compression where (FR − Fo) = 0
corresponds to the final state one would reach in a nonradiative shock, and
is (γ + 1)/(γ − 1). This may or may not correspond to the final density in an
actual radiative shock. We will discuss some specific cases in later sections.

When we reach the point of discussing the structure within the shocked
material in a radiative shock, we will need an equation describing the spatial
evolution. We will limit our discussion to steady-state shocks. Our approach
will be to assume that either the final state or the immediate postshock state
can be determined on the basis of the fundamental conservation equations.
From this starting point we will integrate the energy equation to determine
the profiles. We again start with (7.2), but now we are interested in the spatial
derivatives. We assume a polytropic gas, work in the radiative flux regime,
and substitute from (7.78) and the continuity relation to obtain

ρou
3
s

2
∂

∂x

[
− 2γ

γ − 1

(
ρo

ρ

)
+

γ + 1
γ − 1

(
ρo

ρ

)2
]

= −∂FR

∂x
. (7.83)

This is the equation we will use to explore the spatial profiles.
It may or may not be feasible for a shock to radiate away all of its energy.

The upper limit on the radiative flux, FR, emitted from the shocked layer
equally in both upstream and downstream directions is ρou

3
s/4 in each direc-

tion, as this would radiate away all the energy. Thus, based on the following
discussion of optically thin precursors, the upper limit on the temperature in
the precursor is approximately Teff = [ρou

3
s/(4σ)]1/4. This temperature in-

creases with density, while the immediate postshock temperature from (7.77)
depends only on us. As a result, at any velocity there is a density above
which a steady shock cannot radiate away all the energy. Figure 7.21 shows
the velocity dependence of this limiting Teff , for several densities from 10−21

g/cm3 to 1 g/cm3. It also shows the nonradiative postshock temperature from
(7.77), with R = kB(1+Z)/(Amp) = 1.5× 1011 ergs/g−1/eV−1 or 1.5× 1012

ergs/g−1/eV−1, corresponding roughly to a Xenon plasma or a low-Z plasma,
respectively. When the upper limit on Teff exceeds the nonradiative postshock
temperature (i.e., when the black line is above the gray line in the figure),
the implication is that radiation will be too weak to fully cool the shocked
medium, which will then remain warm in the postshock state. In addition, as
we discuss in the next section, the shocked layer in a laboratory experiment
is unlikely to remain optically thin in steady state.

On the one hand, the effective temperature as just defined (and therefore
the temperature in the precursor) will indeed be negligible in interstellar
astrophysical cases, where the density less than or of order 10−21 g/cm3.
Recall that if the downstream region is optically thin, of optical depth κd,
then its temperature Tf is larger than the effective temperature, as σT 4

eff =
κdσT 4

f . On the other hand, we show below that the precursor temperature
may approach Teff in laboratory experiments. In this case, for γ ≤ 5/3, the
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Fig. 7.21. Temperatures vs. shock velocity (km/s). The solid curves show the
effective temperature that would be necessary to radiate away the entire incoming
energy flux. From bottom to top, the densities are 10−21 g/cm3, 10−6 g/cm3, 10−3

g/cm3, and 1 g/cm3. The gray curves show the postshock temperature that would
be present without radiative effects, for Xe (solid, with γ = 4/3) and H2He1 (dashed,
with γ = 5/3)

initial normalized pressure, po/(ρou
2
s), will be ≤0.25, which is small but may

not always be negligible.
Let us return to the properties of the precursor region. Assuming zero ini-

tial upstream pressure po, (7.80) and (7.81) can be solved for the normalized
temperature in the precursor, RTp/u2

s, which turns out to depend only on
the normalized net radiation flux, FRn = 2(FR − Fo)/(ρou

3
s). Note that FRn

has value of 1/2 when half the incoming energy flux is escaping upstream but
might be larger than this in the presence of recycling. One finds

RTp

u2
s

=
1

(γ + 1)2
(
1 −

√
1 − (γ2 − 1)FRn

)(
γ +

√
1 − (γ2 − 1)FRn

)
.

(7.84)
This temperature goes to zero as FRn goes to zero, as it should. As FRn in-
creases, Tp can approach but cannot exceed the temperature of the radiation
from the shocked matter. (We discuss this point further below.) This enables
us to do some useful reasoning.

We will characterize the radiation fluxes emitted from optically thick lay-
ers of material as thermal radiation, and will construct radiation fluxes in
thin layers by considering thermal emission rates as we discussed in Chap. 6.
With specific regard to the precursor region, we can say that there is a min-
imum possible temperature of the radiation from the (downstream) shocked
material, Tmin, given by σT 4

min = FRn. The downstream temperature can, of
course, be higher than this, for example, if the downstream region is optically
thin or if there is a significant radiation flux returning from upstream (FRn

is a net flux). But in any event Tmin is the smallest, this temperature can be.
With this definition, the normalized radiation flux is
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FRn =
σT 4

min

ρou3
s/2

=
σu8

s(RTmin/u2
s)

4

R4ρou3
s/2

= Q

(
RTmin

u2
s

)4

. (7.85)

This defines a radiation strength parameter, Q = 2σu5
s/(R4ρo), which has a

typical value of 104 to 105 in laboratory radiative shocks. Here Q is nondi-
mensional but must be evaluated using consistent units, such as cgs units
with σ in ergs/s−1 cm2/eV4 and with R in ergs/g1/eV1.

Figure 7.22 shows the values of RTp/u2
s and RTmin/u2

s vs. FRn, for Q =
103 and 105. At Q = 103 and for this γ, the precursor temperature remains
always below the minimum radiation temperature. This guarantees that the
radiation in the precursor will always be out of equilibrium, and that the
absorption of this radiation will determine the precursor structure. This con-
clusion is independent of any specific model regarding radiation transport in
the precursor. In this case, the precursor is always a transmissive precursor
in the sense discussed above. In contrast, at Q = 105, Tp exceeds Tmin when
the radiation flux is large enough. When this occurs, the precursor in this
region is an absorptive precursor if the downstream matter is optically thick
and may or may not be otherwise. Wherever Tp exceeds Tmin, there must
be offsetting radiation fluxes, increasing the actual radiation temperature,
because the temperature in the precursor, Tp, cannot rise above the “tem-
perature” of the radiation that provides the heating. Zeldovich and Raizer
provide a thorough discussion of this point in the context of optically thick
systems, for which they take the postshock temperature to be well defined.
We will see below that the radiative flux from the shocked region may, in
general, have components corresponding to a range of temperatures. Even
so, the precursor temperature cannot become so large that the flow of energy
from the shocked matter to the precursor and back would act to decrease the
entropy, which would violate the second law of thermodynamics. (A parcel
of energy ∆ε flows as radiation from the shocked matter to the precursor,
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carrying entropy ∆ε/TR and is carried back to the shock as material energy,
with entropy ∆ε/Tp. The initial entropy must not exceed the returning en-
tropy, so Tp ≤ TR.) Thus, for the case of Fig. 7.22(b), if FRn ∼ 0.6, then the
normalized radiation temperature must be at minimum equal to RTp/u2

s ∼
0.1.

In the prior literature of radiative shocks, the distinction between a sub-
critical shock, having Tp < Tf , and a critical or supercritical shock, having
Tp = Tf , is emphasized. Here Tf is the steady-state temperature of the down-
stream region (assuming this exists). In the context of the previous para-
graph, Tf ≥ Tmin. The traditional viewpoint can be summarized as follows.
The radiative flux must be continuous when one crosses the shock, which sets
the immediate postshock density as can bee seen in a figure like Fig. 7.20.
Because the temperature curve (Fig. 7.19) is shifted to the left relative to
the flux curve (Fig. 7.20), the immediate postshock temperature T2 is al-
ways higher than Tp. Tf is smaller than T2, but how much smaller depends
on the details of the radiation transport and on the radiation strength Q.
If Q is small enough, then Tp can never equal Tf , as in Fig. 7.22(a). Such a
shock is known as a subcritical shock. The traditional notion is that a strong
enough shock will produce Tp = Tf and such a shock is known as a critical
or supercritical shock. This is implied by an LTE analysis using equilibrium
radiation diffusion. However, a radiation diffusion model is a poor vehicle
for the study of the inherently abrupt structures involved in shocks. We will
see below that Tp may approach Tf in various realistic circumstances, but
that this is a limiting case rather than the threshold of a regime. One could
self-consistently define a supercritical shock as one in which Tp > Tmin in
the sense of Fig. 7.22, but this is not the traditional definition. In short, the
present author is rather skeptical of the existence and usefulness of supercrit-
ical shocks as traditionally defined.

Finally, consider the density in the precursor. By comparing Figs. 7.19 and
7.20, one can see that there is a nonzero final temperature for any finite inverse
compression and thus for any possible final value of FR. For example, the final
normalized temperature is approximately 0.12 for the specific value of the
inverse compression (approximately 0.15) corresponding to (FR − Fo) ∼ 0
and γ = 4/3 in Fig. 7.20. One can see in Fig. 7.19 that if the precursor
temperature reaches this final temperature then the density increase in the
precursor will be between 10 and 15%. This is quite small in comparison
with the total density increase, of order 10, which justifies somewhat the
assumption in some following sections that the density is unchanged in the
precursor.

7.4.3 Models of Radiative Precursors

Now we turn from the general fluid dynamics, which applies to every radiative
shock, to specific models of the shock structure. We will consider this in two
steps, analyzing first the structure of the precursor and second the structure
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of the shocked layer itself. Any such analysis must be within the context
of a chosen treatment of radiative transfer. We consider two examples for
precursors, involving first the diffusion regime and then the transport regime.

Before turning to specific models, we first discuss one simple threshold
for radiative effects. One can say that a radiative precursor will be present
when the flux of ionizing photons radiated ahead of the shock equals the flux
of neutral atoms incident on the shock. This point of view is that one will
certainly see heating and a change of state of the upstream medium when
all (or most) of the incoming atoms are ionized. To be precise, the threshold
would be when the upstream flux of ionizing photons times the fraction that
are absorbed in the upstream region equals the flux of incoming atoms. One
way to express the flux of ionizing photons is as the flux of photons emitted
by a black body at the postshock temperature, which is 2.3×1023T 3

s , with Ts

in eV, times the fraction of these photons that are emitted and are ionizing.
This fraction is the product of the emissivity of the downstream region, εd,
and the fraction αi of all photons that are ionizing. Recall that εd is equal to
the optical depth if the downstream region is optically thin. The fraction αi

is near unity for shock velocities above 50 km/s.

Homework 7.13

Working with the Planck description of blackbody radiation, find and plot
the fraction of photons that are ionizing as a function of temperature. You
will need a computational mathematics program to generate the plot.

The fraction of ionizing photons that is absorbed in the upstream region
is equal to the upstream emissivity, εu. One can assemble the last few lines
of material into an equation for the threshold:

2.3 × 1023εuεdαiT
3
s > ρus/(Amp). (7.86)

Using (7.77), one can convert this into a threshold for the shock velocity,
given by

us > 270 [ρ/(εuεdαi)]
1/5 km/s. (7.87)

In laboratory experiments with dense gases or foams, the quantities in square
brackets may all be of order unity. For low-density astrophysical systems,
(7.87) is correct but not very useful. With ρ of order 10−24 g/cm3, obtaining
a radiative precursor will require first of all that the postshock temperature
be high enough to obtain a significant fraction of ionizing photons. Beyond
that it will depend on the optical depth of the system. We will consider next
two limiting cases of optical depth – very thick and very thin.

Diffusive Radiative Precursors

In the diffusion regime, one is tempted to model the precursor in a supercrit-
ical shock as a Marshak wave, since it is a diffusive radiation wave emanating
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from a constant-temperature source. In this case, one must deal heuristically
with the fact that the source is moving. The Marshak wave has a length-
dependent velocity, being very fast when it is short (early in time after its
initiation) and slowing down monotonically as its length increases. One can
argue that, in steady state, the precursor length ahead of a shock must be
such that the diffusion wave velocity equals the shock velocity. In either (7.57)
or (7.66) one has the length xo = ξo

√
Wt with ξo a constant near 1.6 and

W = κrad)To
/[ρcV (n + 1)]. Matching the precursor velocity to the shock ve-

locity gives us = (ξo/2)
√

W/t, which determines the “time” in the Marshak
wave evolution at which the length is maintained. Combining these gives the
steady-state precursor length as

xo = ξ2
oW/(2us). (7.88)

Note that W , being proportional to the coefficient of radiative heat conduc-
tion, κrad, scales as a large power of the temperature (T 4 to T 7). This is
why the precursor length has a very strong dependence on shock velocity.
However, in the context of real systems one would have difficulty observing
such precursors. One can use the steady-state precursor length in the initial
relation for xo to find the time, to, required for the diffusion wave to reach
this length. One obtains

to = (xo/ξo

√
W )2 = ξ2

oW/(4u2
s). (7.89)

This time also increases very rapidly with shock velocity. Real experiments
in the planar geometry of this analysis will achieve steady-state precursors
only over a very narrow range in velocity.

The qualitative situation is better for experiments in spherical geometry,
if in fact they can produce large enough systems that a diffusion model can
meaningfully apply. Zeldovich and Raizer consider the case of nonlinear ra-
diative heat diffusion from a point source in spherical geometry. They find
that the diffusion wave moves with r ∝ t1/(3n+2), so that the velocity is
∝ t−(3n+1)/(3n+2) ∼ 1/t.

It is not too hard to improve the analysis above for a planar system. In
the radiative flux regime and for a polytropic gas the energy flux equation,
(7.2), becomes

∂

∂t

(
ρu2

2
+ ρε

)
+ ∇ ·

[
ρu

(
γε +

u2

2

)]
= −∇ · F R. (7.90)

To improve the analysis at a first level, we can ignore the changes in den-
sity and velocity in the precursor, treating it as a plasma moving with a
constant velocity of −us. Approximating γ as constant, and assuming a one-
dimensional shock, this equation simplifies to

ρ
∂ε

∂t
− usγρ

∂ε

∂x
= − ∂

∂x
FR. (7.91)

Applying the analysis of Chap. 4, one can show that this equation does not
admit a self-similar solution.
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Homework 7.14

Determine whether (7.91) admits a self-similar solution, assuming a diffusive
model for FR.

But we can hypothesize that a steady precursor may develop, reflecting
the balance of upstream diffusion and downstream flow, so we consider this
problem in steady state. If we take ε = cV T , approximating cV as constant,
and assume FR is produced by diffusive heat transport we find

−usγ
∂T

∂x
=

∂

∂x

κrad

ρcV

∂

∂x
T, (7.92)

from which as in Sect. 7.3 we obtain

∂f

∂x
= − W

γus

∂2fn+1

∂x2
(7.93)

in this case with f = T/Teff (taking the radiation flux leaving the shocked
matter to be σT 4

eff). Now we define a new variable ζ = xγus/W , so that
(7.93) becomes

∂f

∂ζ
= −∂fn+1

∂ζ2
. (7.94)

The specific solution here must be such that the upstream radiative heat
flux at the precursor boundary balances the thermal energy brought back
to the shock by the incoming flow. (This has some subtle aspects, because
the diffusion treatment is not fully self-consistent.) Here we write the flux
balance as

κrad∇TR

∣∣
shock

= γρεus. (7.95)

Upon ignoring differences between Teff , TR

∣∣
shock

, and the material tempera-
ture at the shock, which are caught up in the subtleties just mentioned, this
becomes

∂f

∂ζ

∣∣∣∣
ζ=0

=
1

n + 1
. (7.96)

Figure 7.23 shows the precursor profile for n = 4. Solutions to (7.94) that
produce a heat front place it where ζ is some fraction of 1. Let us compare the
size of this precursor with our simple estimate above. The ratio of the result of
the improved calculation to that of the simple estimate is

√
W/(ξoγus

√
t) =

(uo/us)[2/(ξ2
oγ)]. Here uo is the velocity of the Marshak wave. Our estimate

above took uo = us. One can see that the precursor length from the diffusion
model is a fraction 2/(ξ2

oγ) of the precursor length from the Marshak-wave
estimate, which is approximately one half. In other words, the effect of the
incoming flow is to reduce the size of the precursor in addition to limiting its
expansion.
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Fig. 7.23. A diffusive precursor profile. A sample solution of (7.92), for n = 4,
which gives f ′(0) = −0.2. The temperature ratio f is shown on the ordinate, with
the normalized distance xγus/W on the abscissa

Homework 7.15

Solve (7.94) numerically, for several relevant values of n. Comment on the
results.

We can estimate the diffusive precursor length as follows. For typical pa-
rameters (χR ∼ 106T

−4/3
eV cm2/g, n = 4, γ = 4/3, ρ = 0.1 g/cm3

, cV = 1012

ergs g−1/eV, us = 2 × 106T
1/2
eV cm/s), one finds W = 10−4T

13/3
eff and

W/(γus) = W/(8 × 106T
1/2
eff ), with Teff in eV. This is 19 µm at 100 eV

for this density but would be 1.9 mm for ρ = 0.01 g/cm3. Figure 7.24 shows
the steady-state diffusive precursor lengths in a space of density and tem-
perature. The boundary labeled “limit” in this figure is where the precursor
length decreases to ten interparticle spacings for ionized Be. The model is
certainly not valid beyond that point. One should also note that in many
real circumstances the diffusive model may not apply because the opacity in
the heated precursor is too small. The next section considers this situation.

Transmissive Radiative Precursors

For any transmissive precursor that extends over many absorption lengths,
including a subcritical shock in the diffusive regime, one can model the pre-
cursor using the nonequilibrium diffusion theory of Sect. 6.2.4. One has from
(6.57) and (6.59), again under the assumptions that the density does not
change and that the system is in the radiative flux regime, that

F R = − 4
3χ̄

∇σT 4
R, and (7.97)

∇ · F R = 4κPσT 4
p − 4κEσT 4

R, (7.98)

in which χ̄ and κE are averaged opacities defined in that section and κP

is the Planck mean opacity. Although there are three distinct opacities in
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Fig. 7.24. Diffusive precursor lengths. The boundaries show the indicated values.
Experiments with foams and gasses at densities below 10 mg/cm3 will tend to
produce very large precursors

(7.98), it seems common in the literature to assume without comment that
these are all equal. While this has the virtue of being consistent with the
treatment in some computer codes employing nonequilibrium diffusion, it is
not numerically correct, and may introduce significant errors. In the case of
the subcritical shock with Tp less than some large fraction of TR, Tp can be
ignored in (7.98). In this case the radiation flux is just attenuated. Solving
(7.97) and (7.98), with the optical depth τ defined here as the magnitude of
the distance times the “opacity,” τ =

√
χ̄κEz, gives

FR = Foe
−
√

3τ , (7.99)

in which Fo is the radiation flux emerging from the shock. If the absorption
is dominated by bremsstrahlung, this result may be accurate. However, only
a fairly sophisticated computer code will treat the opacities here correctly
and thus evaluate the exponential scale length accurately.

Radiative Precursors in the Transport Regime

In many real situations the radiative transfer within the precursor (and the
shocked matter too) may be in the transport regime. The transport regime
is the relevant one in the case that the upstream plasma is optically thin or
is limited in extent. Moreover, in this case the radiative flux may approach
the full flux from the shocked region, σT 4

eff , while in the diffusion regime the
Rosseland flux is much smaller, being a blackbody flux σT 4

R multiplied by the
(small) fractional change in temperature per unit (reduced) optical depth. We
assume first that the radiation pressure is negligible, that the radiation and
matter temperatures are the same, and that the density and velocity in the
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precursor region are not changed by the precursor (just as is the case for the
Marshak wave). Under these assumptions and for a planar precursor (7.2)
becomes

ρ
∂ε

∂t
+ ρuγ

∂ε

∂z
= −∂FR

∂z
= 4πκ(JR − B). (7.100)

This equation allows useful estimates of the steady-state plasma temperature
and the time required to reach steady state. First consider (JR − B). The
average intensity JR has three components. These are the contribution from
the shocked matter (J1), the contribution from the region between the shock
and a given location (J2), and the contribution from the region upstream of
the given location (J3). To make a simple analysis tractable, we suppose that
the upstream plasma has a characteristic size D in the upstream direction
and is infinite laterally. We then examine the plasma in a location a distance
d from the shock.

In calculating the contribution from the shocked matter, we take the
radiation intensity (power per unit area per unit solid angle) to be σT 4

eff/π.
Then we have

J1 =
σT 4

eff

4π2

∫
e−κd/µdΩ =

σT 4
eff

2π

∫ 1

0

e−κd/µdµ, (7.101)

in which we integrate over the hemisphere facing upstream. This integral
evaluates to

J1 =
σT 4

eff

2π

[
e−κd − κdΓ (0, κd)

]
≈ σT 4

eff

2π
, (7.102)

in which Γ is the incomplete Gamma function and the second approximate
equality requires that we stay where the optical depth to the shock (κd) is
small.

To find J2 and J3, we will have to integrate B over space. We will designate
the plasma temperature as Tp so that B = σT 4

p/π. Our point of view here is
that we are analyzing a very thin system, so that measured in optical depths,
the precursor of interest is very near the shock. This allows us to assume that
Tp is constant for the purpose of evaluating this integral. We then have

J2 =
1
4π

∫
dΩ

∫ d

0

κBe−κz/µdz/µ, (7.103)

in which the integral over distance evaluates the radiation intensity at a polar
angle corresponding to µ and the solid-angle integral is over the forward
hemisphere. One finds

J2 =
B

2
[
1 − e−κd + κd (Γ (0, κd))

]
. (7.104)

For small κd, J2 ∼ κd[1 + Γ (0, κd)].
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Proceeding to J3, one has

J3 =
1
4π

∫
dΩ

∫ D−d

0

κ

µ
Be−κz/µdz =

B

2
[
1 − e−κD + κDΓ (0, κD)

]
,

(7.105)
in which the solid-angle integral is now over the entire hemisphere in the
downstream direction and in writing the rightmost expression we have as-
sumed d � D. We can now rewrite (7.100), realizing that ε = RTp/(γ − 1),
as

2κ
[
σT 4

eff − σT 4
p

(
1 + e−κD − κDΓ (0, κD)

)]
= −

ρousγRT ′
p

γ − 1
. (7.106)

The term on the right-hand side of this equation should be small, by our
assumptions. One can check this, using (7.84) to evaluate the derivative of
RTp, taking the derivative of FRn to be −κFRn. One finds this term to be
small for any strength parameter Q > 10. Thus one finds for Tp:

Tp =
Teff

[1 + e−κD − κDΓ (0, κD)]1/4
. (7.107)

For small κD, Tp is 84% of Teff . This turns out to equal the final down-
stream temperature in a shock that is thick downstream but thin upstream
(see Sect. 7.4.5). In this equation, Tp increases as κD does, approaching Teff

at large κD. However, the calculation of JR becomes invalid as κD increases.
One knows from the flux balance equation that Tp will decrease as the net
radiation flux decreases with increasing κD. However, one may wonder how
Tp near the shock can be a fixed fraction of Teff in spite of the discussion
relating to Fig. 7.22 above. The answer is that this system is optically thin
by assumption and that much of the radiation flux crossing the shock is in the
end lost from the system and so increases Fo. We do not know how much is
lost a priori, as is indeed the case in real systems of this type. As we discussed
in Sect. 7.4.2, the flux balance equation demands only a relation between the
temperature profile in the precursor and the radiation flux that is actually
absorbed there.

The relevance of (7.107) depends on how readily the steady state is
achieved and whether there is in fact time for the precursor plasma to be
heated as the shock approaches it. To evaluate this, we use (7.80) and take
∂ε/∂t ∼ ε(Teff)/tss, defining the time we seek as tss, and we take JR ∼ J1

and B ∼ 0. This gives

tss =
ρε(Teff)
2κσT 4

eff

. (7.108)

This turns out to be remarkably fast. For a laboratory plasma, we can take
ε ∼ 1012Teff ergs/g and κ ∼ 106/Teff cm−1 to find tss ∼ 10−6ρ/T 2

eff , which is 1
ns for Teff ∼ 10 eV and ρ ∼ 0.1 g/cm3. Radiation hydrodynamic experiments
usually have timescales of at least several nanoseconds. Thus we conclude that
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the precursor plasma may approach its steady-state temperature reasonably
quickly in laboratory experiments. For an interstellar astrophysical plasma
with κ ∼ 5 × 10−37 cm−1, ρ ∼ 10−23 g/cm−3, and Teff ∼ 10 eV one finds
tss ∼ 1010 s ∼ 300 years. This too is very fast, but it will turn out that Teff is
typically not large enough to be significant in such astrophysical plasmas. In
both these examples, there will be an initial transition period, during which
the shock processes precursor material that has not yet reached this steady
state.

Thus, the precursor may approach steady state and the plasma tempera-
ture Tp will be close to Teff in a shock with an optically thin upstream layer.
Note that this result has no explicit dependence on the value of Teff . Instead,
the temperature in the precursor will depend primarily on the optical depth
of the (downstream) shocked layer. The temperature near the shock will tend
to increase as the optical depth of the precursor increases, but a more com-
plete calculation would be needed to assess how much. Thus, the traditional
distinction between subcritical and supercritical shocks has no relevance when
the upstream medium is optically thin. The precursor will be determined by
Teff , which in turn is determined by details of the downstream layer discussed
in the next two sections.

Homework 7.16

Evaluate the net radiation flux (FR−Fo) for an optically thin precursor using
a calculation similar to that done in (7.101) and (7.105).

7.4.4 Optically Thin Radiative Shocks

In the present section we consider shocks that are optically thin throughout,
so that radiation freely escapes in both directions. We also assume that nearby
radiation sources are negligible, so that the shock exists in isolation. In this
case all of the incoming energy eventually leaves the system as radiation. It
is important that an optically thin system is not energy conserving. Some
or all of the incoming material energy flux leaves the system as radiation.
A limiting case is to assume that the pressure in the precursor is negligible
compared to ρou

2
s. In this case, the ordinate of Fig. 7.20, (FR−Fo)/(ρou

3
s/2),

is zero at the shock but Fo is finite and represents energy escaping in the
upstream direction. The density jump at the shock will then be (γ+1)/(γ−1),
and the normalized radiation flux will decrease after the shock to −1, as
all the incoming energy is converted to radiation. The immediate postshock
temperature will equal that in the nonradiative case. The final density will
be formally infinite, limited only by factors outside this analysis, such as
increasing magnetic field, increasing optical depth of the downstream plasma,
or external radiation sources.

For the remainder of this section, we consider the case that corresponds
to interstellar astrophysical shocks, under conditions that allow the radiation
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Fig. 7.25. Fluid dynamics of an optically thin shock. The gray curve shows the
trajectory of the system, from an initial state with negligible pressure

to carry away all the incoming energy. Our evaluation of the initial condi-
tions, from the previous paragraphs, applies. As a result, Fig. 7.25 shows the
evolution of the shock. From the initial state we have discussed, the shock
transition takes the inverse compression to (γ − 1)/(γ + 1). After this, ra-
diative cooling moves the inverse compression toward zero. The question we
address here is what profiles develop during this cooling.

To work with (7.83), we consider that JR is negligible compared to B,
so in the transport regime ∂FR/∂x = −4πκB. We now want to simplify
(7.83), to find the essential parameters that control the behavior. We use the
subscript i to designate the immediate postshock state. Then we can take
κ = κi(ρ/ρi)m(T/Ti)−n so that

∂FR

∂x
= −4πκiBi

(
γ + 1
γ − 1

ρo

ρ

)−m (
T

Ti

)4−n

. (7.109)

With this definition, the natural normalization of (7.83) is to create a radia-
tion parameter Rr, defined by

Rr =
γ + 1

γ

4πBi

ρou3
s

=
γ + 1

γ

4σT 4
i

ρou3
s

, (7.110)

which is approximately the ratio of the radiative flux from an optically thick
shocked layer at temperature Ti to the incoming energy flux. When Rr >
1, the radiative fluxes in the postshock layer exceed the material energy
fluxes. Thus, when Rr ≥ 1 a cooling layer will develop, in which the plasma
temperature decreases until a sustainable value is reached. In the limit we are
considering Ti ∝ u2

s, so Rr increases as u5
s . We also define an optical depth

variable τ = −κiz In addition, (7.80) (the equation of state) implies

T

Ti
=

(γ + 1)2

(γ − 1)
(
2 + (γ + 1) po

ρou2
s

) ρo

ρ

(
1 +

po

ρou2
s

− ρo

ρ

)
, (7.111)
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where we keep the terms proportional to po (which will be needed later).
With these definitions, (7.83) can be rewritten as

γ + 1
γ

[
−

γ(1 + po

ρou2
s
)

γ − 1
+

γ + 1
γ − 1

(
ρo

ρ

)]
∂

∂τ

(
ρo

ρ

)

= Rr

(
γ + 1
γ − 1

)−m (
ρo

ρ

)−m [
(γ + 1)2

2(γ − 1)

(
1 − ρo

ρ

)
ρo

ρ

]4−n

.

(7.112)

Given boundary conditions at the shock, along with Rr, po, and the para-
meters describing the material in the system (γ, m,n), one can integrate this
equation to find the density profile. Note that if there is absorption of radia-
tion in the precursor, then po is not the pressure at the shock, and (FR −Fo)
is no longer zero at the shock. In this case po is the pressure at a point beyond
which there is negligible heating by radiation. The pressure on the upstream
side of the shock has been accounted for through both po and its relation to
compression.

We will see below that Rr is within a few orders of magnitude of unity
for typical laboratory experiments. Under interstellar astrophysical condi-
tions, however, Rr is enormous. Using γ = 5/3, kB(1 + Z)/Amp = 1.5× 1012

ergs/g/eV, and ρo = 10−22 g/cm3, one finds Rr ∼ 1018 for us ∼ 100 km/s.
Figure 7.26 shows the resulting density profiles for relevant parameters with
Rr = 1018 or 1019. Note that the optical depth required for the evolution
of the profile is approximately 1/Rr. This remains true even as Rr becomes
much smaller (∼10). In the astrophysical case, recall (from Sect. 6.2.2) that
we had κ ∼ 10−38 cm. Thus the cooling distance 1/(κRr) for these parame-
ters is of order 1020 cm or 100 light years. This distance becomes smaller as
the shock velocity increases, producing more radiation.

As we remarked above, it will be some factor not in this model that stops
the increase in density. The increase will slow or stop, for example, if the
slope of κ with T changes or if the magnetic pressure becomes significant.
Interstellar astrophysical shocks often cool by radiation until the temperature
of the downstream, shocked material equals that of the nearby environment
both beyond and ahead of the shock. These are sometimes known by the
horribly unphysical designation “isothermal shocks.” (The term isothermal
shock is also sometimes used to describe the very idealized limit in which a
shock in the presence of heat conduction may have no jump in temperature
where the density jump occurs. The presence of a lighter particle species, such
as photons, that transports heat eliminates this solution except as a limiting
case. One example is the “supercritical shock” as discussed in Sect. 7.4.6.)

One sees in Fig. 7.26a a density increase that becomes increasingly rapid
with increasing optical depth. This type of cooling is sometimes known as
catastrophic cooling. This occurs, for example, when old supernova remnants
cool sufficiently. What is required to produce catastrophic cooling is that
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Fig. 7.26. Density profiles for optically thin shocks. (a) Cool plasmas. Here γ =
5/3, n = 4/3, and m = 2. Profiles are shown for Rr = 1018 (on the right) and
Rr = 1019 (on the left). In this model, the density increases without limit as all the
energy goes into radiation. (b) Hot plasmas. Here γ = 5/3, n = −1, and m = 2,
and Rr = 1021, corresponding qualitatively to the behavior at temperatures above
the minimum of the cooling function near 100 eV

∂κ/∂T < 0. Then as cooling for some time period leads to a density increase
and a temperature decrease, the rate of cooling increases so there is more
cooling in the next time period. However, the behavior seen in Fig. 7.26a
is not universal in all interstellar astrophysical shocks. As Fig. 6.5 showed,
the astrophysical cooling function reverses slope at some temperature above
a few hundred eV, corresponding to a shock velocity of approximately 300
km/s. Figure 7.26b shows the cooling that occurs for n = −1 and Rr = 1021.
Some rapid cooling again takes place over a small distance, but following this
there is gradual cooling over a much larger distance. Under these conditions,
a shocked layer will cool slowly until κ reaches its minimum and ∂κ/∂T < 0.
Then rapid cooling to very low temperature will ensue. The rapid density
increase may be described as a density collapse or collapse of the shock, be-
cause the thickness of the shocked layer decreases in inverse proportion to
the increase of density.

7.4.5 Radiative Shocks that are Thick Downstream
and Thin Upstream

We turn now to a circumstance that is common in laboratory experiments
with radiative shocks. The upstream medium, being limited in extent, may
quickly all become heated and after that will be optically thin. Alternatively,
for example, in a spherical experiment in gas, the upstream medium may
quickly become optically thin out to a heat front (or an ionization front;
see Sect. 7.4.9) where the radiation is absorbed. However, the optical depth
of the heated upstream medium is likely to be small, as is the radiation
flux from the precursor region back toward the shock. Correspondingly, for
steady-state calculations we will take the view that the precursor region is a
uniform plasma with some initial temperature (eventually this will approach



7.4 Radiative Shocks 321

the final temperature of the optically thick downstream region, Tf , for rea-
sons discussed above), but that essentially none of the radiation entering the
precursor returns across the density jump.

Before considering the steady-state case, let us qualitatively analyze the
evolution of such a shock from an initial, optically thin limit as a laboratory
experiment begins. One has ∂κ/∂T < 0 under many conditions of interest, so
the initial behavior will involve a density collapse like that discussed in the
previous section. This could be limited by the maximum in κ at low temper-
ature but is more likely to be limited by the transition at some temperature
(and after some time) to an optically thick shocked layer. The resulting den-
sity and temperature of the shocked layer, making it optically thick, might
be said to represent the initial attempt of the system to establish a steady
state. However, the radiation from the cooling layer controls the ultimate
steady state, as we discuss next. This radiation may heat the shocked mat-
ter to a final temperature above the initial value, establishing a steady state
only when the shocked matter becomes optically thick at the temperature
necessary for self-consistency.

Figure 7.27 illustrates the energy balance in a steady shock of this type.
One can see how the cooling layer controls the final state. The net flux at the
downstream boundary of the cooling layer must be zero, so the final temper-
ature must increase until the thermal flux from the steady downstream layer
equals the flux from the cooling layer. When this occurs, the net upstream
radiation flux, lost from the system in our description, but perhaps in real-
ity having the effect of extending the length of a precursor region, is 2σT 4

f .
One self-consistency test for calculation of profiles as is described here is that
the integrated radiation source, and the integrated change in material energy
should both equal 2σT 4

f .
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Fig. 7.27. Energy fluxes in thick-downstream, thin-upstream shocks. Note po = 0
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Homework 7.17

Assuming that the upstream radiation flux at the shock is 2σT 4
f , the intensity

is isotropic, and the absorption and emission from the upstream medium
contribute negligibly to JR, find the steady-state temperature of the upstream
medium.

We can develop solutions for the structure of such a cooling layer, as
follows. Based on our discussion of optically thin precursors, the upstream
temperature will be quite close to Tf . Here we will take it to be equal to
Tf , so the normalized upstream pressure is pon = ρoRTf/(ρou

2
s) = RTf/u2

s.
From (7.80) this implies that pon = RTf/(u2

s) = ρo/ρf . Knowing pon, we
can evaluate the flux balance equation (7.82) to find the conditions at the
boundaries of the cooling layer. At the shock transition FR = Fo = 2σT 4

f , so
given pon = ρo/ρf one finds the initial inverse compression in terms of the
final inverse compression, from (7.82),

ρo

ρi
=

γ − 1
γ + 1

+
2γ

γ + 1
ρo

ρf
. (7.113)
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Fig. 7.28. Compression in thick–thin shocks. The final compression (gray) and
immediate postshock compression are shown as a function of the final compression,
for γ = 4/3

Figure 7.28 shows the implications of this equation, for γ = 4/3. One
can see that a very large final compression will be required before the initial
compression becomes as large as the nonradiative, strong-shock value of 7.
The initial compression is smaller than this because of the finite pressure po

in the precursor.
In the final state, FR = 0, so using (7.82) with ρo/ρ = ρo/ρf = pon one

finds the net (normalized) radiation flux at the final density to be

−2Fo

ρou3
s

= −1 +
(

ρo

ρf

)2

, (7.114)
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which turns out to be independent of γ other than through the final density.
Note that the limiting value of Fo, as the final density becomes very large,
equals ρou

3
s/2 as it should (per Fig. 7.25).

To pin down the final state, we observe that the energy supplying the
radiation flux comes from the shocked material, so the net radiation flux
must equal the net energy flux lost from the material between the immediate,
postshock state, and the final state. The behavior of the radiation flux in the
shock is thus like that shown in Fig. 7.25, with three differences that are not
dramatic on such a plot. The shape of the curve including the value of its
maximum are altered by the finite value of pon, the value of the postshock
inverse compression is not the value for a nonradiative shock, and the final
normalized flux is close to but larger than −1. By setting the net flux (FR =
Fo) across the shock equal to σT 4

f (see Fig. 7.27), we can solve (7.82) to
find the final inverse compression. This turns out to depend on the radiation
strength parameter we defined above as Q = 2u5

sσ/(R4ρo), in terms of which

ρo

ρf
=

√√
1 + 8Q − 1

4Q
. (7.115)

This is independent of γ, although the detailed structure is not. For R =
1012 ergs/g/eV, us in km/s = ukms, and ρo in g/cm3, one finds Q = 4 ×
10−11u5

kms/ρo. At large enough shock velocity and thus large Q the final
inverse compression approaches zero, although by that point the system may
be entering the radiation-dominated regime. This result may seem strange,
given that the radiation gets stronger as velocity increases. But recall that
a smaller final inverse compression corresponds to a decreasing fraction of
the incident energy ending up as thermal energy, as more and more energy is
radiated away. At small velocity (7.115) would take the inverse compression
to 1. However, we require u2

s > c2
so, where cso is the upstream sound speed,

to have a shock. Evaluating u2
s/c2

so we find

u2
s

c2
so

=
u2

sρo

γpo
=

u2
s

γRTf
=

ρf/ρo

γ
. (7.116)

Thus, the final compression must exceed γ, or equivalently the inverse
compression must be smaller than 1/γ, in order to have a shock at all. Cor-
respondingly, one can show that Q > γ2(γ2 − 1)/2 in order to have a shock.
The parameter Q depends primarily on u5

s/ρo, which is the same as the ratio
we found in our first, preliminary discussion of precursors. The temperature
dependence of R, if included, would introduce additional complications in the
solution. Here, to see the main qualitative behavior, we will assume R (and
thus Z) to be constant.

Homework 7.18

Beginning with (7.80)–(7.82), derive the final inverse compression (7.115)
under the assumptions of the present section.
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Figure 7.29 shows (a) the dependence of the final compression on shock
velocity for three densities and (b) the fraction of the energy radiated away
under the same conditions. This figure uses Z = 17 and A = 130, corre-
sponding to the use of a high-Z material to maximize the radiative effects.
One sees that the radiation indeed carries away most of the energy as the
system becomes more radiative. One sees that the compression can indeed
become very high as shock velocity increases, but that this requires radiation
of very nearly all of the incoming energy flux.

We are now ready to determine the profiles. To do so, we note that Rr

evaluates to

Rr = Q
γ + 1

γ

[
2(γ − 1)
(γ + 1)2

− (1 − 6γ + γ2)
(γ + 1)2

ρo

ρf
− 2γ(γ − 1)

(γ + 1)2

(
ρo

ρf

)2
]4

. (7.117)

By integrating (7.83) as represented by (7.112), beginning at the shock tran-
sition, one can obtain the profiles shown in Fig. 7.30. The two cases shown
correspond to Rr ∼ 20 and Rr ∼ 1200, so one can see that here again the
distance required for the cooling decreases as the shock velocity and hence
Rr increase.

7.4.6 Fluid Dynamics of Optically Thick Radiative Shocks

We now turn to a type of radiative shock that can exist only within an
extensive system, in which both the upstream and the downstream mediums
are optically thick but yet the shock is in steady state. One might be inclined
in this case to consider the system to be in LTE, and to use a diffusion model
to describe the dynamics. However, this is not strictly valid because the shock
itself drives the plasma out of equilibrium with the radiation. We will take
the point of view that the precursor region, far enough away from the shock,
can perhaps be described by the modified Marshak-wave model developed in
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Fig. 7.29. Final state conditions for thick–thin shocks, for γ = 4/3, A = 130, and
Z = 17. The curves show results for 1 g/cm3 (gray), 1 mg/cm3, (dashed), and 10
µg/cm3 (solid). (a) The ratio of final density to upstream density as a function of
shock velocity. (b) The fraction of the incoming energy flux carried away upstream
by radiation
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Sect. 7.4.3, and that the downstream region away from the shock is also in
LTE. There are some general things we can say about this system. These are
based on the energy flux balance, with reference to Fig. 7.31, and on the fluid
dynamics, with reference to Fig. 7.32.

Initial
Final

Material energy flux

Viscous 
shock

Upstream

Cooling
Layer

Downstream

ρous
3

2

2γ
γ +1

ρi

ρ f

 

 
 

 

 
 − γ −1

2γ
ρi

ρ f

 

 
 

 

 
 

2 

 

 
 

 

 

 
 ρous

3

2

Precursor

FRp

σTf
4

σTf
4

Fcl Fcl 

FRp

Fig. 7.31. Fluxes in thick–thick shocks

There are two places where the net radiation flux must be zero. These are
at the head of the precursor, where all the net upstream radiation from the
shock has been converted to heat, and at the boundary of the downstream
region, where a new postshock steady state is established. In the radiation-
dominated regime, radiation energy and pressure are convected through these
boundaries, but there is still no net radiation flux through them. If the ab-
solute value of the radiation flux generated in the cooling layer is Fcl, then
at the downstream boundary of the cooling layer one has Fcl + FRp = σT 4

f ,
where FRp is the radiation from the precursor plasma. (The cooling layer
differs only in details from that discussed in the previous section. Recall that
the cooling layer is optically very thin, so the fluxes from adjacent regions
are fully transmitted.) The net radiation flux through the shock transition
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Fig. 7.32. Fluid dynamics of optically thick (thick–thick) radiative shocks

must balance the increase in convected energy flux in the precursor, which is
negative and which we can designate as Fp. Thus Fcl + σT 4

f −FRp + Fp = 0,
so that

2Fcl = 2σT 4
f − FRp = −Fp. (7.118)

This also equals the net radiative flux across the shock.
We can take FRp to be approximately σT 4

p , where Tp is the temperature
of the first few optical depths of the precursor. As Tp approaches Tf , both Fcl

and Fp become a smaller and smaller fraction of the radiation flux in either
direction. However, these cannot become zero, and in fact we will shortly
find the limiting value of Fp from the fluid dynamics. The implication is that
Tp < Tf always. This once again casts some doubt on the traditional defi-
nition of a supercritical shock, which in fact exists only as a limiting case.
One might imagine that the temperature could become continuous as the
diffusion limit is approached, and that then the difference between Tf and Tp

would represent the difference produced by the temperature gradient over a
few radiation mean-free paths. However, this is not an accurate conclusion
because the shock and cooling layer is always an out-of-equilibrium, nondif-
fusive structure.

It is next worthwhile to consider what the fluid dynamics of Sect. 7.4.3
may imply. The flux balance equation, if necessary including radiative pres-
sure and energy terms, applies to all optically thick radiative shocks. No en-
ergy is “lost” from the system (except perhaps laterally in a laterally limited
planar system, but we do not consider this here). This calculation naturally
separates into flux-dominated and radiation-dominated cases. We take these
up in turn.

7.4.7 Optically Thick Shocks–Radiative-Flux Regime

Figure 7.32 shows the fluid-dynamics trajectory in the flux-dominated regime.
The plasma is heated and compressed in the precursor, undergoes the shock
transition at FR = −Fp as just discussed, and then cools to a final state with
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zero flux. For negligible initial upstream pressure, the final state thus has
ρf/ρo = (γ +1)/(γ − 1) and has a normalized temperature given by (7.80) as

RTf/u2
s = 2(γ − 1)/(γ + 1)2, (7.119)

which is 0.12 for γ = 4/3.
The fluid dynamics also implies Fp as a function of Tp, as the difference be-

tween the net material energy flux reaching the shock from upstream (which
includes recycled energy) and the incident material energy flux, ρou

3
s/2. If

one evaluates (7.82) in the precursor just before the density transition, tak-
ing po = 0 and using (7.80) (which originates from the continuity equation,
momentum equation, and equation of state), one finds that

Fp = − ρou
3
s

4(γ − 1)

[
(1 − γ) + 2(γ + 1)

RTp

u2
s

+ (γ − 1)

√
1 − 4

RTp

u2
s

]
. (7.120)

This goes to zero as Tp → 0, as it should, but also goes to zero as Tp → Tf .
This cannot be a solution, because recycled energy is present for any Tp �= 0.

Given Fp from (7.120) Tf from (7.119), and FRp = σT 4
p , one can express

(7.118) as an implicit equation for Tp:

(
RTp

u2
s

)4

+
1

2Q

RTp

u2
s

(γ + 1)
(γ − 1)

+
1

4Q

(√
1 − 4

RTp

u2
s

− 1

)
− 16

(γ − 1)4

(γ + 1)8
= 0,

(7.121)
in which we again encounter the radiation strength parameter, Q = 2u5

sσ/
(R4ρo). Noting from (7.120) that the final term on the left-hand side in this
equation is RTf/u2

s, one sees that Tp reaches Tf only in the limit that Q → ∞,
as expected from the discussion above.

To understand what is happening in this system, we can examine Fig. 7.33,
which plots in (a) the solution of (7.121) for RTp/u2

s and in (b) the solution of
(7.120) for 2Fp/(ρou

3
s), which is the recycled flux as a fraction of the energy

flux incident on the shock, both for γ = 4/3. We see that as Q increases above
1,000, Tp becomes a large fraction of Tf . We also see that, as this occurs, the
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Fig. 7.33. Precursor properties in optically thick radiative shocks, for γ = 4/3. (a)
Normalized temperature and (b) recycled flux
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recycled energy flux asymptotes to about 70% of the incident energy flux. As
the incident shock velocity (and thus Q) increases further, the net recycled
flux (which is the net radiative flux across the shock, and also twice the flux
from the cooling layer ) remains a fixed fraction of the incident flux while the
radiative fluxes in each direction, σT 4

p and σT 4
f , increase much more rapidly.

The calcualtion of the structure of the shock in this regime is very similar
that of Sects. 7.4.4 and 7.4.5. One can begin at the final state and integrate
the energy flux toward the shock. One finds the inverse compression and
hence the radiation flux and the temperature as a function of optical depth
from the downstream end of the cooling layer. One reaches the shock when
the upstream radiation flux reaches (σT 4

f − Fp/2) (recalling that Fp < 0).
The shape of the cooling layer will be similar to that found in the previous
section.

The analysis of the precursor will have to proceed by in principle either
by integrating upstream from the shock or by integrating downstream from
the initial precursor state. At the shock, one knows the upstream radiation
flux from the final state and from the cooling layer, and also both the down-
stream radiation flux and the material energy flux from the precursor. As an
approximate solution, one can match this solution to the diffusive precursor
profile found in Sect. 7.4.3. How realistic this will be is not so clear, as the
flux just upstream of the shock is significantly out of equilibrium. To obtain
a better solution, one will need to account for the actual radiation flux and
the actual variation in density and other parameters. We will have to leave
sorting out these details as an exercise for the motivated reader.

7.4.8 Radiation-Dominated Optically Thick Shocks

For the radiative shocks in optically thick systems that are our subject here,
one could hope to evaluate the structure in the radiation-dominated regime,
using an approach similar to the one we just described for the radiative
flux regime. However, this would be mathematically even more complicated,
because the radiation pressure depends on the fourth power of T . We will
leave the problem of the structure, and even more so of the structure in
transition regimes, to the specialized literature. It is important to note, as
Sect. 7.4.7 showed, that treatments of the internal structure near the shock
that use only the diffusion approximation will be qualitatively wrong. Here we
consider only the relation between initial and final states, where the radiative
flux is zero.

In this case the continuity equation is unchanged. The momentum and
energy equations (7.1 and 7.2) become, for steady-state planar shocks,

ρu2 + p + pR = ρou
2
o + po + pRo and (7.122)
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u

(
ρ
u2

2
+ ρε + ER + p + pR

)
= uo

(
ρo

u2
o

2
+ ρoεo + ERo

+ po + pRo

)
,

(7.123)
where as usual these equations are in the shock frame. We would like to
develop useful relations from this, just as we have done previously. Because
uo = −us and u = −us(ρo/ρ), we find

p + pR

ρou2
s

=
(

1 − ρo

ρ

)
+

po + pRo

ρou2
s

and (7.124)

1
2

(
1 −

(
ρo

ρ

)2
)
−
(

γp/(γ − 1) + 4pR

ρou2
s

)(
ρo

ρ

)
+
(

γpo/(γ − 1) + 4pRo

ρou2
s

)
= 0.

(7.125)
Here we have two equations for three unknowns ( ρ, p, and pR). In the case

that radiation completely dominates, so p can be neglected, these are readily
solved for pR and ρ. If p and pR are both known functions of T , one can solve
for T and ρ. Alternatively, if the medium is ionizing and has γ = 4/3, one
can solve for the total pressure and ρ. We consider the third case here and
leave the first two to homework.

If γ = 4/3, then one can substitute from (7.124) into (7.125) and express
the total pressure as pt to obtain

1
2

(
1 − ρo

ρ

)(
1 − 7

ρo

ρ
+ 8

(
pto

ρou2
s

))
= 0, (7.126)

in which pto is the total pressure in the upstream state. The two solutions of
this equation for the inverse compression (ρo/ρ) give the total density change
across the shock transition. These solutions are 1 (the upstream density) and
(1/7)[1 + 8pto/(ρou

2
s)]. Thus, with negligible upstream pressure the density

increases by a factor of 7 and this density increase gets smaller as the up-
stream pressure, normalized by the ram pressure, increases. The shock will
vanish when the upstream pressure reaches 7/8 of the ram pressure. One can
substitute for the inverse compression in (7.124) and solve for the final total
pressure, finding pt = (6ρou

2
s − pto)/7. At the most, this can be 6/7 of the

ram pressure when the upstream pressure is negligible.

Homework 7.19

Consider a truly radiation-dominated case, so p can be neglected in (7.124)
and (7.125). Solve these equations for pR and ρ. Find the dependence of the
postshock T on the shock velocity, and compare it to the dependence of a
non-radiative shock.
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Homework 7.20

Express p and pR as reasonable functions of T and solve (7.124) and (7.125)
to find T and ρ in the postshock state. This may be a numerical solution, for
which you should make reasonable choices about the parameters and show a
few cases. Provide at least one graph based on these equations as part of the
analysis.

7.4.9 Electron-Ion Coupling in Shocks

To this point we have ignored the equilibration region behind the density
jump in radiative shocks. The shock heating of the electrons is small [consider
(7.77)] for electrons), so that it is the ions that are primarily heated. The ions
then heat the electrons by Coulomb collisions, in a region we will designate
the equilibration zone. At issue here is the slowing of the ions, which would
be described in collision theory as the “test particles” in this case. The field
particles, which interact with the ions and cause them to slow, are the elec-
trons. The electron-heating coefficient is νie = 3.2 × 10−9niZ

3 ln Λ/(AT
3/2
e ),

with Te in eV and ne in cm−3. The evolution of the ion temperature is then

∂Tion

∂t
= −νie (Tion − Te) . (7.127)

The electron heating also may correspond to increased ionization of the
ions. Typically the electron-heating coefficient and the temperature differ-
ence both decrease as the electrons heat. But curiously, if Z ∝

√
Te as is

approximately true in ionizing plasmas, then the electron-heating coefficient
remains constant as the electron temperature increases, leading to more rapid
equilibration. The exchange of energy between the electrons and the ions, in-
cluding ionization and the heating of the new electrons, does not change the
total postshock pressure. In contrast, radiation can affect the pressure, and
also the rate of equilibration through the density. This makes it worthwhile
to compare the radiative rates with the electron heating.

First we compare the heating or cooling rates. Then we consider more
carefully the structure of the equilibration zone. The rate of energy emission,
in power per unit volume, is 2κσT 4

e at high density and neniΛ at low density
(see Chap. 6). The rate of energy transfer per unit volume per unit fractional
temperature difference (Tion/Te − 1) is ρcV νie. Figure 7.34 shows the ratio
of ρcV νie to the radiative cooling rate for both laboratory and astrophysi-
cal conditions. For electron temperatures that do not approach keV levels,
electron heating clearly dominates, except at low density (0.01 g/cm3), and
using a density-independent scaling for κ (which may not apply in actuality).
One concludes that radiative cooling of electrons would become important in
shocks producing ion temperatures of many keV, and possibly under some
conditions for somewhat lower temperatures.
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Fig. 7.34. Ratio of electron heating power to radiative emission vs. Te for cases
of interest. In the laboratory regime, with ρ = 0.01 g/cm3 (black solid) and 1
g/cm3 (dashed), using the density-independent form of κ for Al from (6.45). In
the astrophysical regime (gray), where the ratio depends only on Te, using Λ =
10−22 erg cm−3

However, Fig. 7.34 overstates the importance of radiation, because it is the
net difference of absorption and emission that heats or cools the electrons. In
a shock, the radiation from the final state will at first overwhelm the radiation
emission by the electrons and will contribute to their heating. Later, when
the electron temperature rises above the final plasma temperature, radiation
will have a net cooling effect, in opposition to electron heating by the ions.
However, in many cases these differences won’t matter because the effect
of the radiation on the equilibration zone will be negligible. Assuming that
radiation plays no role, let us consider the structure of the equilibration zone
produced by electron heating alone.

We can convert (7.127) into a spatial equation in the shock frame by
dividing by the postshock fluid velocity, u = us(γ − 1)/(γ + 1). There is a
corresponding equation for the electrons in which Te and Ti are exchanged
and the right-hand side is negative. One can use (7.4.1) for the ions with
Z = 0 to get a characteristic initial value of Ti, and one can assume Te ∼ 0
to start. Figure 7.35 shows the resulting spatial profiles of Te and Ti for a
shock velocity of 100 km/s. One sees that even for very low density, low-Z
gas (part a) the equilibration occurs within a few micrometers. For Xe gas
at somewhat higher density, the equilibration occurs within a fraction of a
micrometer.

Recall that in detail the shock transition itself is not instantaneous, but
occurs over a distance of a few ion–ion mean-free paths. Both electron heating
and radiation emission do occur simultaneously with the shock transition, so
there may be regimes in which all three processes are simultaneously impor-
tant. It will typically be adequate, though, to assume that the shock transition
occurs instantaneously, that the equilibration zone is at most small, and that
the radiation becomes important on a larger spatial scale. In simulations, the
electron heating occurs on the scale of the shock transition for conditions
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that produce postshock temperatures of order 10 eV, and occurs on a larger
(though still small) scale as the postshock ion temperature reaches hundreds
of eV.

7.5 Ionization Fronts

The past two sections have dealt in part with radiation sources. Section 7.3
discussed the diffusive penetration of radiation into a medium. In the partic-
ular case of the Marshak wave, this was due to a temperature source at the
edge of the medium. Section 7.4 discussed radiative shocks, which are shock
waves that become strong enough to be a radiation source to the region ahead
of the shock, making radiation essential to their dynamics. A third type of
phenomenon that can occur when radiation penetrates a medium is the ion-
ization front. An ionization front is a local region where energy delivered by
radiation ionizes (or perhaps further ionizes) the medium it penetrates. To be
an ionization front, as opposed to a diffusive radiation wave, this ionization
must not lead to energetically significant emission of radiation.

This definition may sound like a somewhat special case, but in fact it is
common. The opacity of many materials drops dramatically once they are
ionized, which both reduces their emission and increases the transmission of
the incoming radiation. This is particularly true of ionized hydrogen, which
can no longer undergo bound-free transitions once it is ionized. When heavier
atoms are ionized, their opacity also changes significantly. It decreases at
photon energies near the ionization energy, and becomes larger at the higher
photon energies required to ionize the next state. In consequence, a spectrum
of photons that is able to ionize some specific state may be readily transmitted
through the material after ionization but yet be unable to ionize the material
further. It is this changing opacity that makes ionization fronts possible.

Examples of ionization fronts can be found in both the laboratory and as-
trophysics. They occur in the laboratory when a hot surface or a hot enclosed
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Fig. 7.36. The Horsehead Nebula. Located in an intense UV environment, this is
an example of a structure through which an ionization front has passed. Credit:
N.A. Sharp/National Optical Astronomy Observatory/Association of Universities
for Research in Astronomy/National Science Foundation

volume (a hohlraum as described in Chap. 8) irradiates a gas or a low-density
foam material. They occur in astrophysics when bright stars emitting primar-
ily in the UV irradiate molecular clouds containing mostly H2. The Horse-
head Nebula, shown in Fig. 7.36, is a structure that has developed, perhaps
through hydrodynamic instabilities, in a molecular cloud through which an
ionization front is passing.

The speed of an ionization front depends on the photon flux that creates
it. Suppose the flux of ionizing photons is Fγ , in number per unit area per unit
time. This flux can be determined from the properties of the photon source
including its geometry. Suppose in turn that the initial number density of
atoms or ions to be ionized further is no[= ρ/(Amp)] and that the local
density of not-yet-ionized particles is ni. The velocity of the front will from
simple kinematics be the flux divided by the number density, vf = Fo/no

where the initial photon flux is Fo. It is straightforward to write equations
for the evolution of the front, which are

dFγ

dx
= −Fγniσo and

dni

dt
= −Fγniσo. (7.128)

These equations can be placed in dimensionless form by taking f = Fγ/Fo, z =
x/λ, η = ni/no, and y = vft/λ, where λ = 1/(noσo) is the mean-free path
in the un-ionized medium. One can substitute for f to obtain the following
integro-differential equation for η:

dη

dy
= −ηe−

∫ z
0 η(z′)dz′

. (7.129)

Figure 7.37 shows the resulting profile, from numerical integration of this
equation, at a time of 50 λ/vf . The full scale in the figure is 100 λ. One
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Fig. 7.37. Structure of an ionization front. Neutral particle density ni/no vs.
distance in particle mean-free paths, in an ionization front that has evolved for a
time of 50λ/vf

sees that the ionization front has moved very nearly 50 λ, so it moves at the
expected velocity. One also sees that the width of the front (from 10% to 90%
ionization) is less than 5 mean-free paths.

Since the speed of an ionization front is determined by the photon flux,
the front can be subsonic or supersonic relative to the sound speed in the
upstream medium. It may also change from one of these to the other as the
radiation source evolves in time. A supersonic front will encounter an unper-
turbed upstream medium. As subsonic front, in contrast, has the potential
to produce very complicated behavior, for example, if it drives a shock wave
that acts to reduce the opacity of the shocked material.

The heating and shock waves produced by a subsonic ionization front
are of practical importance in the context of inertial fusion. The ionization
process heats the ionized medium, as the electrons produced by ionization
do not have zero energy. Such heating may be enhanced if there is some
absorption , rather than zero as we assumed above, in the ionized material.
In either case the pressure of the ionized material may be large enough to
drive a shock wave into the upstream material. This might or might not
significantly alter the opacity of the shocked material. It is possible for the
ionization front and the shock wave to be coincident and supersonic, but the
inertial fusion case is that the ionization front is subsonic in the postshock
matter so the shock wave runs ahead of the ionization front. In the case
of a low-Z fuel pellet driven by soft x-rays for fusion, one ends up with a
rarefaction wave at the surface of the pellet, an ionization front moving into
shocked material at the sound speed of the heated pellet material, and a faster
shock wave penetrating the pellet. This is discussed further in Sect. 8.2.3.

This concludes our discussion of the fundamental phenomena of radiation
hydrodynamics. We have seen here that radiation hydrodynamic phenom-
ena appear frequently in astrophysics and can readily be produced in the
laboratory. We will see in the following that some radiation hydrodynamic
effects are essential to the production of high-energy-density conditions and
specifically to inertial confinement fusion.



9 Inertial Confinement Fusion

Chapter 8 represented a turning point in our discussion. The earlier chapters
were focused on the physical fundamentals of high-energy-density physics.
Chapter 8 showed how we could create such conditions, which in turn makes
possible the application of high-energy-density systems to the pursuit of var-
ious goals. This and the next chapter are much more focused on these goals.
The goal that has been and remains dominant in high-energy-density research
is the development of inertial confinement fusion, or ICF. This is our topic
in the present chapter.

Fusion is the joining of two nuclei. This leads to the production of various
reaction products, which often carry significant kinetic energy. Whether or
not nuclear fusion releases energy depends on the masses of the nuclei in-
volved. If the total mass of the reaction products is less than the mass of the
initial nuclei by an amount ∆m, then the net energy released by the reac-
tion is ∆mc2. It is by fusion that all the elements beyond the very lightest
few were created. However, not all fusion events release energy. Figure 9.1
shows a plot of the nuclear binding energy versus atomic number. The bind-
ing energy is the energy one must invest to disassemble the nucleus into its
component protons and neutrons. This is proportional to the mass difference
between the mass of its constituent protons and neutrons and the mass of
the nucleus. The most-stable nucleus is iron, with an atomic mass of 56. As a
result, energy can be released by combining elements lighter than iron, or by

Fig. 9.1. Nuclear binding energy versus atomic number A up to A = 120
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dividing (by fission) elements heavier than iron. One can see that some light
elements have relatively large binding energies – these are those with closed
nuclear shells and correspond to elements that accumulate in stars.

Stars begin by assembling a very large mass of light elements. Through
gravitational compression, their cores become dense and hot enough to initi-
ate fusion burning. Through fusion, they begin to convert their light elements
to heavier elements. Heavier elements require progressively higher tempera-
tures to fuse, as the heavier nuclei have higher nuclear charge, so that it
takes more energy to overcome the Coulomb repulsion. Low-mass stars like
the sun accumulate He by burning H and eventually are able to ignite He,
producing cores of C and O, but they cannot go further than this. High-mass
stars (larger than about 8 solar masses) can create all the elements up to Fe,
and accumulate significant amounts of Si in the process. The Fe proves to be
the death of these stars, as it cannot burn, so it cannot sustain the pressure
necessary to resist the gravitational contraction. The eventual collapse of the
Fe core triggers some types of supernova explosions.

All this has much to do with elemental abundances in the universe. Ele-
ments up to iron can be created by stars during their lifetime, and the most
abundant ones are those that represent stable endpoints during stellar evolu-
tion. The eventual stellar explosion creates an environment rich in neutrons
and neutrinos, which rapidly process the material that exists, producing the
elements heavier than Fe and altering the populations of the lighter elements.
Arnett is a good first source for more details on this.

This context leads to natural questions. We can create conditions of high
pressure and high temperature, if only briefly, using high-energy-density de-
vices. Any concentrations of matter and energy we produce are confined in-
ertially, not gravitationally. (That is to say, they blow apart in roughly one
sonic transit time.) Even so, can we perhaps do this in a way that causes light
elements to fuse, releasing energy? Can we perhaps release useful amounts
of energy? Let us see. We will proceed from asking what conditions we have
to end up with, moving to how we might get there and then to what might
go wrong. Our approach here will be to use simple arguments to identify the
important issues and resolve them. This will get us into the ballpark of ac-
tual ICF parameters. But real designs for producing ICF must consider every
issue that can be identified, and not just the most important ones. Computer
simulations are an important tool for including many of these details. A next
level of detail may be found in Lindl and in Atzeni and Meyer ter Vehn.

9.1 The Final State

To answer our question about the possibility of inertial fusion, we will proceed
from the end toward the beginning. We start by asking what we might use
for fuel. Then we will ask what physical conditions are required to make this
fusion fuel burn and provide an energy yield. This will lead to the question
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of how we can produce these conditions, and what the pitfalls might be in
attempting to do so.

9.1.1 What Fuel, Under What Conditions?

A first question, determining much that follows, is what elements we might
use for fuel. This would lead us to examine tables of nuclear reactions, from
which we could find the following few that offer some potential for the easiest
laboratory fusion systems:

D + T → 4He (3.5 MeV) + n (14.1 MeV), (9.1)

D + D → 3He (0.82 MeV) + n (2.45 MeV), (9.2)

D + D → T (1.01 MeV) + H (3.02 MeV), (9.3)

D +3 He → 4He (3.6 MeV) + H (14.7 MeV), (9.4)

and
p + B11 → 3 4He (8.68 MeV each). (9.5)

The first of these reactions (known as DT) is the focus of nearly all fusion
research at this writing. Any plasma producing these reactions will produce
the next three as well. We will see the advantage of this focus in a moment.
The disadvantage, for applications such as the production of electricity, is that
the energy emerges primarily as neutrons (designated n in the equations). One
can only manipulate energy from neutrons by first converting the energy to
heat, and heat cycles have limited efficiency. (The heat cycle efficiency is
∼40%, which applies after the conversion of neutron kinetic energy to heat.)
This leads one to look toward advanced fuels, such as the reaction of p and
B11, that produce only charged-particle reaction products. In the longest run,
these offer the potential to escape the need for heat cycles and to eliminate all
the associated hardware from fusion power plants. In the shorter run, fusion
systems that produce a lot of neutrons may prove more useful as breeders of
fuel for power plants using nuclear fission. But we are not yet at the point of
thinking about power production, so let us return to the question of whether
one could do this at all.

Figure 9.2 shows the dependence on energy of the rate coefficients for
these four fusion reactions, found by averaging the reaction cross section
over Maxwellian distributions of interacting particles, just as we discussed in
Chap. 2 for collisional processes. One sees that the rate coefficient for the DT
reaction becomes large at temperatures far below those required for the other
processes. A star may not care much about this. It can keep the material in
place for a long time. But to attempt ICF we do care. We have to burn the
fuel before it blows apart – getting the rate coefficient up near its maximum
matters. One can see that DT is clearly the fuel of choice for initial attempts
to achieve ICF.
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Fig. 9.2. Rate coefficients for the DT, DD, D–He3, and p–B11 reactions

Next suppose we have brought a clump of DT fuel into a final state, with
conditions that encourage it to burn. How much of it burns? To answer this
suppose that the density of deuterium nuclei in the clump is ND, the density
of tritium nuclei is NT, and the density of pairs of reaction products is n.
Also, ignore the DD reactions as we are seeking a simple estimate rather
than a complete account. The rate equation describing the accumulation of
reaction products is

dn

dt
= NDNT〈σv〉DT, (9.6)

in which the rate coefficient for the reaction is 〈σv〉DT. Next suppose that
ND = NT = 0.5No−n, and define the burn fraction φ, given by 2n/No. Then
(9.6) becomes

dφ

dt
=

No

2
(1 − φ2)〈σv〉DT, (9.7)

Now if we make the approximation that 〈σv〉DT is constant as the fuel
burns, and integrate over a time τ during which the fuel burns, we find

φ

(1 − φ)
=

Noτ

2
〈σv〉DT. (9.8)

Next we need to estimate how long the fuel burns. This time should be
proportional to the fuel radius r and inversely proportional to the sound
speed cs, but is clearly less that the ratio r/cs. We account for this by taking
τ = r/(3cs), where the factor of 3 would be only a guess without more-
advanced knowledge. We take the temperature to be 30 keV in order to
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evaluate the sound speed and rate coefficient. (This amounts to assuming
that self-heating by the burning fuel will push the temperature to the value
corresponding to to the maximum of the rate coefficient.) We also convert
No to obtain

φ =
ρr

ρr + 6 g/cm2 . (9.9)

Here we meet the quantity ρr for the first time. This is the mass per unit
area, defined as the areal mass density. We see that this quantity controls
the burn fraction. The transmission of particles or photons through the fuel
also depends on ρr. Within the context of the approximations above, one
can see that when ρr is 3 g/cm2 the burn fraction is 33%, while ρr increases
to 6 g/cm2, the burn fraction increases only to 50%. The returns are clearly
diminishing, and the cost of ρr is high, so let us assume that our final state
before burning has ρr = 3 g/cm2, producing a burn fraction of 33%.

Homework 9.1

Plot the burn fraction versus ρr. Discuss the impact of the assumptions made
in deriving the burn fraction on this curve, and on the size of a system
designed to produce a certain quantity of fusion energy.

The discussion just above applies most closely to uniform burning of an
entire volume of fuel. We will see that actual fusion designs involve a propa-
gating burn. A propagating burn is like a forest fire, in which the fuel begins
burning at one location, after which the heating of nearby locations causes
them to burn too.

We can pin down the final fuel conditions further by thinking about the
total fusion energy released (the yield ). The range of a 3.5 MeV α particle
(a 4He nucleus) in DT is ρr = 0.3 g/cm2, so the α particles do not typically
escape the fuel. Instead, they contribute to self-heating. This means that the
energy release is the energy carried out of the fuel by the 14.1 MeV neutrons.
One easily finds that the neutron yield, Y , is

Y = φ
mf

Amp
× 14.1 MeV ≈ 1.1 × 1021 mmg MeV ≈ 180 mmg MJ, (9.10)

in which we have taken φ = 0.33 and the total mass of the fuel is mf , also
expressed in mg as mmg. Since we are talking about the abrupt release of
substantial energy, we need to place this in context. One kiloton of TNT is
4.2 GJ. The nuclear device exploded at Hiroshima in 1945 released about 10
kilotons of explosive energy. In a large laboratory device, we need to keep the
yield small enough that it can be easily contained. For the present calculation,
we will seek to produce ∼ 0.1 ton, or about 500 MJ, which will require 3 mg
of fuel mass according to (9.10).

Thus, we have found that ρr = 3 g/cm2 and that the mass of the fuel
is 4πρr3/3 = 3 mg. We assume that the fuel volume is spherical, as this is
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most efficient for both the assembly of the dense fuel and for its burning.
Substituting for ρr, we find 4πr2 = 0.003 cm2, from which we find r =
0.015 cm = 150 µm. This in turn implies that ρ = 190 g/cm3. Before we
consider how to accomplish this, we would like to know that doing so would
be worthwhile. This leads us to ask how much yield is needed.

9.1.2 Energy Gain: Is This Worth Doing?

If it took more energy to create this final state than fusion could release, then
there would not be much point in pursuing fusion. The electrons are strongly
Fermi degenerate in such highly compressed matter, unless it is quite hot. At
190 g/cm3, and considering that the average A for DT is 2.5 while Z = 1, the
electron density is ne = 190Z/(Amp) = 4.5 × 1025 cm−3. In our discussion
in Sect. 3.1 of Fermi degenerate systems, we saw that the Fermi energy is
7.9(ne/1023)2/3 with ne in cm−3. This is 464 eV for the compressed DT
fuel. The corresponding pressure p is 13.5 Gbars. Perhaps more meaningful
is the internal energy, which is 3/2p (since γ = 5/3). This is 2.02 × 1016

ergs/cm3 = 2.02× 109 J/cm3. In general, the specific internal energy of cold
compressed DT fuel is 107 J/g. For comparison, the specific yield we expect,
from (9.10), is 1.8 × 1011 J/g. The implied yield of about 18,000 times the
energy of compression certainly seems exciting, but unfortunately we have
not considered the problem of igniting the fuel.

The simplest way to assure ignition would be to compress all the fuel so
that its final state was hot enough to ignite. Suppose that the fuel at high
temperatures behaves as an ideal gas with γ = 5/3. And suppose that we
decide, from more detailed calculations, that a temperature of 5 keV will
suffice for ignition. The specific energy of DT fuel at 5 keV temperature is
6.4×108 J/g. We see that it would take 64 times as much energy to heat our
fuel to ignition temperature as it would to compress it to the final density.
This would reduce the ratio of neutron yield to internal energy to a bit less
than 300. This still seems like a large number but in fact it is not, if one
hopes to achieve a large net gain or to produce power by ICF. Here by net
gain one refers to the ratio of neutron yield to the energy delivered to an ICF
target. (This is the gain most commonly mentioned in books and articles on
ICF.) To find the net gain, one must multiply the ratio of neutron yield to
internal energy by the ratio of this internal energy to energy delivered to the
target. This second ratio is of order 10%, depending on details. So a 1 MJ
energy source might manage to create compressed fuel with of order 100 kJ
of internal energy.

Continuing for a moment with the problem of power production, one
must account for further inefficiencies. The energy delivered to the target
is costly to produce; the efficiency of conversion of electricity to this energy
may not reach 10%. This is why comparatively efficient energy sources such as
heavy ion beams or KrF lasers are often discussed in the context of achieving
significant net gain. The further conversion of neutron yield to electricity is
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then less than 40% efficient, as mentioned above. Putting this all together,
the ratio of neutron yield to compressed-fuel energy (i.e., the net gain) must
exceed 250 to break even (i.e., to produce the amount of electricity used to
create the fusion event). The net gain must be well above 2,500 for practical
power production. Thus, ignition of the entire volume would have little value.

We seem to be in a quandary here, as we have to ignite the fuel but
apparently cannot afford to. All the solutions to this quandary revolve around
the range of the alpha particles in compressed DT fuel. We mentioned above
that the alpha particles do not escape the fuel. In fact, their range is about
0.3 g/cm2, or 10% of the ρr of the entire compressed fuel. This corresponds to
0.1% of the fuel volume. If one could magically heat only such a volume to 5
keV, then it would begin to create fusion products, the alpha particles would
heat the surrounding, cold fuel, and the fusion burn would propagate. The
energy cost would still be 6.4× 108 J/g in the fuel that ignited, but averaged
over the entire capsule the extra cost of ignition would be only 6.4 × 105

J/g, which is much less than the cost of compression. Thus, some sort of
hot-spot ignition is the key to obtaining an energy from fusion that is several
thousand times the energy invested in the compressed and locally heated
fuel. In consequence, the fuel will not burn throughout its entire volume all
at once, but instead one will have a propagating burn.

Several approaches to producing such a hot spot have been proposed. The
simplest and most thoroughly explored is to tailor an implosion so as to create
the hot spot at the center of a fuel capsule. Other approaches are known as
fast ignition. In all such approaches, some source of energy is released into
the fuel after compression. The most studied option for doing this, usually
called the fast ignitor, involves using a very-high-irradiance, short-pulse laser
to create relativistic particles that penetrate the compressed matter and heat
it.

9.1.3 Properties of Compressed DT Fuel

We have seen that the compressed DT fuel will have a pressure of at least
13 Gbars and a density of order 1,000 times the density of solid DT. Cre-
ating the necessary pressure costs money, and any increase in the required
final pressure will increase the cost or decrease the performance of an iner-
tial fusion system. For this reason we need to understand the relation of the
pressure in DT fuel to the heating that may occur during compression. It is
specifically helpful to understand the relation of pressure to entropy, because
in practice compression by a factor of 1,000 must involve shock waves, and
shock waves increase entropy (see Sect. 4.1.4). This leads us to explore fur-
ther the fundamental properties of DT fuel. It is straightforward to consider
the fuel as a collection of fundamental particles. We do this here, ignoring
collective effects such as ionization and dissociation.

We will examine the properties of DT fuel with equal numbers of deuterons
and tritons. Following Lindl, we consider the initial state of the fuel to be
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solid DT at 11 oK and 0.25 g/cm3. The electrons and the tritons are fermi-
ons while the deuterons are bosons. Applying (3.13) to the initial state, we
find that the Fermi energy for the electrons is 5.6 eV. This is more than
three orders of magnitude above the initial temperature, with the implica-
tion that the electrons must be treated as fermions until conditions change
greatly. In contrast, the initial Fermi energy of the tritons corresponds to a
temperature of 7.4 oK. This implies that the tritons may be treated as a clas-
sical gas throughout the compression and heating, based on the discussion in
Sect. 3.1.3.

As bosons, the behavior of the deuterons is not among the topics we
discussed in Chap. 3. Upon referring to a statistical physics text such as
Landau and Lifshitz, we find that the behavior of bosons varies across three
temperature regimes. In the lowest temperature regime, particles accumulate
in the lowest-energy state, which must be treated separately from the other
states. The temperature, To, below which this occurs is

To =
3.31
g2/3

h2

4π2

n
2/3
D

2mp
, (9.11)

in which h is the Planck constant, mp is the proton mass, nD is the number
density of the deuterons, and g is their degeneracy (equal to 3, as they have
spin 1). Evaluating To for the conditions given above, one finds that it is
3.7◦K. The implication is that the deuterons in fusion fuel do not collect in the
lowest energy quantum state but are instead distributed across many energy
states. They are in the second temperature regime, in which the deuterons
must be treated as bosons and an analysis involving integrals similar to those
of Sect. 3.1.3 is valid. At some higher temperature, whose value depends on
the accuracy one needs, the behavior of the deuterons becomes like that of a
classical gas. Thus, to determine how to treat the deuterons for fusion fuel,
we do need to evaluate their behavior as bosons.

The properties of bosons can be conveniently expressed in terms of
integrals similar to those used for fermions. We define Gn(φ) =

∫∞
0

xn
[
exp(x−

φ) − 1
]−1dx, in which φ = µ/(kBT ). Then we have

nD =
12
√

2π

h3
(2mpkBT )3/2

G1/2, (9.12)

from which
Θ = 1/(104G1/2), (9.13)

where for convenience we again define Θ = T/Td, in which Td is the degener-
acy temperature of the electrons given by kBTd = εF. Equation (9.13) defines
the relation between the chemical potential (which is negative) and Θ. The
deuteron pressure, pD, is given by

pD =
8
√

2π

h3
(2mp)3/2 (kBT )5/2

G3/2, (9.14)
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while the specific entropy of the D in DT fuel, sD, is given by

sD =
kB

5mp

(
5
3

G3/2

G1/2
− φ

)
. (9.15)

Note that to obtain the specific entropy for the DT fuel we divide the
entropy per particle by the average mass per D particle in the DT fuel (5mp).
One can compare the results of these calculations with the classical pressure,

pDcl = 5Θ/4, (9.16)

and the classical entropy

sDcl =
kB

5mp

[
5
2

+ ln
(

5mp

ρ

)
+

3
2
ln (kBT ) +

3
2
ln

(
2π2mp

h2

)]

= 0.191 × 108

[
15.1 +

3
2
ln(Θ)

]
. (9.17)

One finds that the classical pressure and the boson pressure are identical to
high accuracy for any Θ above 0.001, while the classical entropy remains 5%
to 20% below the boson entropy for all Θ of interest here.

Homework 9.2

Carry out the evaluation just described. For deuterium at a density of 0.1
g/cm3, plot the pressure as a function of temperature for deuterium treated as
bosons and for deuterium treated as a classical gas. Discuss the comparison.

One can put this all together as follows. The total pressure of the DT fuel,
normalized to the Fermi pressure of the electrons, is the sum of the electron
pressure from Sect. 3.1.3 and the classical pressures of the deuterons and the
tritons (each equal to 5Θ/4). Figure 9.3a shows the resulting pressures. The
total specific entropy is the sum of the specific entropy of the electrons, based
on (3.26), the specific entropy of the deuterons, from (9.15), and the classical
triton specific entropy, given by

sTcl =
kB

5mp

[
5
2

+ ln
(

5mp

ρ

)
+

3
2
ln (kBT ) +

3
2
ln

(
2π3mp

h2

)]

= 0.191 × 108

[
15.7 +

3
2
ln(Θ)

]
. (9.18)

Figure 9.3b shows the contributions to the entropy. The comparison of
the two parts of Fig. 9.3 leads to the following conclusion. If one begins with
cold, Fermi-degenerate DT fuel, one can heat this fuel until Θ ∼ 0.1 before
the pressure begins to increase. This is thanks to the degenerate electrons.
Such heating corresponds to an increase in entropy. Equivalently, one could
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Fig. 9.3. Origins of pressure and entropy in DT fuel. The pressure (a) is normalized
to the Fermi pressure of the electrons, pF. The specific entropy (b) is for DT fuel

say that one can increase the entropy of the fuel, which is dominated by the
ions, by some amount before the pressure begins to increase. This second
point of view is useful if the entropy will be increased primarily by shocks.

By combining the results shown in the two parts of Fig. 9.3 one can
obtain Fig. 9.4. The solid black curve in this figure shows the dependence of
the normalized pressure on the entropy of the fuel. One sees that the pressure
is constant up to some value of the entropy and increases exponentially with
entropy at high entropy. It is a fortunate development for fusion that adding
a certain amount of entropy imposes no cost.

The solid gray curve in Fig. 9.4 shows the classical result, whose derivation
is left as a homework exercise. The dashed curve shows the equation given in
Lindl, which is

pDT = pFexp
[
0.75

(
∆s

108
− 4)

)]
, (9.19)

in which ∆s is the difference in specific entropy from the initial state. We can
see that this expression is a reasonable fit to the result of our calculation in
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Fig. 9.4. The pressure increases only after enough entropy generation. The initial
entropy of the fuel, in this model, is 1.1 × 108 J/keV/g
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the important regime where the pressure is a few times the Fermi pressure.
The entropy of the initial state in the present calculation is 1.1×108 J/keV/g.
Equation (9.19) describes the behavior of the pressure and the entropy, for
densities above 5 g/cm3, in QEOS or tabular EOS descriptions of DT that
include atomic and molecular binding effects that we have ignored here. These
effects do alter the equation of state at low densities. Because our calculation
matches the results of more-sophisticated models, summarized in (9.19), one
concludes that the behavior of highly compressed DT is dominated by the
behavior of the individual particles (electrons, deuterons, and tritons). One
also concludes that it is acceptable to increase the entropy during the creation
of the final fuel state, but that ideally the increase (∆s) should be kept no
larger than 4×108 J/keV/g. Above that level, the pressure required to obtain
a desired state increases exponentially with increasing entropy.

Homework 9.3

Derive the classical relation between entropy and pressure (normalized by
the Fermi pressure of the electrons).

We have thus defined our task. Take 3 mg of DT fuel, compress it to a 300
µm diameter sphere of density 190 g/cm3, without adding too much entropy,
and then start it burning. Table 9.1 summarizes the properties of this final
state. This set of parameters poses two difficulties. First, the initial density
of solid DT is 0.25 g/cm3. Thus, to achieve fusion energy by ICF without
blowing up the lab, we must compress DT fuel to ∼1, 000 times liquid density.
This evidently will take more than one simple shock. Second, the problem of
igniting the fuel is nontrivial. We will take up these issues in turn.

Table 9.1. Parameters of a model high-gain ICF system without a hot spot

Parameter Value

Fuel Mass 3 mg
Burn fraction 33%
Fuel ρr 3 g/cm2

Final fuel density 190 g/cc
Fuel radius 150 µm
Fermi energy 460 eV
Fuel pressure 13.5 Gbars
Maximum specific entropy 4 × 108 J/keV/g
Compressed fuel energy 30 kJ
Capsule kinetic energy >60 kJ
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9.2 Creating and Igniting the Final State

At this point we have some knowledge of the final fuel state, but without
considering how we will create it, how we will ignite it, or how the final state
might be modified so it can ignite. Here we discuss how one can create such a
state, what is required to ignite it, and what is required for hot spot ignition
or fast ignition.

9.2.1 Achieving a Highly Compressed State

We next face the problem of creating a state in which 3 mg of DT fuel has
been compressed to a density of 190 g/cm3 with an energy of compression
of 30 kJ and a final pressure of 13.5 Gbars, both of which require that the
specific entropy remain below 4 × 108 J/keV/g. One way to achieve this
would be to take a sphere of solid DT and to compress it adiabatically to
this final state. Unfortunately, there is no known source of compression that
can reach 13.5 Gbars. So an alternative is needed. The idea that provides
an alternative is that of a capsule implosion, in which a spherical shell of
material is accelerated to a high velocity and is then decelerated to rest. We
can develop this idea as follows. If we can accelerate our 3 mg of DT fuel
to an implosion velocity vimp of 1.41 × 107 cm/s (140 km/s), the fuel will
contain 30 kJ. If, without a significant loss of energy, we could decelerate
this fuel to rest, using all of its energy for compression, then the fuel would
reach a pressure of 13.5 Gbars. It is not quite this simple, however, since the
deceleration cannot be accomplished without cost. But the basic notion of
creating kinetic energy and then converting it to internal energy is the key
here.

The geometry of choice for the final state, necessary to approach the burn
fraction we calculated in Sect. 9.1, is a sphere. This allows one to use the
matter at the core of the sphere to resist and eventually stop the implosion.
This interior matter is necessarily a gas and is not Fermi-degenerate. The
capsule may include this gas as part of its design. Even if no gas is included
in the capsule, gas (actually plasma) will be produced when the shock wave
that initiates the capsule implosion reaches the inner surface of the cold fuel,
producing a rarefaction as discussed in Chap. 4. From the simplest point
of view, the imploding cold, dense fuel expends kinetic energy doing pdV
work on the gas, eventually slowing to a stop. At the same time, the gas
does pdV work on the imploding fuel, compressing it further. In addition to
this mechanical work, there are other losses, in particular by electron heat
conduction or radiation from the gas into the cold fuel. Ignoring these losses
and other considerations, but realizing that the work done by the gas and the
fuel must be equal, would double the required energy. This would increase
the required implosion velocity to 200 km/s.

In more detail, the stopping of the capsule cannot involve only pdV work.
If the capsule is initially empty, then the rarefaction of plasma from the
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inner capsule surface produces a flow that stagnates at the center of the
capsule. This creates a reflected shock that affects the incoming cold fuel. If
the capsule contains gas within the shell, then the rarefaction from the inner
capsule surface drives a shock through the gas until eventually the gas and
then the rarefied capsule material stagnate. This again creates a reflected
shock that affects the incoming cold fuel. However, in either case this shock
must climb up the density gradient to the fuel, where it produces a weak shock
that does not add much entropy. Shock reverberation ensues, accompanied
by heating and compression of the inner gas. The shock heating, in addition
to energy losses by electron heat conduction and radiation, may increase the
implosion velocity and the energy of the imploding fuel that are required to
achieve the desired final state. We will see that, for the case of ignition from a
central hot spot, the velocity of the imploding capsule may exceed 300 km/s.

We can express these ideas in an equation. This gives us

Ekin,min =
1
2
mfV

2
min = 3pfVf , (9.20)

in which Ekin,min is the minimum kinetic energy of the implosion, mf is the
fuel mass, Vmin is the minimum implosion velocity, pf is the final pressure
of the fuel, and Vf is the final volume of the fuel. The rightmost term here
is twice the final energy of the cold fuel, reflecting the pdV work done on
the hot gas in slowing the fuel at the end of the implosion. Since mf = ρfVf ,
where ρf is the final fuel density, and pF (Mbars) = 2.13ρ

5/3
f , from Sect. 3.1

with ρf in g/cm3, we can relate the kinetic energy, the final pressure, and
the fuel mass for fixed ρr. Figure 9.5 shows how these quantities vary with
the final the fuel density, for ρr = 3 g/cm2, for a spherical final fuel state.
It is clearly an advantage to increase the final fuel density. However, larger
implosion velocities are required for this and we will see that this is not trivial
to achieve.
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Homework 9.4

Plot the minimum required implosion velocity, for ρr = 3 g/cm2, versus final
fuel density. Discuss the result.

At this point we have once again moved our task to an earlier one. The
task now is to take 3 mg of cold fuel, in a spherical shell, and to accelerate
this fuel to as much as 300 km/s without increasing the specific entropy
above 4 × 108 J/keV/g. When we do this in a high-energy-density system,
the creation of the pressure will produce ablative acceleration. Thus, the
inward motion will be a consequence of the exhaust of material outward,
giving rise to the description of such an implosion as a spherical rocket. We
need to provide some rocket fuel for the rocket, and the layer of material that
is intended to be ablated is known as the ablator. In some circumstances, the
ablator might also be composed of frozen DT, although for x-ray ablation it
must contain Be or C (see Sect. 8.2.1). The ablator plus the fuel compose
the entire mass of that is affected by the acceleration, so if the initial ablator
mass is mab and all of this mass is ablated, then from (8.47) we will have a
remaining mass fraction of

fm =
mf

mf + mab
= e−vimp/Vex , (9.21)

in which Vex is again the exhaust velocity. The exhaust velocity depends
on the details of the ablation process, but is typically of order 1-4 times the
desired implosion velocity. From the standpoint of the rocket efficiency (8.47),
one benefits from smaller Vex until one ablates more than 80% of the initial
mass (see Fig. 8.11). If this were the only consideration, which it is not, then
one would prefer to use x-ray ablation rather than laser ablation, because it
produces a lower exhaust velocity. To be specific, suppose Vex = 600 km/s.
Then the fuel is about 60% of the total mass, so the ideal rocket efficiency
would be about 40% and the realistic rocket efficiency would be about 20%
for x-ray irradiation and perhaps 10% for laser irradiation. Laser irradiation
is less efficient because it involves an additional process: the transport of heat
by electron heat conduction from below the critical density to the ablation
density.

We now know that we will ablatively accelerate the fuel, using up about
half the total mass. This must be accomplished before the capsule has moved
too far, or it will begin to decelerate before we have injected the energy.
We will suppose that we can accelerate it over a distance of rs/2. Here rs

is the initial inner radius of the capsule. Assume this acceleration occurs
at a constant pressure Pabl corresponding to a rate of mass removal ṁ of
Pabl/Vex, where Pabl is the ablation pressure. Also assume that the mass per
unit area of the fuel plus the ablator is mo = ρi∆ri/fm, where the initial
compressed fuel density when the acceleration starts is ρi and the initial
thickness of the compressed shell of fuel is ∆ri. (The thin-shell approximation
for the geometry is valid for the compressed shell but not for the initial,
uncompressed capsule.) Then we integrate the rocket equation to find
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rs/2 = Vex

∫ ta

0

ln
[mo

m

]
dt = −Vex

∫ ta

0

ln
[
1 − ṁt

2ρi∆ri

]
dt, (9.22)

where the integral proceeds until ṁta = (1− fm)mo. One can normalize and
evaluate this integral to find the initial aspect ratio of the fuel capsule. This
is

rs/∆ri =
2ρiv

2
imp

Pabl
η
(
ηe1/η − 1 − η

)
=

2ρiv
2
imp

Pabl
g(η), (9.23)

where η = Vex/vimp. The ratio rs/∆ri represents an estimate of the in-flight
aspect ratio. We will see that this quantity plays a role in determining the
impact of the Rayleigh–Taylor instability. The implosion velocity is set by
the fusion design and the exhaust velocity is determined by the approach
to ablation, so that η might vary from about 1 to 5. Over this range, g(η)
decreases gradually from 0.71 to 0.53. Equation (9.23) determines rs because
the fuel mass is known and mf = ρi4πr2

s ∆ri. One finds

rs =

(
1
2π

mfv
2
imp

Pabl
g(η)

)1/3

. (9.24)

As an example, we will evaluate this and other quantities using Pabl = 100
Mbars, mf = 3 mg, vimp = 300 km/s, and g(η) = 0.6. From (9.24), this gives
rs = 1.37 mm. Evaluating the acceleration time, which is the limit on the
integral of (9.22), gives

ta =
rs

2vimp

(
ηe1/η

g(η)

)
. (9.25)

For the same parameters, this gives an acceleration time of 5 ns. Finally, one
would like to know the initial aspect ratio, rs/∆ro, of the capsule, based on
the initial shell thickness ∆ro. One can show that

rs

∆ro
=

[(
1 +

3ρi∆ri

ρors

)1/3

− 1

]−1

=



(

1 +
3

2g(η)
Pabl

ρoV 2
imp

)1/3

− 1



−1

.

(9.26)

Here the first equality is strictly geometric while the second uses (9.23). We
find ∆ro = rs/3.3, so∆ro = 420 µm.

Homework 9.5

Derive (9.26). Why do we need to express this result using a 1/3 power?
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We will see when we discuss Rayleigh–Taylor instabilities that lower in-
flight aspect ratios are strongly preferred, which pushes one toward high abla-
tion pressures and shorter pulses. As a practical matter, the ablation pressure
is limited to about 100 Mbars. Using direct laser irradiation, the limitation
is due to laser–plasma instabilities, which become severe at irradiances much
above 1015 W/cm2. Using x-ray radiation, laser–plasma instabilities may con-
tribute but in addition the other difficulties involved with hohlraums become
severe at temperatures sufficient to produce higher ablation pressures.

Homework 9.6

Suppose that one could apply a pressure p for a time t, using some energy
source. With this source, we could accelerate some amount of mass per unit
area, ρo∆r, to vimp = 300 km/s. Define a fusion capsule using the reflected
pressure due to sunlight for 12 h as the pressure source. Approximate sunlight
as light with a wavelength of 580 nm and an irradiance of 1 kW/m2. How
long would such a capsule take to implode?

These results make our task seem straightforward. The recipe is appar-
ently to apply 100 Mbars for a few ns to a capsule of the proper initial
dimensions. Then one need only wait for the fuel to attain its final state.
However, we still have the requirement to keep the specific entropy no larger
than 4 × 108 J/keV/g. Unfortunately, directly applying 100 Mbars to cold
DT fuel would create too much entropy. The pressure of cryogenic, Fermi-
degenerate DT fuel at 0.225 g/cm3 is 300 kbars. A 100 Mbar shock at this
density, for the appropriate value of γ (5/3), corresponds to a shock velocity
of 260 km/s and heats the fuel to 326 eV. This is much hotter than the Fermi
energy at this density, which is 5 eV. The increase in entropy produced by
such a shock is 9 × 108 J/keV/g. This is above the threshold value we need
to stay below, so using a single 100 Mbar shock is not feasible.

We have already discussed the solution to the problem of applying a high
pressure with minimum entropy increase in Sect. 4.1.4. To reach a 100 Mbar
pressure without introducing too much entropy requires that we increase the
pressure in stages, using a minimum of three shocks. Most current designs
use four shocks. One could also attempt to achieve a shockless compression,
using a precisely tailored pressure approach, but slight variations in pressure
then have a tendency to launch unintended shocks, so the use of multiple,
controlled shocks may be more reliable. This does introduce a new issue
known as shock timing. If one is going to use a sequence of shocks to increase
the ablation pressure to 100 Mbars, then one must time these shocks so that
the later, stronger shocks do not overtake the earlier, weaker shocks too soon.
Otherwise the resulting, stronger shock produced when two shocks coalesce
would produce too much entropy. One desires to time the shocks so that they
all coalesce just as they emerge from the inner surface of the capsule. Beyond
that, one can try to tailor the coalescence to produce desirable properties in
the matter ejected from the inner surface of the capsule.
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9.2.2 Igniting the Fuel

Unfortunately assembling the high-density fuel is not sufficient to make it
burn. One must also ignite some sort of hot spot. The challenge here is to
keep a volume of fuel hot enough to sustain fusion despite the energy losses
that are present. As a result, our problem boils down to a power balance
equation. The net heating of the hot spot must be positive. We discuss this
here. This section and the next two follow closely the treatment of Atzeni
and Meyer ter Vehn. We use the subscript h for the properties of the hot
spot. The equation for the internal energy of the hot spot, εh, assumed to
remain at constant density is

Vhρh
dεh
dt

= PdepVh − QSh − FRSh − phuhSh, (9.27)

in which the hot-spot volume is Vh, the hot-spot surface area is Sh, and
the hot spot density and pressure are ρh and ph, respectively. This equation
assumes that the kinetic energy of the hot spot material remains negligible.
The rate at which fusion deposits energy in the hot spot is Pdep, while the
radiation energy flux and thermal heat flux leaving the hot spot are FR and
Q, respectively. As the hot spot expands with radial velocity uh, it does
pdV work on the cold fuel, and this is represented by the final term. We now
consider these terms in turn, assuming that in this dense matter Te = Ti = Th.

The fusion energy deposition is

Pdep =
dn

dt
Efusfdep = NdNT〈σv〉DTEfusfdep

≈ Cαρ2
hT 2

h

(
1 − 0.3

4ρhRh

)
, (9.28)

where dn/dt is from (9.6). To obtain the final expression on the right for
Pdep, we use here a standard fit to 〈σv〉DT for the range of 8–25 keV,

〈σv〉DT
∼= 1.1 × 10−24T 2

h cm3/s, (9.29)

with Th in eV; one notes that in hot-spot ignition only the alpha particles
provide significant heating, so Efus = 3.5 MeV; and one defines fdep as the
fraction of the alpha particle energy deposited in the hot spot. Equation (9.29)
overestimates the rate coefficient for temperatures below 8 keV. For a first
calculation, we could assume that we must make the hot spot large enough to
absorb nearly all the alpha-particle energy, and take fdep = 1. In more detail,
energy deposition by charged particles in matter is complicated and is not
represented by simple exponential functions. We will leave that as a detail,
but do represent fdep by the quantity in curved brackets, which accounts for
the first departure from full absorption as ρr decreases. Then with ND = NT

we find Cα = 3.8 × 1011 ergs cm3 s−1 g−2 eV−2. Atzeni and Meyer ter Vehn
provide more detail.
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The heat flux Q is the Spitzer–Harm heat flux, which we derived in
Chap. 8. One has

Q = −κth∇Th ≈ κth
Th

Rh

∼= CQ
T

7/2
h

Rh
. (9.30)

Using (8.10) and (8.36), and including the factor of (1 + 3.3/Z)−1 due to
electron–electron collisions, one can evaluate CQ, finding, with Th in eV and
Rh in cm, CQ = 5.9 × 108 ergs eV−7/2 cm−1 s−1.

The radiation flux is the result of bremsstrahlung emission from the
plasma in the hot spot. If the hot spot were optically thick, this would evi-
dently be σT 4

h . However, the hot spot is typically not optically thick. In the
optically thin limit one has

FR
∼= κbRhσT 4

e = Cbρ2
h

√
ThRh, (9.31)

in which κb is the spectrally averaged absorption coefficient [i.e., the Planck
mean opacity of (6.39)].

Properly, one would determine the characteristic distance by integrat-
ing over the solid angle, accounting for the path length through the source
volume. Here we assume that this gives a distance close to Rh. One finds
Cb = 3.2 × 1021 ergs cm3 g−2 s−1 eV−1/2.

Homework 9.7

Derive the spectrally averaged absorption coefficient for bremsstrahlung in
DT. Check your value against the value found in the NRL plasma formulary.

Homework 9.8

Evaluate the appropriate integral of the radiative transfer equation over solid
angle to obtain FR from a spherical volume of DT. Find the value of the
characteristic distance. Compare your result to the result in (9.31), which
assumes that the integral over solid angle of the distance across the fuel gives
πRh. Extra credit: generalize this calculation to include arbitrary optical
depth and discuss the results.

The approach to ignition determines whether and how much the hot spot
expands. On the one hand, the implosion might be designed to produce a
central hot spot. In this case the cold fuel and the hot spot are all at the
same pressure at the moment of stagnation. This is described as an isobaric
configuration. In this case, uh is initially zero in (9.27). The hot spot will
expand as it heats up, but because the rate of fusion increases strongly with
temperature it is the initial heating that matters. So we can use (9.27) with
uh = 0 to find an ignition threshold for an isobaric configuration. On the
other hand, the implosion might be designed to assemble all the fuel, at
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the end of which a hot spot will be created by some other means. In this
case the cold fuel and the hot spot will initially have the same density. Such
a configuration is described as isochoric. The hot spot will expand as it
heats, and it is a reasonable estimate to take uh to be the velocity of the
fluid behind a strong shock entering the cold fuel. Then from (4.23) one
has ph = (γ − 1)ρsu

2
h/2, which determines uh. Here ρs is the density of the

shocked, cold fuel ρs = ρc(γ + 1)/(γ − 1) with ρc being the cold-fuel density.
In addition, ph = ρhTh(Z + 1)kB/(Amp). In this case with ρh = ρc one has

phuh = ChρhT
3/2
h , (9.32)

in which Ch = 5.8 × 1017 ergs cm g−1 eV−3/2 for DT.
Returning now to (9.27), one can show that none of the four terms is

always small throughout the regime of interest. As a result, the power of Th

of a given term determines where it will have its impact. One sees that the
bremsstrahlung cooling term scales as the lowest power of Th, so this will
dominate at low temperatures. The pdV work term is next, scaling as T

3/2
h ,

so when present this term will increase the minimum temperature needed
for ignition. Next is the fusion energy production term, scaling as T 2

h , so
that eventually fusion energy production can overcome these first two losses.
However, lurking at high temperatures is the heat-conduction term, scaling as
T

7/2
h . At high enough temperatures, heat conduction will quench the ignition.

The ignition threshold occurs when the right-hand side of (9.27) equals
zero. Figure 9.6 shows this condition for isobaric and isochoric configura-
tions. The qualitative shape of the boundaries shown is correct. However, the
lower boundaries of the ignition regimes are too low in this figure because
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(9.29) overestimates 〈σv〉DT at these temperatures, the actual lower bound-
aries straddle 5 keV. For the isobaric case, one indeed finds that ρr ∼ 0.3
g/cm2 and Th ∼ 5 keV is the minimum ignition condition. For the isochoric
case, relevant to fast ignition, one sees that one will need twice this ρr and
a bit higher temperature. This may change the optimum properties of the
cold, dense, fuel, because doubling the ρr of the hot spot at fixed density
requires 8 times the energy invested in the hot spot. Depending on the cost
of this energy, it might or might not make more sense to compress the cold
fuel further.

It turns out that capsules that do not satisfy the threshold condition may
ignite, if they are at temperatures where heat conduction quenches ignition
initially. In this case the hot spot may cool, heating a surrounding region, and
in effect creating a modified hot spot with smaller temperature and larger ρr.
This modified hot spot may then ignite. In addition, the fact that ignition oc-
curs does not guarantee in principle that the resulting burn will propagate. If
the heated region expanded too quickly relative to fusion energy production,
then expansion cooling could quench the ignition. However, for the regime
relevant to ICF the parameters work out favorably, and ignited capsules typ-
ically continue to burn. These last two effects are discussed further by Atzeni
and Meyer ter Vehn. They can be summarized in as a condition for successful
ignition and burn, given by

ρhRhTh > 6
√

ρh/ρc g cm−2 KeV, (9.33)

in which ρc is again the density of the compressed, cold fuel. (A typical value
of ρh/ρc for an isobaric case is 1/16). This condition is the analog for ICF
of the well-known Lawson criterion for MFE, expressed in that case as a
minimum value of density times confinement time.

Homework 9.9

The Lawson criterion is generally written as nτ > 1014 s/cm3, with density
n and confinement time τ . Find a way to relate this to (9.15) and comment
on the comparison.

9.2.3 Igniting from a Central Hot Spot

It seems natural to try to get some benefit from the work done stopping
the imploding capsule, by making the central gas become the hot spot that
initiates the fusion burn. This places a constraint on the final ρr of the hot
spot, which must be 0.3 g/cm2 to localize the alpha particles. It also places a
constraint on the final temperature of the hot spot, which needs to be above
5 keV. If this were too low, the fuel in the hot spot would not ignite, but if it
were too high the hot-spot fuel would begin burning too soon. The hot-spot



9.2 Creating and Igniting the Final State 411

pressure must equal that in the fuel, and knowing pressure and temperature
allows one to specify ρh from ph = ρhTh(Z + 1)kB/(Amp). Then from ρhRh

one gets Rh.
If the pressure in the fuel were the minimum value of 13.5 Gbars derived

above, this would imply ρh = 3.5 g/cm3 and Rh = 850 µm. Unfortunately
this is too large. To work with this hot spot one would have to very greatly
increase the fuel mass in order to obtain ρr = 3 g/cm2. Thus, we cannot use
a central hot spot with our initial definition of the compressed fuel. The only
reasonable alternative is to increase the pressure in the fuel so as to decrease
the radius of the hot spot. One can define the problem as follows. One can
find Rh from ph as just described. One also can find ∆rc, the cold-fuel shell
thickness, from the cold, Fermi-degenerate fuel pressure, pc = ph = 2.1ρ

5/3
c ,

knowing ρc∆rc = 3 g/cm2. Then the fuel mass is found, from geometry, to
be

mf = ρc
4π

3
(
(Rh + ∆rc)3 − R3

h

)
, (9.34)

in which all the variables on the right are now known functions of pressure.
From this, for our desired fuel mass of 3 mg, one finds the parameters shown
in Table 9.2

Table 9.2. Parameters of a model high-gain ICF system with a hot spot

Parameter Value

Fuel Mass 3 mg
Burn fraction 33%
Fuel ρr 3 g/cm2

Final fuel density 970 g/cc
Fuel outer radius 88 µm
Hot spot radius 57 µm
Hot spot temperature 5 keV
Fermi energy 1390 eV
Fuel pressure 200 Gbars
Max. cold-fuel specific entropy 4 × 108 J/keV/g
Compressed fuel energy 93 kJ
Capsule kinetic energy >190 kJ
Implosion velocity >350 km/s

The upshot of all this is that the cold, dense fuel must be accelerated to
well above 300 km/s (3× 107 cm/s) in order to provide the energy necessary
to create ignition from a central hot spot. The energy of the compressed fuel
increases by a factor of 3 from ∼ 30 kJ to >90 kJ. If the efficiencies do not
change as the mass increases, one will need an energy source that is three
times larger in order to create a fusion burn from a central hot spot than one
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needs to compress cold fuel that one intends to ignite in some other way. It
is because of this that fast-ignition schemes are potentially attractive.

Homework 9.10

One choice in a central hot spot design is how much to increase the pressure
above the minimum value of 13.5 Gbars. Increasing the pressure decreases the
size of the hot spot but increases the energy required to create this pressure.
Keeping the constraints on density and ρr found above, consider the effects
of scaling the pressure in the hot spot.

During the implosion, the hot spot obtains energy from pdV work and
eventually from fusion burning, while losing energy through electron heat
conduction and radiation. One can analyze the energy balance during the
implosion using an energy balance equation similar to (9.27), except that ρh

is no longer constant. Just as in the case of ignition, relatively cool hot spots
lose more energy to radiation while relatively warm hot spots lose more energy
to heat condition. There is an optimum path in density and temperature to
minimize the energy cost of assembling the hot spot. The further the hot spot
is from that path during the implosion, the more energy will be required. This
can affect the details of optimizing the shock timing and initial gas fill of the
capsule.

The range of design options for ignition from a central hot spot is rather
limited. One can, for example, vary the total fuel mass and then determine
the implications for the final fuel pressure, final cold-fuel density, implosion
velocity, and so on. Even so, when one considers the impact of the numerous
possible approaches to creating that final implosion velocity, and the need to
avoid the pitfalls discussed in Sect. 9.3, a challenging optimization problem
remains. In addition, new inventions and discoveries with regard to the details
offer the potential for improvements to the optimized design.

9.2.4 Fast Ignition

In contrast to the case described in the previous paragraph, fast ignition in
general is a much more complicated problem. One now has the potential to
control the hot spot, so that in principle one can optimize the system across
variations in heating energy, power, and radius (of the cylindrical zone that
will be heated). Beyond this, there are numerous ways one might do this
heating. One might use a beam of electrons, or ions, or photons. Or one
might use a slug of dense matter to shock-heat the dense fuel. It has even
been suggested (by Jim Hammer) that one might use a bubble of magnetic
field. Here we first discuss the hot-spot properties required for ignition, and
then discuss some of the options for producing these properties. The first
published discussion of fast ignition was that of Tabak et al. Here we draw
from work by Atzeni.
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Since fast ignition begins from a nearly isochoric state, we draw from the
analysis that produced Fig. 9.6, but using more-precise numbers from more
detailed studies. The minimum value of ρRh required for ignition is 0.5 g/cm2,
at a temperature of 12 keV. If we consider this to be the optimum hot spot,
we can estimate the amount of energy (deposited in the hot spot) that is
required for ignition, Eig, assuming that the hot spot is a cylinder of aspect
ratio unity, as Eig = πR3

hρ(1 + Z)kBTh/(Amp), which is 36(100 g/cm3
/ρ)2

kJ for this case. This seems quite hopeful, since achieving ρ above 200 g/cm3

seems plausible and since our simple scaling calculation indicated that the
cost in fuel energy of producing a central hot spot was above 60 kJ. However,
energy losses due to radiation, heat conduction, and hydrodynamic motion
act to increase Eig substantially.

In addition, the assumed parameters are not necessarily the optimum hot
spot. The required temperature decreases as ρrh increases, reaching 4 keV at
ρrh = 1.2 g/cm2. If, for example, one can readily and efficiently produce a
beam whose radius is smaller than (0.5/ρ) cm and which is whose absorption
depth at the desired final density is roughly equal to its radius, then one
would want to produce the high-temperature hot spot with the minimum
ρr. In contrast, if the beam one could efficiently produce had an absorption
depth above 1 cm2/g, then the optimum design would heat a larger-radius
hot spot to a lower temperature. To make matters even more complex, the
duration of the heating beam may be constrained or may be variable, and
the beam may be limited in its maximum available power. Moreover we have
yet to mention the question of how efficiently the heating energy can be
produced and deposited, yet this is very likely the key technical issue that
will determine the viability of fast ignition for fusion.

One approach to addressing this complexity is to separate the problem
into components. Atzeni did so, asking what the conditions for ignition are
for a set of rather general assumptions. He assumed that a beam of radius rb,
power Wb, and irradiance Ib, related by Wb = Ibπr2

b, and with an absorption
depth Rb, irradiates a constant-density fuel. He then used two-dimensional
simulations to assess the parameters required for ignition. For 0.15 ≤ Rb ≤
1.2 g/cm2, ignition required

Eig = 140

(
ρ

100 g/cm3

)−1.85

kJ, (9.35)

Wb = 2.6 × 1015

(
ρ

100 g/cm3

)−1

W, (9.36)

and

Ib = 2.4 × 1019

(
ρ

100 g/cm3

)0.95

W/cm2
. (9.37)
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The second and third of these relations imply a beam radius of 60 µm ×
(100 g/cm3

/ρ)0.975, which may or may not prove feasible in practice. The
broad range of absorption depth over which these parameters apply reflects
the rough balance between the fact that the overheated hot spots produced
when the absorption depth is small ignite only after producing a larger volume
at a lower temperature by heat conduction and that increased heating energy
is required when the heating is dispersed because of large absorption depth.
The net impact of this more-realistic analysis is to increase the optimum fuel
density for fast ignition, perhaps to of order 300 g/cm3, so that the deposited
energy must be <20 kJ. At the present level of the discussion this is a guess,
since the important question in the end is how much energy must be expended
to produce a given amount of deposited energy. The smaller the efficiency of
energy deposition, the larger one will need to make the hot spot density. Then
the question will be whether the beam radius can be as small as is required.
One can see that fast ignition is a challenging problem involving the interplay
of numerous constraints and of both physics and technology.

Now let us consider some possible methods for delivering the required
energy to the dense fuel, at the required very large irradiance. A simple
approach is to direct a sufficiently intense laser beam at the compressed
fuel and hope that this leads to enough energy coupling. The most likely
source of such coupling would be the generation of relativistic electrons by
the intense laser beam. Indeed, beams of relativistic electrons are generated
by intense, ultrafast lasers (see Chap. 11). Detailed questions follow. Can one
generate enough electrons? Can one do so at useful energies? Can one do so
close enough to the dense fuel that they couple efficiently? The dense fuel is
surrounded by a formidable quantity of blown-off plasma. This leads one to
consider various options. One might use a preliminary laser pulse to drill a
hole in this plasma before one introduces the intense laser pulse that does
the heating. Alternatively, one might implode a capsule that includes a high-
Z cone, whose purpose is to provide a region free of such blow-off plasma
through which one can introduce the heating beam. Even so, electrons tend
to have large absorption depths (though not as large as those of photons
at relevant energies). Beams of electrons are also subject to disruption by
filamentation or other instabilities. This leads one to consider using heavier
particles.

Broadly speaking, the heavier particles might be protons, light ions, or
heavy ions, and one might try to accelerate relatively few particles to higher
energy or relatively more particles to lower energy. In the high-energy limit,
beams of protons have also been observed in experiments with ultrafast lasers
(see Chap. 11). If one can put enough energy into these beams, and if one
can focus them, this might provide an alternative to the use of electrons. In
the low-energy limit, one could try to drive a slug of solid material toward
the target with enough energy to cause ignition by shock heating. If protons
are still not absorbed readily enough, one could work on devising schemes to
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deliver a sufficient irradiance of light ions or heavy ions to the target. At this
writing, it is clear that there are many options but not yet so clear which
may prevail.

Finally, we should not leave the topic of fast ignition without mentioning
one of its major qualitative advantages. We address below the need for ICF
implosions to be adequately spherical, both with regard to the symmetry of
the ablation pressure and to the impact of the Rayleigh–Taylor instability.
When using ignition from a central hot spot, small departures from a spherical
implosion can permit the hot spot to be too cool or too convoluted to ignite.
In contrast, for fast ignition one typically does not care what the shape of the
gas within the imploded fuel capsule may be. Nor does one necessarily care
if the implosion is asymmetric to some degree. So long as one can deliver the
energy where it is needed to ignite some of the fuel, the fusion burn should
be able to proceed.

9.3 Pitfalls and Problems

A pressure of 100 Mbars is fairly easy to produce. One can see from (8.42)
that this requires a laser irradiance of 1.6×1015 W/cm2 of 0.35 µm light. The
corresponding laser energy during the acceleration, for a capsule of 3.3 mm
radius, irradiated for 2 ns, would be about 500 kJ. The laser energy required
during the formation and propagation of the shocks would increase the total
energy by some factor. Alternatively, one would need an x-ray temperature
of 220 eV in a hohlraum to create a pressure of 100 Mbars. This again does
not seem very difficult (see Chap. 8). Indeed, achieving such a pressure is
easy enough that in the absence of limitations one would seek to use a larger
pressure. However, there are three major problems that make ICF a challenge.
We discuss these here.

9.3.1 Rayleigh Taylor

An ICF implosion is Rayleigh–Taylor (RT) unstable during most of its de-
velopment. Early on, during what is often called the acceleration phase, the
low-density, hot ablated plasma is at a higher pressure than the cooler, higher-
density layer being accelerated. This creates the condition of opposed den-
sity and pressure gradients that excites the RT instability (see Chap. 5).
One could say that the low-density plasma is pushing on the higher-density
plasma. The acceleration phase ends but before long the deceleration phase
begins, when the low-density gas within the capsule pushes against and de-
celerates the denser, incoming fuel layer. Here again the density gradient
and pressure gradient are opposed, so one has an RT unstable system. This
necessitates understanding what limits RT may place on ICF implosions.

The number of e-foldings of RT growth, γRTt, is straightforward to esti-
mate, assuming that the growth rate is the value for an abrupt, embedded
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interface, which is γRT =
√

Ankg. The density changes are large so we take
An ∼ 1. The most-damaging wavelength is related to the thickness of the
capsule during the RT growth, which we will designate ∆R. Wavelengths
that are short compared to ∆R will grow and saturate without creating large
perturbations in the structure. Wavelengths that are long compared to the
capsule thickness will distort the capsule and may decrease the compactness
of the implosion, but they have less impact and a slower growth rate than
wavelengths of order the capsule thickness, which can break up the capsule
if they grow large enough. So we take k = 2π/∆R. If we approximate the
acceleration and deceleration as constant, then we have R/2 = (1/2)g(t/2)2,
from which t

√
g = 2

√
R. Altogether, this implies γRTt =

√
8πR/∆R. The

quantity R/∆R is known as in-flight-aspect ratio or IFAR. Equation (9.23)
provides an initial estimate of this. The four or so shocks used to increase the
pressure to 100 Mbars increase the density of the shell of order 100 times,
from which our initial estimate of the IFAR would be ∼ 200. However, this
ignores the decompression that occurs after the shocks coalesce. Taking the
IFAR to be 100, we would expect about 50 e-foldings of RT growth from
this calculation. If the noise at such wavelengths corresponded to atomic dis-
placements (∼ 1Å), and there were no nonlinear saturation and no spherical
effects, the implied amplitude would be 1 km. The acceptable growth at such
wavelengths is of order several, and certainly not more than 10, e-foldings.
One concludes that ICF is not feasible in the presence of RT growth at such
a rate.

Fortunately, the RT growth rate is actually smaller than
√

Ankg, be-
cause the interfaces where the growth occurs are not sharp but rather have
some scale length L. The growth is reduced much further during the accel-
eration phase because ablation carries away the material in which the mod-
ulations are growing. Suppose the ablation is carrying away material with
some characteristic ablation velocity, VA (this is not the exhaust velocity, but
rather the velocity at which material flows away from the dense interface).
Then recall that RT modes are surface waves with an exponential penetra-
tion depth of 1/k. Given that the growth rate without ablation, γRT, sets a
timescale of 1/γRT, we would expect to see ablation quench the RT growth
when 1/k ∼ VA/γRT orkVA ∼ γRT. This is indeed what is seen, within small
numerical factors, in simulations and in detailed analytic theory. A standard
relation expressing the net growth is

γA =

√
kg

1 + kL
− βkVA. (9.38)

Here the coefficient β is ∼ 1 for x-ray ablation and ∼ 3 for laser ablation.
The ablation velocity VA is the velocity at which material leaves the RT-
unstable region and equals the mass ablation rate divided by the density
in the ablation layer, ṁ/ρ2, where ρ2 is the density of the shocked ablator.
The ablation velocity can be estimated from the discussion in Chap. 8. An
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order-of-magnitude value of the product βVA is 5× 105 cm/s, while the order-
of-magnitude of g is 3×107 cm/s per ns, which is 3×1016 cm2/s. For a steep
interface, the maximum unstable wavenumber is k = g/(βVA)2 = 105 cm−1,
corresponding to a wavelength of about 1 µm. Since the fuel shell is only a few
µm thick during the acceleration phase (after compression by the sequence
of shocks), the wavelengths whose thickness is of order the shell thickness are
strongly stabilized by ablation.

It should be clear that a careful design must consider all possible RT
modes in order to assure control of RT during the ablation phase. If the
stabilizing effect of ablation alone is not enough, one can consider trying to
increase the scalelength L at the ablation surface. Increasing L to a few µm
can have an important effect. One way to try to increase L is to design the
outer surfaces in the target so that they produce preheat that penetrates the
ablator but is not energetic enough to reach and heat the fuel layer. This can
be attempted in principle using either electrons or x-rays. Design work at this
writing has focused on using x-rays. An alternative approach to increasing
L is to launch the first shock into the fuel by using a brief impulsive load
that rapidly evolves into a blast wave. The blast wave will decay as it moves
into the capsule, so that the amount of entropy it produces will be larger in
the outer layers of the ablator and smaller by the time it reaches the fuel.
Either of these approaches, or perhaps another one, could be very helpful in
the context of fusion by direct laser ablation.

During the deceleration phase there is little ablation, so only L can act to
reduce the RT growth. Fortunately, L tends to be large enough to reduce the
growth. This happens because the interior of the capsule has been heated by
the coalescing shock waves and is much hotter than the cold fuel, in response
to which the electrons transport heat into the inner layer of cold fuel, which
in turn expands and lengthens the scale length at the inner fuel boundary. A
typical estimate, from Lindl, is that at the inner fuel boundary L is roughly
15% of the final fuel radius. This has the consequence that the RT growth
during deceleration is limited to about three e-foldings. The initial amplitudes
that grow by this amount are determined both by the roughness of the inner
surface of the fuel and by the perturbation of the inner surface due to the
RT growth during ablation. This coupling of the outer surface to the inner
surface is known as feedthrough.

The net result is that it appears that RT can be limited to a low enough
level that fusion can succeed, but that doing so places difficult constraints
on the initial roughness of the target surfaces and on the smoothness of
the ablation pressure. As was mentioned in Chap. 8, the drive to invent
ways to smooth the irradiation of surfaces irradiated by lasers came from
ICF. Specifically, one needed to reduce the seeding of RT instabilities due to
structure in the laser ablation. The precise constraints can be estimated now,
but there is a potential to make them less severe through improvements in
design of targets and in understanding of RT. The RT instability evidently
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is present in any approach to fusion, whether initiated with lasers, with a
z-pinch, or with sunlight.

Homework 9.11

Evaluate the amount of RT growth for the sunlight-driven fusion system of
the problem 9.6.

9.3.2 Symmetry

In any analysis of structure in spherical coordinates, it is natural to describe
the structure in terms of spherical harmonics. These harmonics form a com-
plete basis set that describes a system by breaking the structure into modes
that correspond to having an integer number of wavelengths over 360◦ in az-
imuthal angle or 90◦ in polar angle. The RT modes that grow to the largest
amplitude have mode numbers of several tens. (Without any stabilization, the
most-unstable mode number would be much larger.) The low mode numbers,
such as 2 or 4, correspond to variations in the structure that can be produced
if the ablation pressure is not uniform over larger distances. For example, if
two ends of a target (the poles) are driven more strongly than the middle
of the target (the equator), then the imploded target will be flattened like a
pancake. Such an imploded target is indeed described as pancake-like, or may
be said to have pancaked. In contrast, if the equator is driven more strongly
than the poles, the imploded target will be a long thin tube, for which the
common metaphor is a sausage. In either case, the ρr will be smaller than
intended over a significant range of solid angle, and one will obtain less burn-
ing than one had hoped. One could say that ICF, in order to succeed, must
not feed one breakfast.

A simple estimate of the required uniformity is straightforward to make.
The fuel radius decreases by a factor of order 20 as the fuel implodes, from an
initial radius Ri to a final radius Rf . We can ask what difference in velocity
∆V would cause the fuel at one angle to be at twice the final radius when
the fuel at another angle has reached its final radius. To do so, we estimate
the implosion time for the fully imploded fuel as Ri/V and we ask when

∆V Ri/V = Rf . (9.39)

Thus, to keep the asymmetry of the final state smaller than a factor
of 2 requires the variation in implosion velocity to be less than Rf/Ri ∼
5%. Since the implosion velocity is proportional to the ablation pressure we
require the ablation pressure to be uniform to the same level. In reality, an
asymmetry of a factor of 2 is far too large. A more realistic limit is that
the ablation pressure must be uniform to 1% accuracy, at least in a time-
averaged sense. This is a demanding constraint. With fusion by direct laser
ablation, one can use many beams but even so only a few beams overlap
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on any given point on the target. With fusion within a hohlraum, entrance
holes for laser beams or for the flow of energy into the hohlraum from a
z-pinch create a significant asymmetry in the radiation from x-ray heated
walls. The asymmetry produced by the energy source must be compensated
for by careful design. In all approaches, as the target begins to move (and
as the plasma struck by the laser also moves), the irradiation symmetry may
change. As in the case of RT instabilities, the requirement of symmetry places
difficult constraints on ICF. These constraints are unlikely to be met without
measuring the symmetry and fine-tuning the irradiation of the capsule to
produce adequately spherical implosions.

A historical and cautionary note is worth making here. During the 1970’s
portions of the inertial fusion program in the USA attempted to create fusion
within hohlraums without making any measurements of the implosion sym-
metry. This effort failed, as evidenced by neutron yields that were typically
100 times smaller than predicted. Only on the Nova laser, when implosion
symmetry and of the other essential aspects of the fusion system were mea-
sured, was it possible to first achieve fuel densities above 100 times liquid
density and to begin to see neutron yields not very far below those predicted
by one-dimensional simulations. This required a close collaboration between
experiment and simulation, measuring the details and using simulations to
assess the implications of what was seen. Prior to that era, there was far too
much reliance on simulation codes without verifying measurements, and far
too much belief that the codes were the reality. A good scientist who does
simulations understands that the simulation is an essential tool but cannot
fully represent reality. In the view of the present author the fact that much of
ICF was classified contributed to its failures in the 1970’s. A major benefit of
presenting results at open scientific meetings and of publishing in the refereed
literature is that these activities force an improvement in the quality of the
science being done.

9.3.3 Laser–Plasma Instabilities

We saw in Chap. 8 that laser–plasma instabilities can scatter laser light and
can also produce populations of high-energy (suprathermal) electrons. (In z-
pinch-driven fusion, these instabilities are not present but there is also some
potential to produce populations of energetic electrons.) We saw that these
instabilities, in particular stimulated Raman scattering and stimulated Bril-
louin scattering, can in some circumstances convert most of the laser light
into scattered light or energetic electrons. We also saw that another instabil-
ity, filamentation, can break the light into filaments, which can potentially
change where the light goes or can trigger other instabilities. These processes
have three types of adverse consequence. We discuss these first, and then the
question of how to control the amount of such scattering.

First, stimulated scattering processes reduce the efficiency of the laser-
fusion target. If half the laser light is scattered back toward the source,
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then one will need to start with twice the energy to produce fusion. The
energy sources (or drivers) are expensive enough that this would be a major
problem.

Second, stimulated scattering and filamentation both may alter where the
light is deposited, both in a directly driven capsule and in a hohlraum. This
can affect the symmetry of the implosion, since ablation pressure or soft x-
rays would then be produced in unintended places. If these processes were
consistent in the amount and direction of the scattering that they produced,
then one could tune out the resulting variations through a sequence of exper-
iments that measured the symmetry. This would be fine, but these processes
are observed to behave reproducibly in some regimes and irregularly in others.
So one cannot count on being able to tune them out.

Third, stimulated Raman scattering and the decay instabilities produce
energetic electrons. Some of the energy of these electrons reaches the fusion
fuel, which heats it and adds to its entropy. We can recall that the entropy
limit is then 4 × 108 J/keV/g, but that most of this limit must be used in
the process of compression. For purposes of estimates, let us suppose that
the limit on the entropy from preheat is 108 J/keV/g. The amount of en-
tropy produced depends on the temperature when the preheat occurs, since
ds = dq/T . Thus, a serious design must address preheat in a time-dependent
context. For purposes of a crude estimate, suppose that the preheat occurs
when the final shock is being produced, so that the pressure is already ∼ 30
Mbars, the fuel density is ∼ 5 g/cc, and the Fermi energy is ∼ 40 eV, and also
suppose that the fuel temperature is ∼ 40 eV. Under these assumptions, an
entropy of 108 J/keV/g develops if the 3 mg of fuel absorbs 12 kJ of energy.
If the final capsule energy is 140 kJ, the rocket efficiency is 10%, and the
delivery of energy to the rocket fuel is 50% efficient, then the driver energy is
about 3 MJ. Thus, our estimate is that if of order 0.3% of the driver energy
is deposited in the fuel as preheat, the fuel entropy would increase above the
desired value, the total compression would be less than desired, and the gain
would decrease.

This seems like a rather difficult constraint, but it in fact is less severe than
it seems. The only energy that does damage is the energy that heats the fuel.
But to get to the fuel the electrons must first penetrate the ablator. Those
that penetrate the ablator without much attenuation (at energies well above
30 keV) will also penetrate through the (lower-Z) fuel without depositing
much energy. Those that cannot penetrate the ablator cannot heat the fuel.
A suprathermal electron distribution with a 30 keV temperature has a mean
range of about 3 mg/cm2, which is of order the initial areal density of the
ablator. Thus, electrons below this energy will not tend to reach the fuel. In
addition, because the electrons transport diffusively in the dense matter and
can scatter out of the vicinity of the capsule, many of them may deposit their
energy somewhere else, especially in fusion using hohlraums. Depending on
details, one would expect that an ICF high-gain target could succeed even if
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the fraction of the driver energy in suprathermal electrons were of order 1%
or perhaps more. By the time this ratio reaches 10%, efficiency is becoming
as much of a concern as preheat. In summary, the production of suprathermal
electrons must be limited but need not be completely quenched.

It is clear that, if ICF is to succeed, then none of the laser–plasma in-
stabilities can be allowed to grow to a large amplitude. There are at root
two approaches to control these instabilities. The first approach is to use
short-wavelength (UV) lasers for fusion. This helps in two ways. The growth
rate for all the instabilities is proportional to the oscillation velocity of the
electrons in the laser light wave, as shown in Table 8.1. The square of this
oscillation velocity is proportional to the laser irradiance times the square of
the laser wavelength (8.9). Thus, one reduces the growth rate by shortening
the laser wavelength. In addition, shorter-wavelength laser light makes colli-
sional effects more important; because critical density increases, all processes
occur at higher densities. An added benefit of higher densities is that the
laser energy is shared by more particles so the plasma is cooler. This further
increases the importance of collisions. Furthermore, the strong collisionality
of plasmas made with UV lasers leads to the absorption of the laser light at
densities well below the critical density, so that processes at critical density
become unimportant. The need for short-wavelength lasers was determined
the hard way. Fusion programs using infrared lasers (at ∼1 µm and ∼10 µm
wavelength) experienced severe problems with energetic electrons, leading in
the long run away from such wavelengths as serious candidates for ICF.

The second approach to control laser–plasma instabilities is to actively
suppress them or at least to reduce their threshold for growth. If high den-
sity and collisions are effective enough, this will not prove necessary. The
myriad options for control are beyond our scope here but are also often not
realistic possibilities for specific ICF facilities. Fundamentally, one can sup-
press instabilities involving ion waves, such as stimulated Brillouin scattering,
by adding bandwidth to the laser beams. This is not practical for decay in-
stabilities or stimulated Raman scattering. One can limit SRS by creating a
smooth, steep density profile in which SRS finds it difficult to grow. Two-
plasmon decay, which occurs only near the quarter-critical density, may or
may not be a problem. If it is too much of a problem, this may limit the
irradiance that can be used for ICF. At this writing, it is unclear whether
active control of the laser–plasma instabilities will be needed for ICF.
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Nature often creates high-energy-density conditions. At root, the cause is
always gravity. At the center of the Earth, for example, the pressure is 3.6
Mbars, almost entirely due to gravity. Jupiter is similar, with a pressure of
∼40 Mbars at its core. In stars, the gravitational assembly of the stellar mass
leads to heating by nuclear fusion, which produces much larger pressures –
the pressure at the core of the Sun is roughly 0.2 terabars. Once fusion creates
conditions that lead to supernova explosions, even larger pressures occur. For
example, some supernovae produce neutron stars, and the magnetic field at
the surface of a typical neutron star is near 1 teraGauss. The pressure of such
a magnetic field is about 40 petabars.

Nature also creates conditions whose laboratory analog must be in the
high-energy-density regime. One can consider, for example, shock waves that
are fast enough to ionize matter and perhaps to cause radiative effects. A
1,000 km/s shock wave in the interstellar medium, where the density of par-
ticles is of order one per cubic centimeter, has a ram pressure of tens of fem-
tobars. This pressure approaches nanobars when the density becomes large
enough that radiative losses become important. In contrast, a laboratory sys-
tem that is a good analog of this astrophysical shock wave might involve a
shock wave at 10 km/s in a material that is ∼1 g/cc, for which the ram
pressure is of order 1 Mbar.

In this chapter we take up the problem of producing high-energy-density
conditions. It would have been convenient to take this up much sooner, but
in fact many of the concepts we have already introduced are needed to under-
stand how to do this. We will discuss the technology that makes this possible
in the early 21st century. We will also discuss the conceptual, physical, and
mathematical models that are necessary to understand how such conditions
are produced. These topics subdivide naturally into five areas: direct laser
irradiation, laser-driven hohlraums, Z-pinches and related systems, ultrafast
lasers, and high-energy-density beams. The first three of these are covered
here; the last two are covered in Chap. 11.
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8.1 Direct Laser Irradiation

All lasers, from laser pointers to megaJoule systems, have certain features
in common. They involve the preparation of a medium that can reach a
lower-energy state by giving energy to a light wave. This often involves the
excitation of a specific atom, such as neodymium (Nd), so that more electrons
are present in the upper state than in the lower state of an atomic transition.
All lasers also involve the initiation of a light wave within such a system,
sometimes by thermal emission of radiation and sometimes from an external
source. This light wave is then amplified coherently, as the medium gives
energy to it. The resulting beam of light may be well collimated, but this
depends in part on the geometry of the lasing system. In the present book we
will not discuss these aspects of lasers in further detail, leaving this subject
to other books. Instead, we will discuss the aspects of lasers that are specific
to high-energy-density physics – high energies in this section and high powers
in Chap. 11.

Before discussing the specifics of lasers, some discussion of the relevant
units in common use is a good idea. The common units, also used here, are
somewhat mixed. The energy of a laser pulse is typically given in Joules (J),
or in related units such as kJ or MJ. Correspondingly, and considering that
the timescale of the pulses is ns, the power is given in W, gigawatts (GW),
terawatts (TW), or petawatts (PW). However, the practical unit of distance
for real lasers is the cm, not the meter, so the power per unit area is typically
given in W/cm2, much to the horror of SI units purists. Perhaps more im-
portant is that the high-energy-density community has a habit of describing
this power per unit area as an intensity, so one will see for example in the
literature that the laser intensity in our experiment was 1014 W/cm2. This
horrifies the conceptual purists, such as the present author, as the general
meaning of intensity involves power per unit solid angle (see Chap. 6). The
correct term for power per unit area is irradiance, and this is the term we
will use here.

8.1.1 Laser Technology

Now we turn to the specific issues involved in the lasers that produce high-
energy-density conditions. A number of high-energy lasers have been con-
structed over the past few decades, motivated by the challenge of achieving
inertial confinement fusion. The long-term goal is to create miniature fusion
explosions with an energy gain of about 100. Such a laser system begins
with a very high-quality laser beam, initially of low energy, which propagates
through and extracts energy from Nd-doped laser glass. (We do not discuss
here lasers based on gasses such as CO2 or KrF. No high-energy CO2 lasers
remain in operation. The KrF lasers represent an important alternative to
Nd-glass lasers for high-energy-density physics.) The first challenge for glass-
based lasers is to prevent defects and diffraction from damaging the laser
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components as the energy per unit area of the laser beam reaches high levels.
The second is to extract a large fraction of the stored energy.

The first challenge was met in the 1970’s. The key inventions here were
image relaying and spatial filters. A laser system that uses image relaying first
creates a high-quality, low-energy laser beam at a specific position (the object
plane). It then designs the optics in the laser system so that the object plane
is imaged onto or near the planes where the highest-irradiance laser light
penetrates optical materials. These locations are often the lenses that inject
the light into spatial filters. Spatial filters are also essential to reduce the
structure in a laser beam. They do so by placing a pinhole at the focus of
an input lens. This clips most of the energy in hot spots or other structures
in the incident laser beam, as these small structures are focused to a much
larger spot than the uniform beam is. The output lens then recollimates the
remaining laser light into a smoother, more-uniform beam. These inventions
led to several high-energy lasers capable of delivering >1 kJ of laser energy
to a target.

Fig. 8.1. A drawing of the Omega laser system. Credit: Laboratory for Laser
Energetics

Figure 8.1 shows one example of such a laser system, the Omega facility
(see Boehly et al., 1995), which can deliver 30 kJ to a target. The laser occu-
pies approximately the area of one (American) football field. The capacitors
in the basement accumulate energy for several minutes before delivering it
to flashlamps in the laser amplifiers, preparing the Nd glass to amplify light.
The initial laser beam, formed and amplified at the center of the laser bay,
is split, amplified further, and eventually feeds the 60 amplifier chains that
proceed down the sides of the laser bay toward the output end. Frequency
conversion crystals then triple the frequency of these laser beams, decreas-
ing their wavelength from 1.05 µm to 0.35 µm. Mirrors then direct the laser
beams toward the center of the target chamber.

The second challenge cited above, of using the stored energy more effi-
ciently, was met by large lasers constructed in the early 21st century. For
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the laser beam to extract more of the stored energy it must pass through
the Nd-doped glass several times, without destroying the quality or the fo-
cusability of the laser beam. To accomplish this it is necessary to clean up
the laser beam between passes, using spatial filters, and/or to compensate
for the phase differences across the amplifying optics, using adaptive optics.
(An adaptive optic deforms an optical surface either continually or in small
segments, allowing local adjustment of the distance that the light travels.)

8.1.2 Laser Focusing

It would seem that a simple lens would be sufficient to focus a high-energy
beam to high irradiance for experiments, just as a simple magnifier can focus
sunlight to start a fire. Unfortunately, a typical laser beam, especially when
focused to a spot that is larger than the smallest (or best focus) spot that
a lens can produce, creates a very irregular spot. This has a variety of ad-
verse consequences, some of which we will touch on later. Inertial fusion, for
example, requires the irradiation of a target by a very smooth laser beam.
Small lasers often use a Gaussian beam to produce a high-quality laser spot.
A Gaussian beam has a profile of irradiance that is approximately Gaussian
as a function of radius (proportional to exp(−r2/a2), where r is radius and
a is a distance). Such a beam can be image-relayed through an optical sys-
tem to maintain high quality. This type of laser is comparatively inefficient,
however, as most of the beam is at low intensity and does not extract much
of the stored energy from the laser glass. High-energy beams must extract
as much as possible of this stored energy, and thus must use much flatter
irradiance profiles. Unfortunately, thorough studies proved that no practical
optics could produce laser beams with flat irradiance profiles whose phase
fronts were uniform enough that they would focus to smooth spots without
some sort of extra processing. This has led to the invention of a number of
techniques for so-called beam-smoothing. We discuss some of these here.

These techniques typically rely on the diffractive behavior of laser optics.
When a light wave passes through a circular aperture, diffraction of the light
by the aperture is well known to produce an Airy pattern (see Fig. 8.2). If
such a light wave is focused, then diameter, d, of the first zero of the Airy
pattern is given by

d = 2.44λf, (8.1)

in which the wavelength of the light is λ and the f number, the ratio of
length to aperture, of the focusing system is f . The central maximum of the
Airy pattern contains about 88% of the energy in the light wave. Thus, for
example, for a 30 cm lens with a 3-m focal length, f = 10 so for 0.35 µm
light d = 8.5 µm. This is also called the diffraction-limited spot size of the
laser system. Typical high-energy laser systems, using only a focusing lens,
produce best-focus spots that are larger than ten times the diffraction-limited
spot size. The size of these best-focus spots and their structure is due to the
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Fig. 8.2. An Airy pattern

gradual variation of the phase of the light across the aperture of the lens, and
to the interference of the beam from different portions of the aperture.

The simplest of the beam-smoothing systems, no longer in much use, is
the random phase plate (RPP). A random phase plate passes the laser beam
through an array of hundreds or thousands of adjacent optical elements, of
randomly varying thickness, thus dividing the beam into small beamlets. The
elements are typically hexagonal in shape. The elements are sized so that
the diffraction-limited spot of each element is the size of the desired laser
spot. Thus, to obtain a 1 mm spot with 0.35-µm light at a distance of 3 m,
(8.1) implies the aperture of an element must be 2.6 mm. This determines
the overall size of the laser spot. (In actual experiments, one is most often
concerned with the size of the spot that contains half the laser energy, or at
the edges of which the irradiance is half its peak value. These numbers are
somewhat smaller than the value from (8.1) and for real systems must be
determined numerically or experimentally.) In addition, the beamlets from
different elements interfere with one another, typically producing small, local
maxima in the irradiance pattern, known as speckles. The minimum speckle
diameter is produced by interfering beamlets that originate from opposing
edges of the laser beam, and is given by (8.1) using the aperture of the entire
laser beam to determine the f number. These speckles are actually very long
and narrow structures. Their length, Ls, is

Ls = 7λof
2, (8.2)

so the ratio of length to width is roughly 3f .
What has largely replaced the random phase plate in practice is the dis-

tributed phase plate, or DPP, in which the phase of each small element is
controlled by design in order to determine the shape and structure of the
resulting laser spot. In particular, this allows one to produce laser beams
with flatter overall profiles of irradiance and with less energy in the wings
of the laser spot. Figure 8.3 shows the typical irradiance pattern produced
by a distributed phase plate. One sees a smooth overall profile modulated
by many speckles. A related type of optic, often used in combination with a
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Fig. 8.3. Pattern of irradiance from a distributed phase plate. The graph shows a
line through the image, shown in the inset. Credit: Laboratory for Laser Energetics

DPP, is a distributed polarization rotator or DPR. A DPR uses birefringent
optical elements to rotate the polarization of each beamlet by a controlled
amount. Since only the components of two beamlets with parallel polariza-
tions interfere with one another, this provides a further dimension of control
when designing the shape of a laser spot. It also in principle allows one to
tailor the polarization of the laser beamlets as they interact with the target.

Plasmas conduct heat easily, which will tend to smooth the effect of small-
scale spikes like those seen in Fig. 8.3. This smoothing, combined with the
tendency of shock waves to anneal as discussed in Chap. 5, implies that for
some experiments the use of an RPP or DPP is sufficient to obtain high-
quality results. However, for inertial fusion, at least in cases where the laser
directly illuminates the fusion capsule, such smoothing techniques are not
sufficient. The fixed location of each speckle creates lasting effects at a high
spatial frequency. An improvement on this is to cause the speckles to move
around, so that the profile of time-averaged irradiance across the overall laser
spot is very smooth. There are two approaches to this.

The first approach is induced spatial incoherence, or ISI. One again breaks
the laser beam into beamlets, but now one arranges that the difference in op-
tical path length between the beamlets exceeds the distance over which the
laser is coherent. This is only feasible using a comparatively broadband laser.
The result is that the phase difference between beamlets varies in time, caus-
ing the speckles to move around on a timescale comparable to the coherence
time of the laser. ISI was demonstrated on Nd-glass lasers, and is particularly
well suited for implementation in KrF lasers. where it can be integrated into
the laser design.

The second approach is smoothing by spectral dispersion (SSD), which
has proven to be more practical for large glass lasers. In this approach one
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produces a broadband laser pulse, disperses it in angle using a diffraction
grating, and then collimates it to produce a laser beam whose frequency
varies in the direction that was dispersed. One can also use two gratings (or
complicated optics) to disperse the beam in two directions, producing 2D
SSD. When such a beam is focused through a distributed phase plate, the
phase difference between beamlets varies in time because the beamlets have
different frequencies so their individual phases vary at different rates. This
again causes the speckles to move around with a timescale determined by
how large the differences in frequency are.

8.1.3 Propagation and Absorption of Electromagnetic Waves

Now that we have some idea how to irradiate a target with a high-energy
laser beam that has been smoothed, we are ready to examine what happens
when such a laser beam actually strikes a target. At the irradiances of interest,
which are typically 1012 to 1016 W/cm2, the laser light immediately produces
a plasma at the surface of the target. At the higher irradiances in this range,
the electric field of the laser light is sufficient to directly ionize the atoms.
At the lower irradiances, the process is more complicated but nonetheless
a plasma is quickly produced. Figure 8.4 illustrates the three fundamental
processes that occur when laser light penetrates a plasma. The laser light is
refracted as it propagates through the density gradient in the plasma, it is
reflected when it reaches a high enough density, and it is absorbed along its
entire path of propagation. We will analyze these processes by examining the
fundamental behavior of light in plasma.

To understand the behavior of laser light as it penetrates a plasma, we
begin with Ampere’s law, (2.18), in Gaussian cgs units, and use the standard
vector and scalar potentials in the Coulomb gauge. This gives

∇×∇× A =
−1
c2

∂2A

∂t2
+

4πJ

c
− 1

c

∂∇Φ

∂t
. (8.3)

This equation has two parts, and it turns out that they separate completely.
Any vector can be decomposed into a transverse (or rotational) part, the di-

Fig. 8.4. The simple processes that occur when a light wave enters a plasma
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vergence of which is zero, and a longitudinal (or compressive, or irrotational)
part, the curl of which is zero. By definition, A is purely transverse. Also, any
gradient has zero curl, so ∇Φ is purely longitudinal. Taking the divergence
of (8.3) yields a continuity equation for the charge in the plasma, in which
the variation with time charge density (proportional to ∇2Φ via Poisson’s
equation) is balanced by the divergence of a flux of charge (i.e., a current).

Homework 8.1

Derive (8.3) from Maxwell’s equations.

Homework 8.2

Derive an equation for the conservation of charge from (8.3).

One can subtract this continuity equation from (8.3), and also expand its
left-hand side, to obtain a fundamental equation for light wave propagation:

∂2A

∂t2
− c2∇2A = 4πcJ t, (8.4)

in which J t refers to the transverse part of J . (One can construct J t from J
if needed. This is discussed for example in Jackson.)

For any specific plasma environment, the behavior of light waves is thus
determined by J t. It is also true that the frequencies of the lasers of in-
terest are so large that the ion motion is negligible on the timescale of the
laser propagation. (Ion motion can have important consequences on longer
timescales, some of which are discussed in Sect. 8.1.4) The net current carried
by the electrons is −eneue; we are seeking the transverse part of this current.

To find this transverse current, we work with the continuity and mo-
mentum equations for the electron fluid, which are (2.61) and (2.62). The
momentum equation, written again here for electrons,

mene
∂ue

∂t
+meneue ·∇ue =−nee

(
E+

ue

c
× B

)
−∇pe−

∑
j=ions

mene(ue−uj)νej ,

(8.5)
is key. In applying this equation here we can make several observations and
simplifications. The velocity of any ions is negligible and can be neglected.
In addition, the pressure gradient is an inherently longitudinal vector, so we
can drop it as we are seeking the transverse velocity. We can also ignore ∇Φ
after we again use the scalar and vector potentials. Finally, we can divide
each term by neme. After these adjustments, we have an equation for the
transverse electron velocity,

∂ue

∂t
+ ue · ∇ue =

−e

me

(
−1

c

∂A

∂t
+

ue

c
×∇× A

)
− ueνei. (8.6)
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From standard vector identities, ue · ∇ue = −ue ×∇× ue + ∇u2
e/2, but

the gradient term here is also longitudinal and can also be dropped (This
term will play a role in the coupling of laser light to longitudinal waves in
the plasma). Substituting and rearranging, we have

(
∂

∂t
+ νei

)
ue − ue ×∇× ue =

(
∂vos

∂t
− ue ×∇× vos

)
, (8.7)

where we have defined vos = eA/(mec), which we will identify as the oscil-
lating velocity of the electron within the light wave. One can see from (8.7)
that in the absence of any collisional energy loss to the ions, one would have
precisely ue = vos. The presence of νei introduces spatial damping of the
electromagnetic wave and a phase variation between ue and vos. There are
typically two simplifying aspects. The first, dealt with below, is that the spa-
tial scale of the variation in A is large compared to the wavelength of the
light. The second is that ue is a small fraction of the speed of light. (This sec-
ond is true for typical high-energy lasers, having pulses of order a ns, but not
for sufficiently intense, high-power lasers, discussed in Chap. 11. To treat the
relativistic regime one must use modified equations.) So one can divide (8.7)
by c2 and note that the terms involving the curl are much smaller than the
other terms because |∂/∂(ct)| ∼ ω/c ∼ k ∼ |∇|. This justifies the use of lin-
earization and the dropping of the terms involving the curl. Then, assuming
that A and thus ue vary as e−iωot, we find

ue = vos
1

1 + iνei/ωo
. (8.8)

Here the imaginary term produces the phase shift mentioned above, but this
is small so long as νei � ωo. Also note that ue is purely transverse, because
A and E for an electromagnetic wave are purely transverse.

It will be helpful for applications to connect vos and νei with practical
units. The direction of vos is the direction of the electric field of the laser, typ-
ically described as the direction of polarization of the laser. The magnitude,
vos, can be related to the irradiance of the laser in vacuum, IL, as follows. Be-
cause the energy density of the electromagnetic field is E2/(8π), and because
this propagates with a group velocity in vacuum of c, one has IL = cE2/(8π).
The magnitude of this is IL = ω2

oA2/(8πc) = v2
osω

2
om2

ec/(8πe2), from which

vos/c =
√

I14λ2
µ/117, (8.9)

in which I14 is IL in units of 1014 W/cm2 and λµ is the wavelength of the
light in µm. We discussed νei in Chap. 2, which in practical units is

νei = 3 × 10−6 ln Λ
neZ

T
3/2
e

, (8.10)

with ne in cm−3, Te in eV, and where lnΛ = max
(
1,
[
24 − ln(

√
ne/Te)

])
.
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We then take J t = −enevos/(1 + iνei/ωo) in (8.4). This is completely
accurate if ne is constant. (However, if a variation in ne is designated as
ne1, then the part of J t proportional to ne1vos may have transverse and
longitudinal components, depending on the direction of the gradient in ne.
This detail matters for wave coupling calculations, but we ignore it here.)
Substituting into (8.4), simplifying, and rearranging, we obtain(

∂2

∂t2
+

ω2
pe

(1 + iνei/ωo)
− c2∇2

)
A = 0, (8.11)

in which ωpe is the plasma frequency defined in Chap. 2. This is the wave
equation for a damped electromagnetic wave in a plasma.

It is worthwhile to examine and discuss the dispersion relation implied by
(8.11), which is

ω2
o −

ω2
pe[

1 + (νei/ωo)
2
] − c2k2 + i

νei/ωo[
1 + (νei/ωo)

2
]ω2

pe = 0, (8.12)

in which k is the wavenumber of the light wave. The imaginary term here
introduces an imaginary component to the phase of the wave, which may be
expressed as an imaginary part of either ωo or k. It causes damping as the
wave propagates. We will examine this damping below. The real component
of (8.12) describes the propagation of the wave. The reader may recall that
a propagating light wave traveling through a stationary, unchanging medium
experiences variations in k and not in ωo. Furthermore, when k is driven
to zero the wave cannot propagate further and must be reflected and/or
absorbed. Equation (8.12) implies that k is driven to zero approximately
when ωo = ωpe. Physically, when ωo = ωpe the electrons resonantly oscillate
at the frequency of the light wave, creating a reflecting surface like a mirror.
This surface is known as the critical surface and the density there is the
critical density, nc. From ωo = ωpe one can show that

nc(cm−3) = 1.1 × 1021/λ2
µ. (8.13)

Thus, for visible and UV lasers, nc < 1023 cm−3. If one now looks again
at Fig. 8.5, one can draw some implications for the absorption of light in plas-
mas. The critical density for visible and UV lasers is typically small enough
that νei < ωpe there. Such laser beams propagate through the plasma and
reflect, perhaps having been substantially absorbed in the process. In con-
trast, the critical density for x-rays is typically above any density present in
the plasma. Thus, in the absence of absorption the x-rays would penetrate
freely through the target. But absorption can be strong: νei becomes quite
large at densities near or above solid density. The result is that soft x-rays,
with energies below roughly 1 keV, are very strongly absorbed by collisions.
Harder x-rays usually are not strongly absorbed by collisions, but the atomic
absorption of these x-rays can be significant as discussed in Chap. 6.
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Let us focus now on the absorption of laser light and assume that (νei/ωo)2

is small enough to be ignored. We are interested in the spatial rate of absorp-
tion, so we assume ωo to be real and take k = kr + iκEM/2, with real and
imaginary parts kr and κEM/2, respectively. Here κEM is the spatial rate of
absorption of the laser energy, proportional to E2, and κEM/2 is the spatial
rate of change of E (or A). We then solve (8.12) for kr and κEM, ignoring
the term involving κ2

EM subject to verifying our assumption that the light is
absorbed slowly as it propagates (i.e., κEM � k). We obtain

kr = (ωo/c)
√

1 − ne/nc (8.14)

and

κEM = νei

ω2
pe

ω2
o

1
c
√

1 − ne/nc

=
νei

vg

ne

nc
, (8.15)

in which vg is the group velocity of the light wave in the plasma. Equa-
tion (8.15) is easy to understand – only that fraction of the energy in the
light wave that participates in electron oscillations, ne/nc, can be affected
by electron–ion collisions, and the spatial rate at which this effect occurs is
the temporal collision rate divided by the rate at which energy propagates in
space (i.e., the group velocity). Also note that our previous assumption that
νei � ωo assures that κEM � k.

Homework 8.3

Using the equation of motion for the electron fluid in the fields of an electro-
magnetic wave in a plasma of constant density, determine the time-averaged
distribution of energy among the electric field, the magnetic field, and the
kinetic energy of the electrons. Discuss how this varies with density.

The above discussion implies that the fraction of the incident laser light
transmitted through a uniform plasma of length D is exp[−κEMD]. Kruer
shows how to determine the absorption in more complicated circumstances.
Two of his results are worth quoting here. Let the electron-ion collision rate
at the critical density be ν∗

ei, let z be a spatial variable and let L be a scale
length. Then, for a laser beam normally incident on a plasma with a linear
density profile, so ne = ncz/L, the absorption fA is

fA = 1 − exp
(
−8ν∗

eiL

3c

)
, (8.16)

while for a laser beam incident at an angle θ from the normal on a plasma
with an exponential density profile, so ne = noe−z/L, the absorption is

fA = 1 − exp
(
−8ν∗

eiL

3c
cos3 θ

)
. (8.17)

The third important process that occurs during penetration of a plasma
by laser light is refraction. Refraction refers to the bending of rays of light
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as they propagate. The concepts of light rays and refraction are valid in the
geometric-optics limit, when variations in the medium occur on scales large
compared to the wavelength of the light. In high-energy-density systems,
refraction is a sensible concept when light, incident at some angle from normal
incidence, penetrates a plasma that has been expanding from an initial solid
surface for at 100 ps or more. In contrast, if the light penetrates to the critical
density or if the plasma is only a few wavelengths in extent, one must analyze
the light as a wave. Kruer provides a discussion of laser light reflection at the
critical surface, where some energy can be absorbed by resonance absorption.

Continuing with the discussion of refraction, the variation of kr in a
plasma is given by (8.14). The variation in the wave vector k is given by
the equations of ray propagation (see vol. 2. of Landau and Lifshitz) as

dk

dt
= −∇ω, (8.18)

which is the analogy in geometric optics of the relation between the rate of
change of momentum and the gradient of the Hamiltonian in mechanics. It
is sensible to identify the components both parallel and perpendicular to the
density gradient as k|| and k⊥, respectively. Thus, the component perpendic-
ular to the density gradient does not change. Intuitively, this may be easiest
to see by recalling the refractive behavior at a sharp interface, illustrated in
Fig. 8.5. The phase velocity (ω/k) of the wave changes at the interface, im-
plying that the distance between the phase fronts must change. However, the
distance between the phase fronts along the interface is determined by the
incident wave. As a result the component of the phase velocity (and k) that
is perpendicular to the interface is what changes. One can view propagation
up a gradient as the limit of propagation up a series of steps as the number
of steps becomes large and the step size becomes small.

Also, because the boundary condition is that the fields in the wave
must vary continuously across the boundary of the plasma, one has k⊥ =
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Fig. 8.5. Refraction at an interface, with solid lines showing phase fronts
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sin(θ)ωo/c, in which θ is the angle of incidence, measured with respect to a
normal vector. This implies

k‖ = (ωo/c)
√

cos2θ − ne/nc. (8.19)

This equation has an obvious interpretation: an obliquely incident light wave
(in a planar plasma) reflects at a density such that ne/nc = cos2 θ. Thus,
when the angle of incidence is 45o, the laser light is reflected at roughly nc/2,
and at 60o this decreases to nc/4.

8.1.4 Laser Scattering and Laser–Plasma Instabilities

Most of the applications in high-energy-density physics would be simpler and
easier if laser beams did no more than propagate, refract, and absorb in
plasmas. Even laser scattering from small fluctuations, discussed just below,
would not disturb these applications. From this point of view, it is unfortu-
nate that the underdense plasma produced by the laser is host to a variety
of waves, and that these waves can couple unstably to the laser light wave.
The unstable waves can become large and can have large effects, scattering
large amounts of laser light, producing substantial populations of energetic
electrons or ions, and even causing modulations in the laser absorption dy-
namics. From the point of view of such dynamics, laser–plasma interactions
(LPI) is a tremendously exciting field. It even has a few astrophysical appli-
cations, relating for example to the dynamics in certain solar bursts and in
the turbulence within stellar winds. One such application – the scattering of
pulsar radiation by the plasma of a binary companion – might at times occur
at a high energy density. But LPI is not our primary topic here. Our goal here
is to cover as much of LPI as our reader should know to work intelligently
in high-energy-density physics. Those interested in more details should start
with the book on LPI by W.L. Kruer.

We now discuss the dynamics involved in laser scattering from density
fluctuations in the plasma. We will consider only uniform plasmas. This is
an oversimplification, as most scattering and instabilities actually occur in
plasmas that are nonuniform. Here we ignore nonuniformity because it intro-
duces complications without introducing many new ideas. Collisions may at
times be important but we will ignore them too for the same reason. Thus,
we take A = AL + As, in which s refers to a scattered light wave, and we
take ne = neo + δnp. We will use L, s, and p as subscripts for the laser light
wave, the scattered light wave, and the wave in the plasma, respectively. It
is worth noting that the laser light interacts primarily with the electrons,
because the ions move so much more slowly and thus carry far less current.
However, the electron-density fluctuation δnp may be produced by any wave
in the plasma. On the one hand, it could be produced by an electron–plasma
wave in which the ion density is effectively fixed. On the other hand, it could
be produced by an acoustic wave in which the ion density fluctuates and
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the electrons are forced by the ion-charge variations to move with the ions.
We also assume that proper normalization would show that terms involving
AL alone are large in comparison with those involving only As or δnp. We
then substitute into (8.11) and linearize. We find that we can drop the terms
involving only AL because they cancel one another, so we obtain

(
∂2

∂t2
+ ω2

pe − c2∇2

)
As = −ω2

pe

δnp

neo
AL. (8.20)

With reference to (8.4), the interpretation of this equation is simple. The
interaction of the laser light with the density fluctuation produces an addi-
tional transverse current proportional to the right-hand side of (8.20). An-
other aspect of (8.20) is that it is fundamentally an equation describing wave
beating. The laser light wave and the electron density fluctuation beat to-
gether to drive scattered light waves. The reader should also recall, from
elementary physics, that this will produce beat waves having both the sum
and the difference of the frequencies and wavenumbers of the two driven
waves. One may wonder where the energy in the scattered-light wave comes
from. It is obtained from the laser light wave through a second-order term
that slowly reduces AL.

Homework 8.4

Derive (8.20).

Indeed, when scattering measurements are used to characterize the fluctu-
ations in the plasma, a technique known as Thomson scattering, one sees both
of the resulting scattered-light waves. Figure 8.6 shows an example of such
data. This figure is a gated imaging spectrum, meaning: (a) the measurement
was limited to a brief period (it was gated); (b) the instrumentation provides
an image along a line through the object, horizontal in the figure; and (c)
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Fig. 8.6. This spectral image from Thomson scattering in the collective regime,
with wavelength varying in the vertical direction shows two peaks due to oppositely
propagating acoustic waves. The feature near zero shows the wavelength of the
probe laser. The colors on this image cycle from white to black twice as the intensity
of the signal increases. Adapted from D.S. Montgomery et al., Laser and Particle
Beams 17, 349 (1999)
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the signal from this line was resolved spectrally in the orthogonal (vertical)
direction. Thus, a vertical cut through the image shown in the figure provides
a spectrum at that specific location. The plasma motion at any location shifts
the entire frequency by the Doppler effect, providing a measurement of the
local velocity. One can see that this average frequency shift increases with dis-
tance in the figure, which implies that the plasma flow velocity is increasing
with distance. This is sensible because this image is from a plasma expanding
from a laser-irradiated surface, as an isothermal rarefaction. The fact that
the rarefaction is isothermal is confirmed by the constant spacing between
the two peaks in the spectrum. The spacing is proportional to the frequency
of the acoustic waves causing the thermal density fluctuation; thus it mea-
sures the sound speed in the plasma, which depends mainly on the electron
temperature The weakening of the signal from left to right in the image is
due to decreasing plasma density in the rarefaction. Studies of the ionosphere
employ similar Thomson-scattering techniques, also for the purpose of diag-
nosing density and temperature. Both the laser–plasma and the ionospheric
applications take place in what is known as the collective regime of Thomson
scattering, to which (8.20) applies. In contrast, the use of Thomson scattering
in magnetic-fusion plasmas takes place in the single-particle regime, in which
the scattering is effectively from individual particles. The different Doppler
shifts of these particles produces a scattered-light spectrum from which tem-
perature can be inferred. Sheffield treats the fundamental theory of Thomson
scattering.

We now turn to cases in which one of the scattered-light waves can partic-
ipate in an instability, producing much stronger scattering. We consider ex-
plicitly the case of stimulated Raman scattering (SRS). This process involves
scattered-light waves, which we have just discussed, and electron–plasma
waves, discussed in Chap. 2. To develop an initial understanding, SRS and
the other instabilities are most profitably described in uniform plasmas irra-
diated by laser pulses that are not depleted by the action of the instability. In
the simplest form of these instabilities, only the difference frequency partici-
pates, and we will selectively include here only those terms in our discussion
here.

Before proceeding with this selective analysis, some words on notation are
needed. All the complex quantities in any derivation must be related to real
quantities by some convention, such as R(AL) = (AL+A∗

L)/2, in which ∗ des-
ignates the complex conjugate. We will assume that the amplitude is real (an
approximation that retains the essential physics) and will use a caretˆto des-
ignate the amplitude of each wave, so that for example As = Âsei(ks·x−ωst).
When doing theory with no nonlinear terms, we might typically write the
time-and-space dependence of the scattered light as ei(ks·x−ωst). When work-
ing accurately with equations that have nonlinear terms, one would have to
write As = (Âsei(ks·x−ωst) + Â

∗
s e

−i(ks·x−ωst))/2. The interaction of the two
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real physical quantities in the nonlinear terms involves cross terms, and these
are essential to accounting for the beat waves.

For a cursory analysis we will work with selected terms. Consider first
the beat term in which the phase of the light waves varies as ei(ks·x−ωst) and
that the phase of the plasma wave varies as e−i(kp·x−ωpt). One then has from
(8.20) (

−ω2
s + ω2

pe + c2k2
s

)
Âs =

−ω2
pe

2
δn̂p

neo
ÂL×

exp i [(kL − ks − kp) · x − (ωL − ωs − ωp) t] ,
(8.21)

in which the exponential term is a phase-matching term. Its argument must
be zero to obtain a nonzero averaged response. This imposes the beating
condition that we expect – the frequency and wavevector of the driven wave
must equal the difference of the values for the laser and for the electron–
plasma wave.

To see the unstable behavior, we need to reconsider the derivation of the
electron–plasma wave from (2.50) to (2.55), in the presence of light waves
and informed by the discussion earlier in this chapter. We are looking for the
ways in which light waves can affect plasma waves. The electron plasma wave
is a purely longitudinal wave, so one can write ue = vos +vp, in which vos is
purely transverse but may involve the sum of contributions from more than
one light wave and vp is the purely longitudinal vector describing the motion
of the electron fluid in the plasma wave. Substituting into (8.5) and again
using scalar and vector potentials, one obtains an equation from which (8.6)
can be subtracted. After linearizing in |vp| and ignoring collisions we find

∂vp

∂t
− e

me
∇Φ +

∇pe

neme
= −∇v2

os

2
, (8.22)

in which we have also dropped a term proportional to vp ×∇ × vos, whose
direction is orthogonal to vp.

Homework 8.5

Derive (8.22). Calculate the energy density of the laser light wave and show
how this is related to the source term on the right-hand side.

As in Chap. 2, one obtains a wave equation by taking the divergence of this
equation, then using continuity and the equation of state to simplify all the
terms on the left-hand side. The right-hand side of this equation represents
the force known as the ponderomotive force. This term is the gradient of
v2
os, which is equivalent to the gradient in the energy density (or pressure)

of the electromagnetic waves. The ponderomotive force can be important in
other contexts, but here we focus on its role in instabilities. If the light waves
present have vector potentials AL and As, then v2

os has three terms. However,
only the cross term involves the beating of two waves. Keeping only the cross
term, one obtains
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(
∂2

∂t2
+ ω2

pe − 3
kBTe

me
∇2

)
δnp

neo
=

e2

m2
ec

2
∇2 (AL · As) . (8.23)

This equation describes the driving of electron–plasma waves by the beating
of light waves in the plasma. Once again the wave beating produces source
terms that are upshifted or downshifted in frequency relative to the laser
frequency, and once again only the downshifted source term is significant for
the simple instability. To see the unstable coupling, consider the beat term
in which the phases of the laser-light wave, the scattered-light wave, and the
plasma wave vary as e−i(kL·x−ωLt), ei(ks·x−ωst), and e−i(kp·x−ωpt), respectively,
and again use a caretˆto designate the amplitude of each wave (assumed to
be real). One then finds

(
−ω2

p + ω2
pe + 3

kBTe

me
k2
p

)
δn̂p

neo
=

−e2k2
p

2m2
ec

2

(̂
AL ·Âs

)

× exp i [(−kL + ks + kp) · x − (−ωL + ωs + ωp) t] . (8.24)

One sees here the same sort of phase-matching term we encountered in (8.21).
If one now multiplies (8.21) by ÂL, and substitutes for δn̂p from (8.24), one
finds

(
−ω2

s + ω2
pe + c2k2

)(
−ω2

p + ω2
pe − 3

kBTe

me
k2
p

)
= ω2

pe

k2
pv2

os

4
. (8.25)

This coupled dispersion relation describes the growth of an instabil-
ity. Physically, the laser light beats with density fluctuations to drive the
scattered light and beats with the scattered light to drive density fluctua-
tions. When phase-matching is satisfied – that is, when kL = ks + kp and
ωL = ωs +ωp – the process is resonantly reinforcing. Note that the two sets of
parentheses on the left-hand side each enclose the dispersion relation of one
of the normal modes of oscillation of the plasma. In the absence of driving or
coupling and for any given wavenumber, each set of parentheses would deter-
mine the frequency for each mode independently. The coupling represented
by the right-hand side, in the presence of the phase matching that connects
the mode frequencies and wavevectors, leads to instability growth.

Equation (8.25) implies an exponential growth rate for the instability. For
the uniform-plasma case considered here it makes sense to look for temporal
growth. Mathematically, the two driven waves grow as eγt while the ampli-
tudes are small. One finds γ by identifying the real part of each frequency
with the subscript r and the imaginary part of both of them as γo, with the
sign corresponding to growth in time. For the components we have chosen to
consider, this gives us ωs = ωsr − iγo and ωp = ωpr + iγo. We also assume
here that the real part of each frequency is the normal-mode frequency, and
thus cancels the other real terms in its part of the equation. If γo is much
smaller than the wave frequencies, as is nearly always the case for SRS (and
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is sometimes the case for other instabilities), then one finds the growth rate
for SRS in a homogeneous plasma,

γo =

√
ω2

pe

ωsrωpr

kpvos

4
. (8.26)

The growth of SRS in other more complicated situations can be usefully
expressed in ways involving this growth rate. SRS can occur in principle at
densities up to nc/4, where ωpr and ωsr are both ∼ ωo/s. It more typically
occurs near nc/10, where ωpr ∼ ωo/3, ωsr ∼ 2ωo/3, and kp ∼ 1.5ωo/c. The
growth rate, for I14λ

2
µ ∼ 1, is γo ∼ 0.002ωo. Thus, SRS indeed grows slowly

on the scale of the wave cycles. But note that 1/ωo ∼ 1 fs, so 1/γo < 1 ps.
The instability, when present, thus grows extremely rapidly on the ns scale
of the typical laser pulse.

We should confess that the derivation just provided involves cheating
at several levels, in order to most simply make its physical point. Strictly
speaking, one should express all the wave amplitudes as real quantities and
follow through with all the wave-beating terms that arise. This is the only way
one can obtain the factor of 2 that mysteriously appeared in (8.21) and (8.24).
One also should not assume that the light wave and the electron plasma wave,
which are normal modes of an undisturbed plasma, will be unchanged by the
instability. Doing all this properly would involve several more pages, however,
and in the end would produce the same result with many nuances. One could
then proceed to consider other complications such as nonuniform plasmas
and depletion of the laser pulse. A first level of improved analysis can be
found in the book by Kruer. Doing better than that requires submersion in
the archival literature.

Of greater importance than the details of the SRS theory is to understand
that once energy is given to electron plasma waves (by any instability), it
tends to be converted to energetic electrons. Energetic electrons are in most
cases a terrible nuisance. They readily penetrate target materials, especially
low-Z materials, and so can preheat materials and alter the initial conditions
for later evolution of the target. This is a crucial issue for laser fusion, as
we discuss in Chap. 9. In addition, because laser irradiation produces large-
scale magnetic fields that wrap around the target, the energetic electrons can
very easily travel around almost any shielding to penetrate and heat surfaces
that are distant from the laser spot. This can affect both the physics of an
experiment and the signals seen by diagnostics.

Landau damping produces the energetic electrons. Landau damping typ-
ically dominates over collisional damping of electron plasma waves. (If col-
lisions are strong, the waves will not be driven, and if collisions are weak,
then the waves are Landau damped.) Some readers will recall that Landau
damping operates by accelerating electrons in the wave, so that the electrons
produced have an energy of order the phase velocity of the wave. This energy,
for the typical SRS conditions given above, is then
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Table 8.1. Laser-driven instabilities

Name Driven wave 1 Driven wave 2 Where Growth rate

Stimulated Raman Scattered light Electron Plasma ≤ nc/4

√
ω2
pe

ω1ω2

k2vos
4

scattering

Stimulated Brillouin Scattered light Acoustic ≤ nc

√
ω2
pi

ω1k2cs

k2vos
4

scattering

Two-plasmon decay Electron plasma Electron Plasma ∼ nc/4 k2vos
4

Parametric decay Electron plasma Acoustic ∼ nc

√
ω2
pi

ω1k2cs

k2vos
4

Filamentation Modulated light Zero-frequency ≤ nc
v2
os

8(Te/mi)

ω2
pe

ωo

acoustic

1
2
mev

2 ∼ 1
2
me

(
ω2

pr

kp

)2

∼ mec
2

40
∼ 13 keV. (8.27)

This increases and becomes closer to 30 keV as the density approaches nc/4.
Two-plasmon decay, discussed below, can produce smaller wavenumbers,
higher phase velocities, and higher-energy electrons. The penetration of such
energetic electrons into materials is discussed at the end of Sect. 8.1.5.

Table 8.1 summarizes the instabilities driven by the laser beam in laser
plasmas. In all cases, each of the two driven waves is coupled to the laser light
wave so as to drive the other driven wave. The density where each instability
occurs is given, as is the growth rate in a homogeneous plasma, with the
two driven waves indicated by subscripts 1 and 2. In the column giving the
growth rates, ωpi is the ion plasma frequency, ω2

pi = 4πZ2e2ni/mi, with ion
density ni and mass mi, and cs is the sound speed, discussed in Chap. 2, but
given approximately for a two-fluid plasma by c2

s = ZTe/mi + 3Ti/mi. We
now briefly discuss the instabilities shown in the table.

SRS is strongly reduced by collisional effects for short laser wavelengths
and by the creation of smooth plasmas with SSD or other methods. Stim-
ulated Brillouin scattering (SBS) is a direct analog of SRS in which the
second-driven wave is an acoustic wave. It can be strongly reduced by the
introduction of bandwidth in the laser and also saturates fairly easily under
many conditions. However, both SRS and SBS have at times been observed
to convert more than 50% of the laser energy, so they can be enormous.

In addition, there are two decay instabilities in which the laser light wave
drives two waves within the plasma. These instabilities directly produce no
scattered light. Two-plasmon decay, being localized at a single density surface
in the plasma, saturates fairly easily. However, at this writing it appears to
be the largest potential threat to laser fusion by direct laser irradiation. In
most modern experiments, collisional absorption of the laser light prevents
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the occurrence of the parametric decay instability near nc. There is a vari-
ant of this instability involving a zero-frequency acoustic wave, sometimes
described as the oscillating two-stream instability. The variant of SBS with
a zero-frequency acoustic wave is filamentation, which in the nonlinear limit
will break the laser beam into discrete intense beamlets. At present it appears
that strong filamentation near the leading edge of the plasma may smooth the
illumination of the denser regions, by producing beamlets that focus strongly
and then spray their energy into a wide angular range. There are actually
several types of filamentation. The growth rate shown in Table 8.1 is for
ponderomotive filamentation, in which the ponderomotive force causes the
plasma motion just as it does in SBS. In colder plasmas, thermal filamen-
tation, involving differential heating, can be important. When vos becomes
relativistic, relativistic self-focusing can arise; this process involves variations
in the effective electron mass.

One is led to wonder why all the laser energy is not consumed by SRS
or some other instability (most of them grow very quickly on the scale of
the laser pulse). The answer to this question is twofold. On the one hand,
all the laser energy (more or less) is consumed by these instabilities if the
laser wavelength is too long – roughly 1 µm or longer. This nearly led to
the death of the laser fusion program, which initially attempted to use laser
wavelengths of 1 to 10 µm. Such lasers produced some spectacular phenomena
but not much progress toward fusion. Lasers with wavelengths in the visible
and UV have two advantages – vos is smaller for a given laser irradiance and
collisional effects begin to play a role. On the other hand, so long as vos is
not too large, some of the instabilities saturate at low values and they all are
strongly affected by plasma nonuniformity or laser bandwidth.

8.1.5 Electron Heat Transport

We have emphasized the mobility of electrons by comparison with ions, so
that the electrons dominate for example the direct interactions of the laser
with the plasma. This might lead one to expect that the thermal electrons
would play a dominant role in transporting energy throughout all plasma
systems. This, however, is not the case in the systems of interest here. Lab-
oratory systems in the high-energy-density regime are typically so collisional
that the electrons cannot manage to escape the ions and do not manage to
affect the dynamics very strongly. We saw this quantitatively in Chap. 3. It
is also remarkable that there are very few astrophysical systems in which the
electrons carry significant heat. The electrons, because of their small mass,
are very tightly bound to the magnetic field, and the magnetic field is typi-
cally tangled enough to keep them from accomplishing any large-scale heat
transport. Systems involving instabilities in loops of magnetic field, which
occur for example near the Sun, or involving magnetic reconnection, which
occurs in many places, produce bursts of energetic electrons. These electrons
in turn radiate, so that the electron radiation can be an important diagnostic
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of the phenomena. However, the electrons do not dominate the overall dy-
namics of reconnecting systems. Likewise, the radiation from electrons has
become an important indicator of cosmic-ray acceleration in supernova rem-
nants, but the cosmic rays that actually reach the Earth are almost all ions.
So electrons are important. However, with two crucial exceptions, they rarely
carry much heat anywhere that matters.

One crucial exception is in the delivery of energy from a laser beam to
dense material. This is an essential aspect of inertial fusion and any other
high-energy-density experiment using lasers. A second exception is in the loss
of energy from the burning region in inertial fusion. For these reasons, it is
worthwhile to have some understanding of electron heat transport. Figure 8.7
shows the profile of a laser-irradiated plasma, taken from a computer sim-
ulation. The plasma expands but absorbs little laser light in the expansion
zone while absorption takes place in the absorption zone, over some range
of densities below the critical density. In the transport zone, electron heat
transport carries the energy to higher densities above the critical density.
Ablation occurs in this high-density material. In reaction to the ablation (or
equivalently, in response to the ablation pressure), a shock wave propagates
into the material, creating a region of high electron density.

To gain an understanding of electron heat transport, we will discuss here
the classic derivation by Spitzer and Harm, after which we discuss the limit
when transport becomes too strong for this derivation to be valid. Because
this process involves the behavior of individual particles, we use the kinetic
description of Sect. 2.4.3 and discuss the behavior of the distribution function
f(v), normalized for this purpose to that its integral over velocity space
gives ne.

Suppose we have a plasma with a gentle temperature gradient, a condition
we would express mathematically as λmfp � Te/|∇Te|, where λmfp is the
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Fig. 8.7. The electron density profile from a computer simulation, with various
regions indicated. The simulation corresponds to a laser wavelength of 0.35 µm and
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collisional mean free path of the electrons. The heat flux, Q, in a direction
z within such a plasma is found by integrating the energy carried by each
particle over the distribution:

Q =
∫ (

1
2
mev

2

)
vzf(v)d3v. (8.28)

One can see that Q = 0 if f(v) is Maxwellian or any symmetric function
in vz. Actual distributions are often nearly Maxwellian but are seldom fully
symmetric, so that heat is usually carried by the electrons. The source of
asymmetry can be found by thinking about what would happen if the plasma
initially consisted of Maxwellian distributions with a slow spatial variation
of the temperature. As temperature increases, the number of hot particles
with energies above kBTe increases while the number of cold particles, with
lower energies, decreases. As a result, the flow of particles through some point
from a Maxwellian distribution in a warmer region will include a surplus of
hot particles and a deficit of cold ones. From the opposite, cooler, direction,
there will be a deficit of hot particles and a surplus of cold ones. Thus, if
the distribution functions were initially Maxwellian but had a varying tem-
perature, they would almost immediately develop non-Maxwellian structure,
asymmetric in velocity, and thus able to carry heat.

To find an equation for the heat flow, we assume a plasma of constant
density and slowly varying temperature. Note that the temperature gradient
defines a unique direction within the plasma, and that the effects of interest
involve motions in that direction, which we will call z. This motivates the
definition of a polar angle θ with respect to that direction and the expansion
of the distribution function by means of Legendre polynomials. Keeping only
the first term in this expansion, we have

f(v) = fo(v) + f1(v) cos θ, (8.29)

in which fo(v) is a Maxwellian and f1(v) must be small to justify using only
the first two terms in the expansion. In some experiments, such as those of
Liu et al. in 1994, two or three coefficients of this expansion have been directly
measured.

In addition, it is shown by Shkarofsky et al. that one can accurately
treat the effects of collisions in this problem using a simple relaxation rate.
Expressing this rate in terms of the electron–ion collision rate νei defined in
Sect. 2.4 gives

(
δf

δt

)
C

=
−3
4π

(
2πkBTe

me

)3/2
νei

v3
f1(v) cos θ =

−W

v3
f1(v) cos θ, (8.30)

which defines the coefficient W strictly for convenience in what follows. We
can substitute (8.29) and (8.30) into (2.77) and keep only the terms propor-
tional to cos θ to obtain
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∂f1

∂t
+ v

∂fo

∂z
− eE

me

∂fo

∂v
=

−W

v3
f1(v), (8.31)

in which the electric field must be in the z direction from the symmetry of
the problem. We ignore B here, which is justified in the dense target material
near the center of the laser spot, where collisions are large and the magnetic
field produced by the laser is weak. In steady state, this implies

f1(v) =
−v3

W

(
v
∂fo

∂z
− eE

me

∂fo

∂v

)
. (8.32)

To find E, one can note that any net flow of charge would cause an electric
potential to develop that would then shut off the flow of charge, so in steady
state the net current in the z direction, Jz, must be zero. This gives

Jz = 0 = −e

∫ ∞

0

vzf(v)dv = −2πe

∫
(v cos θ)f1(v) cos θv2 sin θdθdv,

(8.33)
from which

0 =
∫ ∞

0

v3f1(v)dv =
∫ ∞

0

v6

(
v
∂fo

∂z
− eE

me

∂fo

∂v

)
dv. (8.34)

Integrating this, solving for E, and substituting for the derivatives of fo,
assumed to be Maxwellian, one finds eE = −4kB∂Te/∂z, so

f1(v) = fo(v)
v4

2WkBTe

[
8 − mev

2

kBTe

]
kB

∂Te

∂z
. (8.35)

The heat flux per d3v is proportional to v3f1(v) cos2 θ per (8.27) and (8.28).
Also, the contribution at a large velocity reverses sign compared to that at
a small velocity, as we expected from our qualitative analysis. Integrating
(8.28) one finds the Spitzer–Harm heat flux, QSH, as

QSH =
−128
3π

nekBTe

meνei
kB

∂Te

∂z
= −κth

∂kBTe

∂z
, (8.36)

in which the heat transport coefficient is κth. Here kB must convert Te to
the energy units used in QSH, and if Te is expressed independently in some
other units then the heat transport coefficient is κthkB. Note that, through
νei, κth is proportional to T

5/2
e , so that the heat transported increases very

rapidly with temperature. Remarkably, the heat transported is independent
of density. The increase in the flux of particles with increasing density is
precisely balanced by the increase in collision rate. This model is also known
as a diffusion model or a description of diffusive heat transport, because the
electrons carry the heat through a diffusive process. Indeed, when one uses
(8.36) in a fluid equation for the electron energy, one obtains a diffusion
equation (in simple limits). Note that kBTe/(meνei) has units of a kinematic
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diffusion coefficient (e.g., cm2/s). Kruer points out that (8.36) overestimates
the transport because the derivation ignores electron–electron collisions, and
that this can be approximately corrected for by multiplying κth by g(Z) =
(1 + 3.3/Z)−1.

Homework 8.6

Develop an energy equation for the electron fluid including a Spitzer–Harm
heat flux, and show that it is a diffusion equation.

The Spitzer–Harm transport model, adjusted as just described, gives ac-
curate results regarding the heat transport within limits we are about to
define, despite the fact that it has some fundamental problems. These relate
to the use of the expansion in (8.29), which is only valid if f1/fo � 1. One
can show from (8.35) that this ratio is

f1

fo
=

1√
2π

(
8

v4

v4
th

− v6

v6
th

)
λmfp

LT
, (8.37)

in which the electron mean free path is λmfp = vth/νei, the temperature
scale length is LT = Te/|∇Te|, and v2

th = kBTe/me. This particular defin-
ition of a thermal velocity vth is common in laser–plasma interactions. (In
various other areas of physics there is some numerical factor multiplying the
right-hand side of this definition.) Figure 8.8 shows this ratio, normalized
by λmfp/LT . Two points are important with regard to this figure. First,
the expansion of f(v) always breaks down at a large velocity. The only rea-
son the Spitzer-Harm model ever gives accurate results is that negligible
heat is carried by the high-velocity electrons. Mathematically, fo decreases
much more rapidly than |f1/fo| increases. Second, the heat is carried primar-
ily by the electrons with energies of about three times kBTe, corresponding
to the maximum in Fig. 8.8 for v/vth between 2 and 2.5. In this range,
f1/fo ∼ 30λmfp/LT , so the Spitzer–Harm model will be accurate if
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Fig. 8.8. The normalized perturbation to the distribution function from the
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LT /λmfp  30. (8.38)

Unfortunately, condition 8.1.37 is only sometimes satisfied in laser-irradiated
plasmas. As a rule of thumb, this condition is likely to be satisfied for UV
lasers, may or may not be satisfied for visible lasers, and is not satisfied for
infrared lasers.

The proper way to proceed when (8.38) is not satisfied is to find a better
solution to the Boltzmann equation, which may also require finding a more so-
phisticated expression of the collision term. The standard, more-sophisticated
version of the Boltzmann equation is known as the Fokker–Planck equation,
but this equation must be solved numerically for all cases of interest. In
addition, finding the heat flux from the Fokker–Planck equation is difficult
enough that it cannot readily be included in the calculation of the overall
dynamics of a laser target. This difficulty strongly motivates the search for
simple models that can be of some use.

Homework 8.7

Determine the range of electron velocities that contribute significantly to
the heat flux, by plotting the first-order contribution to the argument of the
heat-flux integral (8.28).

There is such a model, very crude but very widely used, known as flux-
limited transport. The maximum possible flow of energy would occur if the
thermal energy density in the plasma were transported as some characteristic
thermal velocity, producing a free-streaming heat flux, equal to nekBTvth. In
real physical systems, the maximum heat transported only approaches some
fraction of this limit. This is described by introducing a flux limiter, f , so
that

QFS = f × nekBTevth. (8.39)

Under typical conditions, matching the heat flux found in Fokker–Planck
calculations requires taking f ∼ 0.1. Figure 8.9 can be used to determine how
likely this is. It plots contours of QSH/QFS as LT and the laser wavelength
λµ (both in µm) vary, for Te = 0.5 keV and Z = 3.5, appropriate to the
region just beyond the critical surface in low-Z plasmas. The ratio QSH/QFS

scales with T 2
e . Here we see again the point made above – the Spitzer-Harm

model may be accurate for visible and UV lasers, but produces too much
heat flow for lasers of longer wavelength and in any condition with a very
steep temperature gradient.

However, in some historical experiments, especially using infrared lasers
and high intensities, the observations could only be explained using f as small
as 0.01. This indicated that additional, noncollisional processes were impeding
the heat transport in these cases. Possible explanations of these observations
include the effects of laser-generated magnetic fields and of intense acoustic
fluctuations produced by laser–plasma instabilities. A very common model
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in simulations is to set f at some value and to take Q to be the smaller
of the values given by (8.39) and (8.36). Some more sophisticated computer
simulations employ a technique known as multigroup, flux-limited diffusion.
In this technique, the electrons are divided into a number of groups, with
each group being treated as either diffusive or flux-limited as appropriate.

The models just described are adequate for the calculation of the global
influence of the laser on the material it irradiates. For example, they can
be used to calculate accurately the production of pressure and shock waves
by the laser. However, when it comes to the detailed structure of the target
plasma near the irradiated surface, these models give results that are not
correct. Unfortunately, although flux-limited transport can provide a quanti-
tative estimate of the local flow of heat, it fails fundamentally to capture the
dynamics of heat transport in strong temperature gradients. The reason is
that such transport is at root nonlocal. The heat deposited at a given point
is not determined only by the local conditions, but rather involves particles
transported from a range of distances. As a result, the long-term evolution
of the plasma differs from what would occur if heat transport were local. In
particular, because the more energetic particles have smaller Coulomb cross
sections and longer mean free paths, they tend to penetrate deeper into the
target and to produce a warm foot ahead of the main heat front. As a result,
experiments that hope to do sophisticated physics near the irradiated surface
must also use very sophisticated calculations to interpret the results.

In the presence of laser–plasma instabilities, the reality becomes even
more complex than this. As we discussed in Sect. 8.1.4, these instabilities
produce electrons with energies of tens of keV. Such electrons penetrate far
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deeper into materials than the electrons from the thermal population that
transport heat inward. As a result, they can preheat the initially cold material
in an experimental system, altering the initial conditions for the subsequent
evolution. The distributions of electrons produced by instabilities are often
observed to be exponential in energy, even though they do not arise from
waves with a wide distribution of phase velocities. Thus, this is another of
the many cases in which a plasma anomalously produces an exponential par-
ticle distribution. (The first was Langmuir’s paradox, from the early 1900s,
relating to the behavior of low density plasma in evacuated chambers.) The
exponential energy distribution allows one to assign a temperature to the
energetic electrons. These are most often described as suprathermal electrons
or hot electrons, with a temperature designated by Thot.

The penetration of such electrons into materials is complex, as they are
strongly scattered by any nucleus they get close to. The result is that their
penetration is diffusive, with a step size of an electron mean free path and
a collision time of the mean free path divided by the velocity. However, the
electron velocity decreases steadily as it loses energy in successive collisions
and by drag on the electrons in the material. The net effect is that of diffusive
penetration with a steadily decreasing diffusion coefficient. As discussed in
Rosen et al., the resulting mean electron range, xo, in g/cm2, is

xo = 3 × 10−6
(
A/Z3/2

nuc

)
T 2

hot, (8.40)

where as before Znuc is the nuclear charge and Thot is in keV. For A = 2Znuc,
Znuc ∼ 4, and Thot ∼ 30 keV, one finds xo ∼ 3 × 10−3 g/cm2. For plastic at
∼ 1 g/cm3 this is a 30 µm mean penetration depth. This is enough to affect
many experiments, and the penetration increases strongly as Thot increases.
For example, one might irradiate a 1 mm spot with 10 kJ of laser energy for
1 ns, producing an irradiance of 1.3 × 1015 W/cm2. If 1% of the laser energy
were converted to hot electrons, at 30 keV temperature, that were deposited
in a 30 µm layer of plastic, the temperature of this material would increase
to ∼ 30 eV and its pressure would be ∼ 10 Mbars. This is why preheat is
very often a concern in laser experiments. (For different reasons, it is also a
concern in Z-pinch experiments.)

8.1.6 Ablation Pressure

Although much of what we have discussed in the preceding two sections is
confined primarily to laboratory environments, the ablation of matter by irra-
diation is found much more widely. Figure 8.10 shows an image of the Eagle
Nebula, justly famous for its dramatic structures, referred to as Elephant
Trunks. The Eagle Nebula exists within a star-forming region – a zone with
many dense molecular clouds that can provide mass for very large new stars.
These new stars are very massive and very bright, with much of their radi-
ation in the deep UV. These photons have energies large enough to directly
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Fig. 8.10. The Eagle Nebula. From Hubble Space Telescope, WFPC2, Credit:
NASA, Jeff Hester and Paul Scowen Arizona State University

ionize the material they encounter, creating an ionization front that is also
a region of comparatively high pressure. One hypothesis regarding the origin
of the structures is that they might have been produced by Rayleigh–Taylor
instabilities that developed when the hot, low-density, ablated plasma began
pushing on the cooler, denser plasma behind it.

The intense lasers used in high-energy-density experiments also substan-
tially affect the material they encounter. The photons in these lasers cannot
individually ionize the material, but in combination they can and do ionize
it. At most relevant irradiances the electric field of the laser can directly ion-
ize the atoms. At lower irradiances the interaction with the target quickly
produces plasma, although the mechanisms are more complex. (We leave it
as an exercise for the student to find the threshold for direct ionization.) In
this section we explore the ablation of matter and discuss its effects.

Even technically informed people often first imagine that the influence of
light on a material is primarily due to reflection, as is the case for example in
a solar sail. The magnitude of this effect is straightforward to estimate. The
pressure produced by reflection, Pref , is the rate of change of momentum
by the reflection. The momentum of a single photon is �k and the change
of momentum upon its reflection is 2�k. The flux of photons, F , is the ir-
radiance IL divided by the energy per photon, F = IL/(�ω). The pressure
is thus Pref = 2�kF = 2(k/ω)IL = 2IL/c. If the photon is absorbed and
not reflected, then the light pressure is half this value. If one chooses in-
stead to take a microscopic view of reflection, one can do so by evaluating
the ponderomotive pressure at the reflection surface. A first estimate of this,
based on the relations given above, gives nemev

2
os/2 = IL/c. One recovers

2IL/c by taking into account the doubling of the laser electric field during
reflection and by taking the time-averaged value of vos. In practical units,
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Pref = 0.067I14 Mbars. However, reflection competes with ablation, which
nearly always dominates the effect of the laser on the target material at solid
density. Let us consider this.

Ablation is the process in which material is heated and then flows away
from a surface. By Newton’s third law, the surface experiences a reaction force
equal to the rate at which momentum is carried away. Let us evaluate this. We
will continue to use IL for the laser irradiance, although our calculation really
involves the absorbed irradiance. In effect, we are assuming the laser energy
is completely absorbed. This is quite accurate for UV lasers and becomes
less and less accurate at longer laser wavelength. We also assume that half
the laser energy heats the plasma at low density, and that half the energy is
transported through the critical surface. Using a flux-limited heat transport
model, we then have

0.5IL = fnckBTe

√
kBTe/me, (8.41)

from which for f = 0.1

Te = 1.7
(
I14λ

2
µ
)2/3

keV, (8.42)

in which I14 is IL in units of 1014 W/cm2 and λµ is the wavelength of the
light in µm. The inward ablation pressure is then equal to the outward flux of
momentum through the critical surface. We will assume that this flow occurs
at approximately

√
2 times the sound speed, so

Pabl = 2M

√
ZkBTe + 3kBTi

M
× nc

Z

√
ZkBTe + 3kBTi

M
, (8.43)

from which
Pabl = 2nckBTe

Z + 1
Z

= 8.0I
2/3
14 λ

−2/3
µ Mbars (8.44)

for Z = 3 and for Ti = Te/3 (typical of laser coronae). A standard value
(see Lindl) of the coefficient which is 8 here would be 8.6, based on com-
puter simulations of the detailed behavior, using flux-limited, multigroup,
diffusive electron-heat transport. Before proceeding, take a moment to note
that the ablation pressure produced by these systems is an amazing number.
Using late-20th century laser facilities, it is straightforward to irradiate a
large (mm2) area with 0.35 µm laser light at 1015 W/cm2. This produces an
ablation pressure of 75 Mbars, which is nearly twice the pressure at the core
of Juiter! The idea that one can produce pressures of many many millions of
atmospheres in an Earth-bound laboratory is pretty exciting. Indeed, this is
what has made the work described in this book as experimental astrophysics
possible.

The exact value of the ablation pressure can be affected by several details.
The flow through the critical surface might be at a velocity larger or smaller
than

√
2 times the sound speed (the discussion of rarefactions in Chap. 4 is
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relevant here). The temperature may differ from that given by (8.42), as the
heat-transport model used is only approximate. The temperature can also
be affected by the lateral transport of heat, which is not considered here.
Current computer simulations of laser absorption do not necessarily give a
correct result for the ablation pressure, because they typically do not include
the nonlocal effects of heat transport. For any specific type of experiment,
it is often necessary to adjust the simulation parameters based on (direct or
indirect) measurements of the ablation pressure, in order to obtain realistic
results. Beyond these considerations, magnetic fields may play a role in some
cases.

Returning to the comparison with reflection, the formulae we just ob-
tained imply that the laser irradiance would have to reach about 1021 W/cm2

before reflection became dominant over ablation. This is not correct in de-
tail because relativistic effects become important at 1018 W/cm2, as we will
discuss in Chap. 11. An accurate statement is that throughout the non-
relativistic regime ablation is more important than reflection in the accel-
eration of material at or near solid density. This does not, however, imply
that reflection and the ponderomotive force have no effects. The ponderomo-
tive pressure grows to equal the plasma pressure at the critical density by
the time the laser irradiance reaches 1016 W/cm2. Above this intensity, the
ponderomotive pressure steepens the density profile by pushing the critical
surface inward. Even so, this does not prevent the outward flow of material
that corresponds to the ablation pressure produced by heating and removal
of solid matter at higher density.

Next we discuss the effects of ablation on the target itself. First, the
ablation removes mass from the target. The calculations above would imply
that the mass ablation rate is

ṁ =
Pabl

Vex
=

√
2Mnc

Z

√
ZkBTe + 3kBTi

M
= 1.7 × 105I

1/3
14 λ

−4/3
µ g cm−2 s−1,

(8.45)
for Z = 3 and A = 6. The standard scaling from Lindl, which is based on
simulations, has a coefficient of 2.6 rather than 1.7 here. The reality is that
this coefficient depends on details that are beyond both this calculation and
the standard simulations, so that it must be measured in any case where its
precise value matters.

Second, the ablation pressure pushes on the target. The immediate effect
of the ablation pressure on the target is to launch a shock into it, with conse-
quences that were discussed in Chaps. 4 and 5. A short time after the shock
wave has traversed the target, the entire target begins to accelerate. This is
essential to laser fusion, for example, which needs initially to deposit as much
kinetic energy as possible within moving material. To assess the acceleration
of the target, which is like the acceleration of a rocket, we work with equa-
tions describing the conservation of momentum for such an object. We take
the object to have an initial mass, mo, and an instantaneous remaining mass
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mr = mo − ma, where ma is the total ablated mass. (Equivalently, all the
masses may be replaced by mass per unit area.) One can derive the result-
ing behavior using the conservation of momentum, which must apply to the
combined system of rocket and exhaust. Working in the lab frame, when an
element of mass dm is ejected, the exhaust carries away (in the opposite di-
rection) a momentum dm(Vex−V ), in which the rocket velocity is V and the
exhaust velocity is Vex. The increase in momentum of the remaining rocket
mass is (mr − dm)(V + dV )−mrV . Setting these equal and taking the limit
that dm and dV are infinitesimal (so the product dmdV is negligible), one
finds

dmVex = mrdV = (mo − ma)dV, (8.46)

where ma is the variable whose increase is measured by dm. Integrating from
ma = 0 to some value, and taking V = 0 initially, one finds

V = Vex ln (mo/mr) . (8.47)

This shows that the velocity of the rocket increases rapidly at first and then
more slowly, reaching Vex when about 2/3 of the mass has been ablated.
It would seem that one could reach an arbitrarily high velocity by ablating
nearly all the mass. Unfortunately, the hydrodynamic instabilities discussed
in Chap. 5 place a limit on the amount of mass that can be ablated without
breaking up the target.

The ablation efficiency of such a rocket, εR, is defined as the ratio of kinetic
energy of the remaining mass to the total kinetic energy of the rocket plus the
exhaust. This is the efficiency of an ideal system in which all the energy was
kinetic and no energy went to heat. Thus εR = mrV

2/(mrV
2 + 2Kex), where

Kex is the kinetic energy of the exhaust. To find this one must determine the
total kinetic energy of the exhaust, from

Kex =
∫ ma

0

1
2

(Vex − V )2 dma

=
∫ ma

0

1
2
V 2

ex

[
1 + ln

(
1 − ma

mo

)]2

dma (8.48)

=
1
2
moV

2
ex

∫ 1

mr/mo

[
1 + ln

(
mr

mo

)]2

d
(

mr

mo

)
.

This integral evaluates to 1 − (mr/mo)[1 + ln(mr/mo)]. Evaluating the effi-
ciency, one finds

εR =
(mr/mo) ln2(mr/mo)

1 − (mr/mo)
, (8.49)

which is plotted in Fig. 8.11. When a small fraction of the mass has been
ablated, one can expand the logarithm in (8.48), using the fact that ma � mo.
Doing this, one finds to the lowest order εR = ma/mo, so that the efficiency
is equal to the fraction of the initial mass that has been ablated. This is a
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Fig. 8.11. Ideal efficiency of rocket-based acceleration. The dashed line shows the
simple estimate for small ablated mass

very useful result. One can see that it is reasonably accurate up to about 70%
ablated mass fraction, which is far beyond its formal range of validity. The
observed efficiency, in laser–plasma experiments and computer simulations,
is roughly half this value. This reflects the fact, discussed above, that only
about half of the laser irradiance actually reaches the densities above the
absorption zone, where the ablation occurs.

Homework 8.8

Find the approximate expression for εR to second order in the quantity
ma/mo. Plot the corresponding rocket efficiency and the value of (8.49).
Discuss the comparison.

8.2 Hohlraums

When Max Planck was exploring the fundamental nature of thermal radia-
tion, in the late 19th century, he found it useful to conceive of a completely
enclosed volume, within which the radiation field would reach equilibrium
with the material in the walls of the volume. He designated such a volume
a hohlraum. Placing a very small hole in such an enclosure disturbs it neg-
ligibly, and the image of an enclosed volume whose radiation emerges from
a small hole has become a standard one in the study of blackbody radiation
in courses on statistical and thermal physics. Evidently by heating such an
enclosure one can increase the temperature of the radiation field. This is the
notion behind laser-driven hohlraums, which allow one to produce radiation
fields having very nearly the spectrum of blackbody radiation (described as
Planckian) at temperatures of millions of degrees. In this section, we explore
these devices and some of their fundamental effects.

Figure 8.12 shows an image of a typical hohlraum. They are often cylin-
drical, as this is easy to manufacture, but they can be made and have been
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Fig. 8.12. Image of a typical hohlraum. The hohlraum is the cylindrical object,
with a visible laser entrance hole to the right. The laser beams strike the interior
walls of the hohlraum, as indicated in one case. An experimental package may be
located within the hohlraum or on the wall as shown

made with a very wide variety of shapes. Their typical dimensions are a
few mm or less. Hohlraums are composed of some high-Z material. Gold is
often used because good methods have been developed for producing gold
hohlraums. Every so often, someone does an experiment in which the laser
beams heat a (thin-walled) hohlraum by striking it on the outside. But it
is more typical to do as shown in Fig. 8.12 – to provide one or more laser
entrance holes, through which some number of laser beams enter the volume.
In many cases beams enter the hohlraum from two directions, which makes
it easier to create symmetric conditions inside the hohlraum. Some experi-
ments, however, use only one laser entrance hole and a comparatively short
cylinder. Such targets are known as halfraums, which is something of a pun
as it confuses hohl with whole. The overall purpose of the laser beam and the
hohlraum is to create a useful radiation environment. Z-pinches, discussed
in Sect. 8.3, can also be used to heat hohlraums. Here for the laser-heated
case, we discuss the creation of the radiation, the establishment of a radiation
environment, what can go wrong, and the application of the radiation to the
ablation of matter. Sometimes the radiation is used to heat a sample rather
than to ablate it, for example in order to measure the structure of the x-ray
opacity.

8.2.1 X-Ray Conversion of Laser Light

The heating of a laser-irradiated hohlraum has two aspects – the conversion
of the laser energy to x-rays and the transport of those x-rays. The x-rays are
initially produced within the laser spot where the laser beams strike the gold
walls. All of the elements of laser interaction with targets that were discussed
in Sect. 8.1 are present in this case, but most of them are unimportant. The
reason is that radiation production and radiative energy transport are the
dominant physical processes. The high-Z plasma becomes partially ionized,
producing ions whose many atomic transitions interact strongly with the
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soft x-rays. The first important process is that the electrons heated by the
laser excite these transitions, which then radiate, with the net effect that the
electrons give much of their energy to soft x-ray radiation. In addition, the
transmission of these x-rays through the laser-absorption region is high. (In
the language of Chap. 6, the optical depth is small.) As a result, a little less
than half the absorbed laser energy is radiated outward and the same amount
is radiated inward, into the dense target. The remainder of the energy goes
into heating and motion of the gold plasma and to electron heat transport,
which also carries energy deeper into the target. The approximate parameters
of the underdense plasma that is produced by 1 ns irradiation of a gold target,
based on simulations by Kent Estabrook (Drake et al. 1988), are

Z = 42I0.067
14 λ−0.06

µ

Te = 2.3I0.045
14 λ0.85

µ keV (8.50)

L = 114I0.067
14 λ−0.06

µ µm at 0.1 nc,

in which L is the scale length of the density profile, (d(lnn)/dx)−1. One
can show from these relations that the energy flux involved in this plasma
expansion is, at I14 = 1, less than 2% of the laser irradiance.

Before continuing the story of the gold plasma, it is worthwhile to draw
the contrast with the low-Z plasmas discussed in Sect. 8.1. Laser-irradiated
low-Z plasmas reach lower temperatures than high-Z plasmas do, because
they transport heat away from the absorption region more quickly. (Recall
that the coefficient of heat conduction is proportional to 1/Z.) In addition, a
much larger volume of material in the overdense region is heated in the low-Z
case, which also produces a lower temperature. The thermal radiation from
a layer of temperature T in a target, as from any object, is the emissivity
times σT 4. Thus, the radiation from the low-Z plasma is very much smaller.

Returning to the gold plasma, the dense material beyond the absorption
zone is heated by the energy transported to it, which is dominantly radia-
tion. However, the absorption length for this radiation is very small, so the
penetration is diffusive and has the character of a Marshak wave, discussed
in Chap. 7. In the limit that the radiation wave is a pure diffusion wave,
the heat front would penetrate a distance proportional to

√
t. Because of the

gradual expansion of the heated material, actual radiation waves penetrate
somewhat more quickly. A standard estimate by M.D. Rosen, reported in
Lindl, for the penetration depth, xM , is

xM = 0.53T 1.86
o t0.75

ns µm, (8.51)

in which To is the temperature of the material at 1 ns, measured in hundreds
of eV, and t is as usual the time, measured in ns here. Note that To is
the temperature at the outer boundary of the dense gold, and is not the
much larger electron temperature in the absorption region. In this section on
hohlraums, we will typically measure temperature in either eV or hundreds
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of eV. Thus, the heated layer is of order 1 µm thick – far smaller than the
distance material will flow at the sound speed in 1 ns, which is hundreds
of µm.

Let us consider the energy balance of a layer of a very opaque material on
the surface of a hi-Z object, heated by roughly half the laser irradiance. We
can ignore the ions (except for their hydrodynamic momentum, when this
matters) because there are many times more electrons. An equation for the
balance of the energy flux is

d
dt

(nekBTexM ) = 0.5IL − σT 4
e , (8.52)

in which the left-hand side accounts for the energy contained in the Marshak
wave while the right-hand side accounts for the energy fluxes through the
surface. We assume that xM varies according to (8.51). Because the diffusion
wave penetrates so slowly, we can take the temperature and density to be
nearly in steady state at any given time. Solving for the heat flow at 1 ns,
one finds that nearly all the input energy is radiated outward, with only a
few percent involved in the expansion of the Marshak wave. (Such a solution
requires making some assumption about the level of ionization, which is tem-
perature dependent, but the left-hand side of (8.52) is negligible no matter
what one assumes.) As an initial estimate of the temperature, one can thus
take σT 4

e ∼ 0.5IL to find Te ∼ 148I0.25
14 eV.

The total radiation from the laser spot will have a blackbody component
with a temperature of this order and two harder (i.e., more energetic) spec-
tral components. First, the emission from the hotter, underdense, absorption
region will have a more-energetic, but nonequilibrium spectrum. Second, the
gold material typically converts a few percent of the laser energy into radia-
tion from M-band transitions (involving lower-state electrons whose principal
quantum number is n = 3), which have an energy near 2 keV. Figure 8.13
shows a typical spectrum of the x-rays emitted by a gold laser spot.

A rather dramatic aspect of the dynamics just discussed is the fraction
of the incident laser energy that is reemitted as x-rays. Our rough estimate,
assuming complete radiation dominance, was that half the energy was radi-
ated in the absorption zone and all of the energy that reached high densities
was radiated back through the surface. This would correspond to the conver-
sion of 100% of the incident laser energy into x-rays. The observed values are
typically in the range of 60 to 80% for irradiances of a few ×1014 W/cm2,
with 70% being a good standard estimate. The x-ray conversion efficiency
increases with time, which we would expect because the power needed to
sustain the Marshak wave decreases with time as it penetrates more slowly
(as per (8.51)). The x-ray conversion efficiency is observed to increase at
lower irradiances and to decrease as laser irradiance increases. The decrease
presumably reflects the increasing importance of laser–plasma phenomena
other than radiative energy transport at higher irradiance.
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Fig. 8.13. A typical spectrum from an irradiated gold surface. Here Jx is the x-ray
energy into 2π steradians and JL is the laser energy. The irradiance was ∼ 5× 1014

W/cm2, at 0.35 µm wavelength. The data below 2 keV is from a 10-channel x-ray
diode detector system; above 2 keV it is from two crystal spectrometers. Credit:
Robert L. Kauffman

Since the total radiation from the material is roughly 3/2 times the radi-
ation from the Marshak wave, the effective temperature of the laser spot is
near (3/2) 1/4 times the value from the energy balance calculation, or

Teff ∼ 164I0.25
14 eV. (8.53)

At this point we have a hohlraum within which there is an energy source, in
the form of x-rays reemitted from the laser spots. This radiation from the
laser spots illuminates the interior walls of the hohlraum. This is similar to
the irradiation of the laser spots, although the x-rays penetrate to higher
densities, where they contribute to heating, driving a Marshak wave, and
reemission. But an arbitrary point on the wall of the hohlraum is not just
irradiated by the laser spots. It is also irradiated by the other walls of the
hohlraum that it can see, which further contributes to the local heating.
Because the transit and reemission time is short compared to the timescale
for the evolution of the system, we can express the total irradiance reaching
the wall, Iw, as a series:

Iw = Io

(
1 + αf + α2f2 + · · ·

)
=

Io

(1 − αf)
=

ηfAL/Aw

(1 − αf)
IL = ξIL, (8.54)

in which Io = ηfILAL/Aw is the average irradiance of the walls due to the
laser spots. Here η is the x-ray conversion efficiency, AL and Aw are the
areas of the laser spot and the wall, respectively, and f is the fraction of the
emission from the laser spots that reaches other walls. The fraction f is less
than 1 because energy is lost through the laser-entrance hole and to capsules
or other objects. The fraction of the radiation incident on a point on the wall
that is reemitted by the wall is the albedo α; so the fraction of the irradiance
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of the walls by the laser spots that is reemitted and is then absorbed again by
other walls is αf . There is in turn reemission of this radiation, and so on. One
thus constructs the power series seen in (8.54). This series converges and the
final result is that the wall irradiance is proportional to the laser irradiance.
The constant of proportionality is ξ = ηf(AL/Aw)/(1−αf). We assume here
that this applies uniformly and in an averaged sense. In actual hohlraums,
the wall temperature varies because the transport of energy is not uniform.
We will return to this point in Chap. 9. The behavior of the heated wall is
then described by (8.52), with 0.5IL replaced by Iw (once again, the energy
going into the Marshak wave is negligible). Typical values of the parameters
are η ∼ 0.7, f ∼ 0.9, which is basically the ratio of entrance hole and package
areas to the total area, α ∼ 1, because the reemission is much larger than the
energy penetration into the walls, and AL ∼ 0.1Aw, because one wants AL to
be as large as feasible but must also inject the laser beam into the hohlraum
and place the laser spot where the experiment demands. Taken together, one
finds Iw ∼ 0.6IL. Thus, ξ can be near unity.

Take note of this result. Hohlraums are amazingly efficient devices. They
can absorb the input energy and keep most of it bouncing around from wall
to wall for many bounces. They can irradiate a capsule or an experimental
package with an irradiance of soft x-rays that approaches the irradiance of
the laser beams themselves. We will return to this point soon. In addition,
it is now clear that we were not really justified in treating the laser spot in
isolation, because the laser spot is also illuminated by the hohlraum walls
and by other laser spots. Indeed, there is some evidence (see Lindl) that the
effective conversion efficiency is higher within hohlraums than outside them.
But the evidence is complicated and not entirely conclusive. We will leave its
exploration to the interested reader.

Solving the approximate solution to the energy transport equation, Iw ≈
σT 4

w, where Tw is the wall temperature, we obtain an equation for the wall
temperature (often called the hohlraum temperature or the radiation tem-
perature, Tr):

Tw =
[

ηfAL/Aw

σ (1 − αf)
IL

]1/4

= 177 [ξI14]
1/4 eV. (8.55)

The units of Tw are determined by those of σ, which must be consistent with
those of IL.

Next suppose we place a capsule or other experimental package, of area
Ac, within or on the wall of the hohlraum. The irradiance experienced by such
an object is Iw. The material is usually low-Z as the goal is often to produce
ablation pressure, and even targets irradiated for other purposes very often
use a low-Z outer layer to prevent motion of the interior materials (such a
layer is called a tamper ). The x-rays readily penetrate through the ionized,
low-Z material that has already been heated. (This material may be fully
ionized but in any event has few atomic transitions to absorb the x-rays. It
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also has a low enough collision rate to be weakly absorbing.) The x-rays are
then absorbed in a short distance once they reach the cooler material that has
not yet been heated. In most cases the object absorbs nearly all the energy
incident upon it and thus contributes to f . The fraction of the laser power
that is delivered to the capsule is

IwAc

ILAL
=

ηf

(1 − αf)
Ac

Aw
. (8.56)

This can be a large fraction but cannot exceed 1 because η < 1, α < 1,
and f < (1 − Ac/Aw). One sees that the larger one makes the capsule,
relative to the hohlraum, the more efficiently one will deliver energy to it.
Unfortunately, this comes at a cost because larger capsules experience less
uniform irradiation, as we will discuss further in Chap. 9.

8.2.2 X-Ray Production by Ion Beams

Another approach to heating hohlraums is to use beams of heavy ions. These
can in principle be produced with a high efficiency and at a high repetition
rate, making heavy ions a plausible source of energy for a power plant based
on inertial confinement fusion. But the ion beams are not focusable to the
degree that a laser is. An ion-beam-heated hohlraum will be irradiated from
a single direction or from two opposing directions. The ion beams will deposit
their energy within the outer wall of a hohlraum, or within a beam target
placed within the hohlraum. This will produce a hot source that will irradi-
ate those walls exposed to it, beginning the same process of absorption and
reemission that occurs in a laser-heated hohlraum. For applications needing
uniform x-ray heating of some object, the ion-beam-heated spot will typically
be hidden from the object, which will be heated only by radiation from the
hot walls.

8.2.3 X-Ray Ablation

To complete the basic story of the effect of hohlraums on capsules or packages,
consider the ablation pressure produced by the soft x-ray irradiation of low-Z
materials in the hohlraum. Figure 8.14 shows the structure of this region,
based on work by Hatchett. We will consider the response of some material,
known as an ablator, to a Planckian spectrum of temperature Tw. This ignores
the effects of M-band or other nonthermal radiation components, which may
penetrate deeper into the material, causing heating in advance of the main
thermal front, known as preheat. Once low-Z material is ionized, its opacity
to soft x-rays becomes very small. This is essential and is the reason ablators
rarely contain elements heavier than C. Based on the discussion of Sect. 7.5,
one would expect an ionization front to form under such conditions. In the
present context, it is important to note that the ionization front can also be
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Fig. 8.14. The typical structure produced by x-ray ablation of low-Z material

described as a heat front, as the x-rays deposit most of their irradiance in
a very small volume. In typical cases of interest, the resulting high pressure
drives a shock wave into the dense material ahead of the region where the
energy is deposited. In order for x-ray irradiation to produce strong shocks, it
is important that the shock heating does not render the material transparent
to x-rays. For this reason, a pure (frozen) hydrogen layer would also be a
poor ablator.

We will analyze this system by treating the heat front as a discontinuity
like that of a shock, with the addition that there is a local energy input at
the location of the heat front. We assume the system is a planar system. This
will reveal the qualitative features of the behavior for spherical objects, such
as capsules for inertial fusion, although some of the detailed spatial profiles
will change. For such an analysis to be valid, the distance over which the
x-rays are absorbed at the heat front must be small compared with the other
distances in the problem. After an initial transient period during which the
flow is established, this is a valid assumption for soft x-rays incident on low-Z
ablators. In addition, in order to apply a significant ablation pressure, most
of the incident x-rays must reach the heat front and must not be absorbed in
the ablated plasma. This places an upper limit on the duration over which
x-ray ablation is a practical way to apply pressure. However, the absorption
in the ablated, ionized plasma is small enough that x-ray ablation is a useful
option for high-energy-density applications.

We assume here for simplicity that the material blown off the ablator
absorbs enough of the soft x-ray flux to maintain its temperature at Tw.
(This assumption also turns out to be realistic.) As a result, the expansion
of this material is an isothermal rarefaction, which we studied in Sect. 4.2.1.
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In contrast to the situation with laser-ablated material, which is mostly at
much lower densities, electron heat transport is not significant in sustaining
the temperature of the expanding material in the present case. We can say
that the x-rays propagate in the upstream direction, into the flow emerg-
ing from the heat front. The frame of reference of this rarefaction is more
complicated than in the previous case, however. The rarefaction relative to
a stationary upstream heat source produced fixed parameters at the original
material surface and produced a rarefaction wave that penetrated the solid
material at its sound speed. In the x-ray ablation case, the heated material
flows out of the heat front at some speed while the heat front moves into the
upstream material, which is also already moving. This motion can typically
be ignored for first estimates, as the energy involved corresponds to a small
fraction of the total energy unless the material has all been shocked and a
large fraction of the mass has subsequently been ablated (Fig. 8.11).

It proves fruitful to analyze in more detail, the motion in the frame of
reference of the heat front, which is analogous to the shock frame used in
Chap. 4. First consider the isothermal rarefaction, with reference to the dis-
cussion of such systems in Sect. 4.2. Here take cs to be the sound speed in the
material emerging from the heat front, at initial density ρ2. Equations (4.61)
and (4.62) then apply, with ρ0 in those equations equal to ρ2e

+1 here. One
can show from those equations that the power per unit area required to sus-
tain the rarefaction is 3.4ρ2c

3
s , with 1.4ρ2c

3
s being brought into the rarefaction

by new incoming material and 2ρ2c
3
s being the heating required to sustain

the temperature. The (isothermal) sound speed within this rarefaction cor-
responds to the temperature Tw, being cs =

√
(Z + 1)kBTw/(Amp).

Homework 8.9

By analyzing the isothermal rarefaction, derive the ratio of the energy re-
quired to sustain the rarefaction to the energy injected into the rarefaction
at the heat front.

A first estimate of the ablation pressure (on the downstream side of the
heat front) can be obtained as follows. Some fraction of the power delivered
to the ablating object by the soft x-rays is deposited at the heat front, where
it provides the flow of energy into the rarefaction at speed cs. Balancing these
gives the energy density at the heat front, εhf , and the ablation pressure is
(γ − 1)εhf . The incident x-ray energy flux must also provide the required
downstream heating and kinetic energy of the rarefaction and the energy for
pdV work, so we assume that 50% of the incident x-ray energy contributes
to the ablation pressure, which gives

Pabl = 0.50(γ − 1)σT 4
w

√
Amp

(Z + 1)kBTw
. (8.57)
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Note that this is formally independent of density. However, based on the
above discussion one will only find the conditions necessary to create the
structure depicted in Fig. 8.14 with certain materials and over a certain
density range. If we evaluate this for γ = 5/3 and for Be, we find

Pabl = 4.4
(

Tw

100 eV

)3.5

= 33 [ξI14]
7/8 in Mbars. (8.58)

The standard estimate, based on simulations, in Lindl would replace 4.4
by 3 in the first part of this equation or would correspond to ξ = 0.68 in
the second part. In detail, the ablation pressure depends on materials and
varies in time. It is also useful to have an equation for cs subject to the same
assumptions. This is

cs =

√
(Z + 1)kBTw

Amp
= 7.7 × 106

√
Tw

100 eV
= 1.03 × 107 [ξI14]

1/8
. (8.59)

To analyze the behavior across the heat front in more detail, one needs to
work with the generalized versions of (4.5) to (4.7), including the radiation
flux on one side of the heat front in the energy balance equation:

ρ1u1 = ρ2u2, (8.60)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2, (8.61)

and [
ρ1u1

(
ε1 +

u2
1

2

)
+ p1u1

]
= FR +

[
ρ2u2

(
ε2 +

u2
2

2

)
+ p2u2

]
, (8.62)

in which subscript 1 applies to quantities just upstream of the heat front,
subscript 2 applies to quantities just downstream of the heat front, and FR is
the radiative energy flux deposited at the heat front. This set of equations can
be explored to look for heat fronts at which the density increases or drops and
to look for heat fronts in which the velocities are subsonic or supersonic (see
Hatchett). In all cases p2 = ρ2c

2
s , and we define c2

1 = p1/ρ1 and M1 = −u1/cs.
In general, there are two possible relations among the heat front, the

shock wave, and the high-density end of the rarefaction. Figure 8.14 shows an
expansion heat front, in which the rarefaction ends at the heat front and the
shock wave pulls out ahead. In this case −u2 = cs and ρ1 = ρo(γ+1)/(γ−1).
The shock pulls ahead of the heat front at less than 1/4 of the shock velocity
in the lab frame (for γ = 5/3), corresponding to small values of M1 and of
c1/cs. For this case we can rearrange the first two of the above equations to
show that

c2
1/c2

s = 2M1 − M2
1 . (8.63)

This has a meaningful result only for 0 ≤ M1 ≤ 2, which is the range over
which an expansion heat front can operate.
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Alternatively, in the compression heat front case the heat front is super-
sonic, pulling away from the rarefaction and coalescing with the shock. Then
we take c1 to be negligible, ρ1 = ρo, and M2 = −u2/cs. We then find from
the same two equations, for M2 > 1,

M1 = M2 + 1/M2. (8.64)

In terms of these same variables, one can rewrite the energy flux equation
as

FR

ρoc3
s

= 2
M1

M2
+ M1

[
M2

2

2
+

γ

γ − 1

(
1 − c2

1

c2
s

)]
− M3

1

2
. (8.65)

This equation needs to be evaluated as just described in the two distinct
cases. One also always has ρ2 = ρ1M1/M2 and p1 = ρ1c

2
1. The expansion

heat front develops at low fluxes, corresponding for typical low-Z solids to
radiation temperatures of hundreds of eV. The transition to a compression
heat front occurs when the left-hand side of this equation equals about 6.

Homework 8.10

Evaluate the ablation pressure (p1) for the expansion heat front case, assum-
ing the ablator is Be with a density ρo of 1.8 g/cm3, as a function of radiation
temperature from 100 eV to 300 eV. Compare the result with the value given
by (8.58).

We will return to x-ray ablation in Chap. 9, where we discuss its appli-
cations to inertial fusion. What is important at present is to see from (8.58)
that it is also straightforward to obtain pressures of order 100 Mbars by
using lasers to heat a hohlraum. Although the target is more complicated
in this case, the resulting irradiation is inherently uniform, unlike that ob-
tained even with smoothed laser beams. As a result, hohlraums are an option
worth evaluating for any experiment that would benefit from highly uniform
irradiation.

8.2.4 Problems with Hohlraums

In addition to their complexity, hohlraums have other limitations that affect
their usefulness in certain experiments. We discuss three of these – plasma
filling, plasma pressure pulses, and asymmetry – here. Plasma filling is jargon,
as any hohlraum will fill with plasma at some density almost immediately.
Beyond this, plasma filling refers to the establishment of conditions that per-
mit the excitation of the laser–plasma instabilities discussed in Sect. 8.1.3. In
particular, stimulated Raman scattering can become very strong in plasmas
with a large volume near 0.1nc in density. So for this purpose we care about
the development of underdense plasma flowing from the walls to the interior
of the hohlraum. In detail, the underdense plasma dynamics are complicated.
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One has the laser spots, in which the electron temperature is likely to be above
2 keV (8.50) and one has the plasma leaving the radiation-heated walls, with
a temperature of order Tw. In addition, the electrons can carry heat between
these regions, so that the temperature may be increased in some places and
decreased in others. Moreover, magnetic fields on the one hand may limit
this heat transport while collisions on the other hand may limit the effects
of magnetic fields. Thus, to avoid difficulties caused by plasma filling may
require some difficult work with sophisticated computer simulations. Here we
discuss some aspects of plasma filling. A next level of detail is provided by
Lindl.

We can gain a qualitative understanding of the main aspects of plasma
filling from some simple calculations. Both the laser-heated spots and the x-
ray heated walls contribute to the filling of the hohlraum. The x-ray heating
takes time to develop, so that early in time the laser-heated spots dominate.
Based on (8.50), the sound speed ∼

√
ZTe/M is above 3 × 107 cm/s, and

the hohlraum radius is below 1 mm, so the timescale for filling is less than
3 ns. This is the regime in which hohlraums irradiated with infrared laser
light operate. Once the walls of the hohlraum heat sufficiently, the sound
speed of their plasma is about

√
10 smaller. However, because the plasma

expands from a much higher initial density, it needs to expand for a much
shorter time to produce effects throughout the hohlraum. We can describe
the expansion as an isothermal rarefaction (Sect. 4.2.1), so that the density
is n = nse−x/(cst), where ns is the electron density near the solid material,
which we will take to be 1024 cm−3, and we take cs from (8.59). We ask how
long it will take for the plasma density at the center of the hohlraum from
one segment of wall to reach 0.001nc, This is about 14 e-foldings below solid
density, and when this occurs there is a large volume in which the density is
near 0.1nc, which is about eight e-foldings below solid density. For a hohlraum
radius Rmm in mm we find

t = 0.61
Rmm√

Tw/100 eV
ns, (8.66)

with ρ in g/cm3 and Tw in eV. For typical parameters, this gives times below
2 ns. This second model is more relevant to hohlraums irradiated with optical
and UV lasers. In addition, there is some potential for plasma to fill the
entrance hole through which the lasers penetrate the hohlraum. However,
both the heating by these lasers and their combined ponderomotive force
tend to resist this.

Typical experiments using hohlraums last at least a few ns. So it should be
no surprise that plasma filling can be a significant factor. Both the energetic
electrons and the laser scattering that laser–plasma instabilities can produce
are of concern for experiments and especially for laser fusion. We discuss some
of this further in Chap. 9. It is worth noting that these problems are very
much larger in experiments with infrared lasers, because they have higher
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oscillating velocities and smaller collisional effects at a given irradiance. In
fact, the production of hot electrons as a result of plasma filling was both a
severe and an unknown problem in early laser fusion experiments. The U.S.
laser fusion effort was nearly canceled before the scientists involved discovered
and demonstrated the effects of plasma filling. Some observers, including the
present author, believe that this problem was not found sooner because the
fact that the phenomena responsible for it, though known to exist, were not
incorporated in the primary computer code used to model the experiments.
It is very easy to mistake a limited computer model for reality. This is a
cautionary note for students of this or any other science.

The second phenomenon worth discussing is the development of plasma
pressure. A planar isothermal rarefaction, like that described above, has a
velocity v = csζ with ζ = x/(cst) and a mass density ρ = ρoe

−ζ . The ram
pressure, ρv2, of such a plasma is ρoc

2
sζ

2e−ζ , which has a maximum of ∼
ρoc

2
s/2 when ζ ∼ 2. Thus, for plasma from a gold wall with ρo ∼ 19 g/cm3

and cs as given above, the maximum ram pressure is

Pram ∼ ρoc
2
s/2 = 1.3(Tw/100 eV) Gbars, (8.67)

in which Tw is in eV. This is already an enormous pressure, but if the
hohlraum wall stayed hot long enough, it would be an underestimate, be-
cause the pressure at the center of the hohlraum would be increased by con-
vergence effects. The nominal time required for the point with ζ = 2 to reach
the center of the hohlraum would be tmaxp = R/(2cs), which is

tmaxp = 8.4Rmm/
√

Tw/100 eV ns. (8.68)

This typically would be a few ns, but the heating pulse for hohlraums less
than 1 mm in radius is typically of order 1 ns. So the pressure actually
produced when the gold plasma converges is smaller than that indicated by
(8.67). Nonetheless, it can be very large compared to the ablation pressure
on a package irradiated by the hohlraum. What happens on this timescale in
an actual hohlraum, as elucidated by Hurricane et al., is that a large pressure
pulse propagates outward from the center of the hohlraum. The implication is
that any experiment using x-ray ablation to drive a package has only a limited
potential duration before the effects of the ablation are overwhelmed by the
pressure pulse that will eventually follow. This places a real limitation on the
design of experiments to examine the long-term evolution of hydrodynamic
phenomena.

Homework 8.11

Assume that a hohlraum of 1 mm radius is heated for 1 ns at a temperature of
200 eV. Estimate the pressure produced at the center of the hohlraum when
the plasma expanding from the gold walls reaches the axis. (Note: this is not
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an application of (8.67). Instead, you will need to think about the rarefaction
produced during the heating pulse.)

The final limitation of hohlraums, discussed in much more detail in
Chap. 9, is that in practical experiments they do not produce isotropic ir-
radiation. Using the equations of this section, one would be led in designing
almost any experiment to maximize AL/Aw. The result is that a given point
on an experimental package sees larger x-ray emission (a hotter environment)
from the laser spots. It also sees little x-ray emission (a colder environment)
from the laser entrance holes. As one moves around the surface of a laser
capsule, or even of a planar target, this can produce significant variations in
the x-ray flux. This in turn can produce asymmetric pressures on the sur-
face of the irradiated object. As a result, efficient designs require the use of
viewfactor codes, which integrate a specified x-ray source distribution over
solid angle at each point on a target, to assess quantitatively the radiation
uniformity.

8.3 Z-Pinches and Related Methods

Figure 8.15 shows a loop of magnetic field near the surface of the sun, visible
in soft x-rays because the plasma it contains is much hotter than the sur-
rounding plasma. One contributor to such heating is the pinch force, which
has the amazing effect of causing any channel of plasma that carries current
to contract. As we will see, the pinch force is one consequence of the J × B
force. Since most astrophysical systems include magnetic fields, whose mo-
tions induce the flow of current, this force is present at some level in many
circumstances. In the laboratory, modern pulsed power devices can deliver
voltages of >1 MV for >100 ns. As we will see, this is enough to produce
high-energy-density conditions. We will first discuss the traditional approach
to this end, known as the Z-pinch. Later, we will discuss an alternative use

Fig. 8.15. A loop of hot plasma, held in place by a magnetic field, near the surface
of the Sun. Credit: SOHO - EIT Consortium, ESA, NASA
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of the same type of pulsed-power system – the magnetically launched flyer
plate.

8.3.1 Z-Pinches for High-Energy-Density Physics

Andre-Marie Ampere showed that current-carrying wires exert forces on one
another. We can revisit this briefly to set the stage for the more complicated
discussions that follow. Imagine an infinitely long, straight wire carrying a
steady current. If one integrates Ampere’s law over the area of a surface
centered on the wire and bounded by a circle, and applies Stoke’s theorem,
one finds, using SI units,

µoI1 = µo

∫
A1

J1 · n̂dA =
∮

�1

B1 · d� = 2πr1B1, (8.69)

where n̂ is a unit vector normal to the surface and subscript 1 represents
the properties produced by the wire. One can show, from symmetry and the
absence of magnetic monopoles, that B1 is purely azimuthal. The direction of
B1 is given by the right-hand rule because the line integral is by convention
always taken in the counterclockwise direction as viewed from the direction
toward which n̂ points. If there is a thin, parallel wire some distance R from
the first wire, the force per unit length on this second wire, F 2, due to the
magnetic field from the first wire, is

F 2 =
∫

A2

(J2 × B1) dA = µo

I1I2

2πR
(−r̂12) , (8.70)

where subscript 2 refers to the second wire and r̂12 is a unit vector from the
first wire to the second wire. The minus sign means that the force is attractive
(for J1||J2), as one can verify from the right-hand rule. The general point is
that parallel currents attract. This has the implication that any compressible
medium carrying current will tend to contract.

This fact enables one to create a type of device known as a Z-pinch. A
Z-pinch uses an axial current (in the z direction in a standard Cartesian
coordinate system) to create a pinch force, with the aim of producing a high-
temperature plasma. Some of the early approaches to magnetic fusion were
based on this principle. One can find equilibria in which the inward pinch
force, produced by current in a plasma, balances the outward pressure of the
plasma. Unfortunately, these equilibria are not stable; if they were stable then
we might indeed have had fusion power plants in the 1960’s. Most modern
Z-pinches are so-called fast Z-pinches, in which a rapidly rising current causes
the implosive contraction of material. The imploding material is accelerated
and then converts the kinetic energy of implosion to heat when the material
stagnates on axis. Such implosions can occur with varying relative amounts of
heating versus acceleration. As we shall see, the implosions of interest to high-
energy-density physics are violent indeed. Such implosive pinches avoid the
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slowly growing instabilities that plague equilibrium pinches. However, they
create the transient growth of the Rayleigh–Taylor instability, discussed in
Chap. 5, and this imposes some limitations on their operating range. Here we
discuss the basic aspects of the implosion of a fast Z-pinch. More extensive
discussions of Z-pinch physics can be found in the book, Physics of High-
Density Z-Pinch Plasmas, by Liberman, De Groot, Toor, and Spielman, and
in the article in Reviews of Modern Physics by Ryutov, Derzon, and Matzen.

We begin by considering the self-consistent behavior of a long cylindrical
shell with a uniform current density in the z direction, given initially as a
function of radius r by

J = Jo for r1 < r < r2; J = 0 otherwise. (8.71)

Such a current produces no magnetic field in the z direction, and one can
show from this and the absence of magnetic monopoles that there is no radial
component of magnetic field. Applying Ampere’s law to the interior of the
cylinder, there is also no azimuthal magnetic field inside the shell, so B = 0
there. Within the shell itself, Ampere’s law in SI units implies∮

B ·d� = 2πrB = µo

∫
J · n̂dA = µoJoπ

(
r2 − r2

1

)
≈ µoJoπ (2rδr) , (8.72)

where δr = r − r1. The equation of motion relates the acceleration of the
fluid to the inward force density F , and is

ρ
∂u

∂t
= F = J × B = −r̂

µoJ
2
o

2

(
r2 − r2

1

)
r

≈ −r̂µoJ
2
o δr, (8.73)

where r̂ is a unit vector in the radial direction. From this, the equation of
motion for the radial acceleration of a fluid element is

ρr̈ = −µoJ
2
o

2

(
r2 − r2

1

)
r

≈ µoJ
2
o δr, (8.74)

in which ρ is the mass density. One can integrate this over the cross-section
of the shell to find the total inward force per unit length and thus the ap-
proximate equation of motion for the entire shell

m̂r̈ = −µoI
2

4πr
, (8.75)

in which I is the total current and m̂ is the mass per unit length, and again
this is in SI units. For constant current, one can integrate this equation to
obtain

u2
r =

µoI
2

4πm̂
2 ln

[ro

r

]
(SI) =

I2

c2m̂
2 ln

[ro

r

]
(cgs) = u2

Alf2 ln
[ro

r

]
. (8.76)

in which, uAlf is the velocity of Alfven waves at the initial outer edge of
the pinch. (We won’t concern ourselves with Alfven waves here, as they will
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Fig. 8.16. Behavior of a constant-current Z-pinch implosion, showing radius as a
fraction of ro, and with inward velocity normalized to uAlf , versus time, normalized
to ro/uAlf

not come up again. You can read about them in any plasma physics text.)
One can in turn integrate (8.76) to find the time timp at which the implosion
reaches a radius r, which is

timp =
ro

uAlf

√
π

2
erf

[√
ln(ro/r)

]
, (8.77)

where uAlf is defined by (8.76) and erf is the error function. In practical units,

uAlf = 3.3 × 106IMA/
√

m̂(mg/cm) cm/s, (8.78)

where IMA is the current in MA and the units of m̂ are shown. The behavior
produced by (8.76) and (8.77) is shown in Fig. 8.16. One can see that the shell
of current moves inward slowly at first, and that only late in the implosion
does the acceleration greatly increase. The development of an actual pinch
implosion, with a gradually increasing pinch current, is even more gradual.
An essential phenomenon, included in the equation of motion only by the
boundary condition that ur = 0 at r = 0, is that the pinch material must
stagnate before it reaches the axis of the cylindrical shell, where the incoming
matter will accumulate. In the simplest conception, the pinch material is
accelerated inward, gaining kinetic energy, and is shocked and compressed as
it stagnates when it symmetrically reaches the axis, converting the kinetic
energy into thermal energy and later into radiation and an outward expanding
plasma.

The convergence, ro/r, enters into these equations. We can estimate a
plausible radius at stagnation rs in order to determine the maximum conver-
gence. If, for example, one used a metallic shell whose density was 10 g/cm3,
with an initial mass of 1 mg/cm, and the imploded and shocked material
on the axis had a density of 40 g/cm3, all of which are plausible numbers,
then the radius of the imploded pinch would be about 30 µm. If the initial
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radius of the shell were 1 cm, then one would have ro/rs ∼ 300. In actuality,
instabilities limit the degree of implosion, which typically ends at ro/rs ∼10
to 20. Note that differences of a factor of 2 in ro/rs have a very small effect
on the final implosion velocity because the convergence enters into the loga-
rithm. Indeed, even increasing the convergence to ro/rs ∼ 300 would increase
ur by less than 50%. Pinch research in the 1950’s was focused on creating
a high-density matter where fusion would occur, for which high convergence
is essential. Modern applications of Z-pinches to high-energy-density physics
more often depend primarily on energy (and on its efficient conversion to
radiation), and so are less sensitive to convergence.

Returning to the simple model of (8.77), and using ro/rs = 10, one can
find the kinetic energy of the pinch material just at stagnation. Remarkably,
this quantity depends only on the pinch current. It is

K.E. = 2.3m̂u2
Alf = 2.3

µoI
2

4π
(SI) = 2.3

I2

c2
(cgs) = 2.3I2

MA kJ/cm. (8.79)

With the currents above 20 MA that are now feasible, this energy can exceed
1 MJ/cm. The total energy of the pinch material may be higher than this,
because it has been heated by Joule heating (i.e., J ·E) and by compression
(i.e., pdV work), but it also may lose energy to radiation before the end of
the implosion. Assuming that the heated material stagnates symmetrically,
all the remaining energy is momentarily converted to heat. The energy of
stagnation initially develops in the ions, as they carry the kinetic energy,
and is then transferred by collisions to the electrons. Once the temperatures
have equalized, the heating produced by the kinetic energy of (8.79) gives a
temperature in eV, TeV, of

TeV =
K.E. × Amp

kBm̂(Z + 1)
= 20

I2
MA

m̂ (mg/cm)

(
A

Z + 1

)
eV. (8.80)

In evaluating this equation, one may have to allow for the dependence of Z on
Te (Chap. 3). Such dense matter, at typical stagnation temperatures above
1 keV, is a very intense radiator. Note that one can adjust this temperature,
to seek an optimum for some purpose, by adjusting the mass per unit length.

As was mentioned above, the current in an actual pinch is not constant.
In fact, it often has a sinusoidal profile in time. This leads the implosion
to develop more gradually than Fig. 8.16 shows. However, there are only
limited analytic solutions for the motion of the pinch with more realistic,
time-dependent current profiles. To make matters even more complex, the
current is not fundamentally independent of the pinch and its dynamics.
The pulsed-power machine provides a time-dependent voltage pulse to its
load, which in this case is the pinch and the supporting structures for the
pinch. The principal limitation on the current through the pinch is the in-
ductance of the pinch itself. Thus, more accurate pinch modeling specifies
the time-dependent voltage supplied to the pinch, determines the current by
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calculating the instantaneous induction of the pinch and solving a circuit
equation, and simultaneously solves an equation like (8.75) for the implosion
of the pinch itself. One result of such circuit modeling has been that pinches
have become shorter in recent years, and often now have a height that is only
a fraction of their initial radius. By reducing the height, one can decrease the
inductance and thus increase the current.

This has an application when one considers the duration of the pinch
implosion. In actual Z-pinches the implosion time must be matched to the
duration of the voltage pulse that can be produced by the pulsed-power
system. Using (8.77) and (8.78), for initial radii of a few cm, masses within a
factor of five times 1 mg/cm, and currents within a factor of 3 of 10 MA, one
can see that the implosion time is within an order of magnitude of 100 ns.
Of course, the reasoning actually must be done in reverse. Given the ability
to deliver a voltage pulse of some duration, one must choose the mass and
radius of the Z-pinch load to obtain an implosion of the same duration with
the current that results. Let us explore this further.

The inductance L of a current-carrying cylinder of height H and radius
r, with the return current carried at some larger radius rret, is easily found
to be

L =
µo

2π
H ln

(rret

r

)
, (8.81)

so with an available voltage V of duration τ we solve V = LdI/dt ∼ LI/τ
with τ = timp from (8.77) to find

IMA = 10−4

√√√√VMV

√
m̂(mg/cm)

√
2µ

3/2
o

(ro

H

) Erf
[√

ln(ro/rs)
]

ln(rret/r)

= 1.47 (m̂(mg/cm))1/4

√
VMV

ro

H
, (8.82)

in which ro and H must be in the same units and the second result is obtained
using rret/r = 10 and ro/rs = 20 but depends weakly on the exact values of
these ratios. We see that multi-MA currents are straightforward to achieve.
Equation (8.82) makes it seem as though one can increase IMA just by in-
creasing the mass of the load. However, another look at (8.77) shows that to
keep the implosion time ∼ τ one must keep the ratio IMA/(ro

√
m̂) constant.

Under this constraint (8.82) implies that the ratio VMV/(ro

√
m̂) must also be

constant. Taking these constraints together, for fixed VMV one can increase
IMA by decreasing H while increasing ro

√
m̂ by the same factor. Thus, one

can only increase IMA and thus the kinetic energy in the imploding material
in proportion as one can increase VMV or decrease H, while making whatever
changes in ro

√
m̂ are required to keep the implosion time ∼ τ . One can also

see from these relations that if one desires to increase the temperature of the
heated material, by decreasing m̂ according to (8.80), then to also keep the
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timp and τ well matched requires that one increase r2
o in proportion to the

decrease in m̂. The practical limits associated with this have to do with one’s
ability to produce a uniform, current carrying shell.

The applications of Z-pinches that are most relevant to high-energy-
density physics at present involve the production of radiation. (Ryutov et
al. discuss some other possible applications in their review paper.) The first
such application is to use the pinch to produce the largest possible soft x-
ray energy by blackbody radiation from hot, dense matter. For this purpose
one implodes a high-Z material, typically tungsten (W). After the stagna-
tion, the plasma both radiates and expands. We can evaluate the ratio of
the blackbody radiation, σT 4, to the power involved in plasma expansion
(ρ/Amp)kBTcs as follows:

σT 4

[Zρ/(Amp)]kBTcs
= 35

T 2.5
keV

ρ

(
A

Z

)3/2

, (8.83)

where TkeV is the temperature in keV. This implies that radiation will be
strongly dominant above some temperature of order 1 keV. Such Z-pinch ra-
diation sources are often produced within high-Z hohlraums, similar to those
discussed in Sect. 8.2. These hohlraums can confine the pinch radiation and
sustain for some time a high-temperature, thermal radiation environment.
They have been used to irradiate packages either mounted on their walls, to
study ablatively driven phenomena or radiation flow, or mounted within the
hohlraum, to study radiation transport or photoionization effects. They have
also been used to irradiate capsules for inertial-confinement-fusion research.

A second radiation-related application of Z-pinches is to use them to pro-
duce x-ray line radiation. For this purpose, one uses wires of a material whose
Kα x-rays have an energy of a few keV, such as titanium. The radiation bal-
ance is not as easy to estimate as it is in the case of blackbody radiation. The
efficiency is large enough to produce useful yields for practical applications.

In order to maximize the power radiated by a Z-pinch during stagnation,
one must maximize the stagnation power, Ps. Because the plasma expands
during the implosion, the duration of the stagnation can be expected to scale
with the implosion time, which by design one makes equal to the duration τ
of the voltage pulse. Thus, since the kinetic energy is proportional to I2

MA,

Ps ∝
HI2

MA

τ
∝ HIMAVMV

L
∝

V
3/2
MV

(√
m̂ro

)1/2

H1/2
∝ V 2

MV

H
, (8.84)

so for fixed pulsed-power parameters one can increase the stagnation power
only by decreasing H. There are limits to this, as the implosion will be com-
promised near the ends of the pinch. Nonetheless, at around the turn of the
century pinches less than 1 cm high were imploded with good results on the
Z-device.
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Homework 8.12

While one can vary the properties of the Z-pinch load from one experiment
to the next, one can modify the pulsed-power device itself on a somewhat
longer timescale. Such devices are typically characterized by the number of
Volt-Seconds they can produce, and operate so that V τ = constant. First,
consider and then explain why Volt-Seconds is a reasonable way to charac-
terize a pulsed-power device. Second, using the scaling relations developed in
Sect. 8.3.1, discuss how to optimize the stagnation power for a device with
V τ = constant.

For many years the ability of Z-pinches to actually produce x-ray radiation
fell far below the expectations one would have from the scalings discussed
above. This changed dramatically during the 1990’s, with the development
of Z-pinches that use a load composed of hundreds of fine wires (typically ∼10
µm dia.). All the previous approaches, which included wire arrays with fewer,
thicker wires, solid cylindrical conducting shells (known as liners), and various
schemes involving gas, performed far less well. It is tempting to infer that the
use of many wires finally produced a structure resembling the uniform plasma
shell of our simple modeling, while all the previous methods produced a less
uniform plasma that did not stagnate as effectively. The success with arrays
of fine wires lead to a large increase in the x-ray yield from such devices.

The observed implosion time of pinches using arrays of many wires, de-
termined from the timing of the x-rays produced at stagnation, is typically in
excellent agreement with the time predicted by modeling of a uniform plasma
shell. This has led some authors to conclude that the wires in such wire arrays
do expand and merge so as to produce such a plasma shell. Further support
for this conclusion has come from MHD modeling, which can reproduce the
stagnation time and the size of the resulting plasma, although to do so one
must assume very large initial perturbations to seed the Rayleigh–Taylor in-
stability. However, the issues are not so simple and the evidence is rather
complex. There are two ways that an array of wires can develop a compara-
tively uniform implosion. The simplest notion is that the wires explode into
small plasmas and that if the wires are close enough then these plasmas will
connect and the current will flow uniformly in azimuth. However, the evi-
dence indicates that the wires, and especially those of materials such as Al
and W that perform well, do not initially explode.

Instead the wires ablate because the current flowing on their surfaces heats
them so strongly that plasma flows away from their surfaces. This can create
a structure in which the plasma and magnetic field have merged but the
wire cores remain. The likely behavior of the magnetic field is complex – the
field is not frozen in. The magnetic diffusion time, from (2.72) and Fig. 2.2,
for distances of fractions of a mm, with electron temperatures that are not
so many eV, may be of order 1 ns and certainly is much smaller than the
implosion time of order 100 ns. The field is initially strongest near the wire
surfaces and will tend to diffuse outward into the developing plasma, where
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it can merge to form a more symmetric structure. The diffusion of the field
also corresponds to a diffusion of the current, so the plasma experiences a
J × B force that accelerates it inward. In typical cases it appears that of
order half the wire mass may be accelerated inward before the final phase
of the implosion. Some magnetic field will be carried with such plasma, and
more may diffuse into it.

It is unclear at this writing how much force is actually delivered to the
wire cores, and whether the cores themselves actually move. On the one hand,
if the wire cores eventually become small enough to explode into plasma, then
they probably do move. On the other hand, there is some evidence that the
wire ablation ceases once the wires develop gaps, which are likely the result of
MHD instabilities in the wires themselves. At this time, there is no longer a
source of plasma to sustain the current and magnetic field at the edge of the
array, and the outer edge of the plasma will implode inward, sweeping up the
interior mass in what is usually described as a snowplow implosion. There may
be a fundamental underlying cause, but at the moment it seems amazing and
fortuitous that modeling of this more complicated process produces implosion
times that are nearly identical to those produced by a uniform plasma shell.
Whatever these details turn out to be, the important consequence is that
wire-array implosions can be efficient sources of x-rays for high-energy-density
experiments.

8.3.2 Dynamic Hohlraums

One can also use an imploding geometry to produce an intense radiation envi-
ronment known as a dynamic hohlraum. In a Z-pinch, one produces a dynamic
hohlraum by imploding a cylindrical array of high-Z wires onto a low-density
cylindrical target that is a few mm in diameter. A dynamic hohlraum can also
be produced with a laser by driving a cylindrical or spherical implosion in
a high-Z gas such as xenon. Here we discuss the fundamental behavior that
makes a dynamic hohlraum possible. In a dynamic hohlraum, a radiative
shock is driven by an imploding radiation case. We will make a preliminary
analysis of the behavior and potential of the dynamic hohlraum. Our goal
is not to find realistic results, but to see whether such an approach might
merit further exploration. This is an example of the sort of back of the en-
velope scoping calculation that one does frequently, in order to assess which
possibilities deserve a closer examination.

In order to heat the entire volume, the shock must be radiative and the
upstream medium must not be too opaque. This leads one to drive a radiative
shock through a low-density medium. However, the density must not be too
low, as one must have enough optical depth to convert the post-shock thermal
energy to radiation. The imploding container provides the necessary pressure,
doing pdV work on the shocked matter. For simplicity, we assume that the
shock velocity is kept constant as the shocked matter is compressed by driving
a single shock through it. We further assume that all the thermal energy
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Fig. 8.17. Temperatures from a simple dynamic hohlraum model. The curves show
the temperature from the initial shock (solid), from the resulting stagnation (gray),
and from the second shock and stagnation (dashed). When the two curves separate,
the upper curve is for ρ = 0.01 g/cm3 and the lower curve is for ρ = 0.001 g/cm3

from the shock is contained within a fixed volume. Thus, we assume for now
that the unshocked material is bounded by a fixed wall that is perfectly
reflecting. (We saw in our discussion of hohlraums that this is a reasonable
approximation for a high-Z wall.) The combination of moderate opacity and
confinement of radiation assures that the radiation and the shocked matter
will equilibrate to the same temperature.

The shock, assumed to be strong and steady, converts 50% of the incident
mechanical energy into thermal energy (in the laboratory frame, which is
relevant here). Just as the shock reaches the axis of symmetry, the mechanical
energy will still be contained in the moving matter and the thermal energy
will be shared by the matter and the radiation. Allowing for the compression
of the low-Z matter by a factor of (γ + 1)/(γ − 1), we find
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ρoRT
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ρou
2
s

2
(γ + 1)
(γ − 1)

. (8.85)

Here ρo is the initial density, us is the shock speed, ρ is the postshock den-
sity (equal to ρo(γ + 1)/(γ − 1)) and T is the temperature of the shocked
matter and the radiation. If one were irradiating an object located inside the
dynamic hohlraum, this is the largest temperature one could achieve before
the mechanical impact also began to affect the object. Figure 8.17 shows this
initial temperature as solid black curves, for two densities of a material with
A ∼ (1+Z) and γ = 4/3. At low enough velocities, the radiation energy den-
sity is negligible and the temperature scales with u2

s just as in Chap. 4. The
curves deviate from this scaling as us increases, but over the range shown the
system never becomes radiation dominated. One sees that shock velocities of
a few hundred km/s can produce temperatures of a few hundred eV.

On the other hand, one might use the dynamic hohlraum to provide a
directed radiation source out of the end of a cylinder or through a struc-
ture in a sphere. In the next phase of its evolution, the incoming material
would stagnate at the center, converting its mechanical energy into thermal
energy, decreasing the volume and increasing the density by another factor of
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(γ + 1)/(γ − 1). During this period, we assume that the incoming, reflecting
wall acts to sustain the pressure on the outside of the compressed material.
At the end of this process, the energy balance would give

4σT 4

c
+

ρoRT

(γ − 1)

(
γ + 1
γ − 1

)2

=
ρou

2
s

2

(
γ + 1
γ − 1

)2
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The resulting temperature is shown as the gray curves in Fig. 8.17. To obtain
a large gain from this step, the incoming shock velocity must be quite large.

Following the stagnation phase, the imploding wall may launch an addi-
tional shock into the low-density material. Assuming that the incoming wall
velocity and γ remain the same, the resulting ingoing shock and subsequent
stagnation would double the energy and reduce the volume by another factor
of the shock compression squared, giving
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The resulting temperature is shown as a dashed curve in Fig. 8.17. Of course
each of these calculations may be an overestimate if energy escapes from the
system during the implosion to this point.

Figure 8.17 assumes γ = 4/3. When the energy content of the radiation is
not important, the curves for different densities overlap. As usual, even when
the energy content of the radiation is comparatively small, the radiative fluxes
may dominate the energy transport. Implosion velocities of 300 km/s are not
difficult to achieve. One can see that our estimated temperatures for this
implosion velocity are 150 eV for the first shock and 300 eV for the second
shock. This is definitely large enough to be of interest. At the present writing,
dynamic hohlraums are being explored as drivers for inertial fusion. Looking
to the future, the constraints on stability and on preheat for a dynamic
hohlraum are much less demanding than those for inertial fusion. As a result,
they may offer a path to the achievement of radiation temperatures above
1 keV either through shock reverberation or through very large implosion
velocities.

Homework 8.13

An alternative way to think about what could be done with an imploding
radiative shock is to imagine that one can drive a converging shock in an
optically thin system. Assuming that such a shock reaches steady state, plot
the radiation flux and its characteristic temperature against shock velocity
for densities of 0.01 and 0.1 g/cm3. Comment on the comparison with the
above calculation.
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8.3.3 Magnetically Driven Flyer Plates

As a final application of the pulsed-power technology that drives Z-pinches,
we consider how such a source of current and voltage can be used to isentrop-
ically compress and/or accelerate samples. In the traditional Z-pinch uses the
fact that nearby conductors carrying parallel currents attract, as we discussed
in the beginning of Sect. 8.3. By running parallel currents through an array of
low-mass conductors, one can make them implode. There is a return current
in a Z-pinch, but it is placed at a large radius so that it has little effect on
the implosion, as we discussed. However, it is also true that conductors car-
rying opposing currents repel one another. By placing the opposing currents
in close proximity, one can create a large force that drives them apart. If one
makes one conductor quite massive and gives the adjacent conductor a much-
lower mass, then the low-mass conductor will be preferentially accelerated.
This is the key to what is sometimes known as magnetic drive.

The reason for this name becomes more clear if one thinks about the
magnetic fields that these currents generate. The two conductors generate
a magnetic field between them, perpendicular to the currents and with a
direction given by the right-hand rule. One way to think of the resulting
drive is to consider that each conductor experiences a J × B force, just as
we did when we discussed the Z-pinch. A second way to think about magnetic
drive is to note that the magnetic pressure drops to zero across a thin layer
at the surface of the conductor where the current flows, so that one can say
that the magnetic pressure is applied to the conductors. This magnetic field
can be enormous.

Homework 8.14

Revisit the derivation at the beginning of Sect. 8.3. Consider two infinitely
wide, plane parallel conductors carrying opposing currents. Find the force per
unit area between them and express it in terms of the magnetic field magni-
tude. Discuss how the force per unit area compares to the energy density of
the magnetic field.

Thus far this description shows how to apply a large force to accelerate
an object. There is an additional aspect of this possibility that gives it more
value. By adjusting the increase of the current with time, one can control the
time dependence of the force. In particular, one can increase it slowly enough
to avoid launching a shock into the driven material. Observing the response
of the material to such an isentropic compression can provide substantial
insight into the equation of state. Beyond this, by isentropic compression
and acceleration one can launch a cold flyer plate at a higher velocity that
can be produced by traditional flyer-plate launchers such as gas guns. At this
writing, Al flyer plates have been launched isentropically at velocities above
30 km/s.
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In Chap. 1 we looked forward to potential connections between high-energy-
density physics and astrophysics. Some of these connections arise because
one can produce in the laboratory circumstances that actually exist in as-
trophysics and can measure the properties of these systems. We have seen
examples of this in the areas of equations of state, in Chap. 3, and opacities,
in Chap. 6. Other connections arise because high-energy-density experiments
can produce hydrodynamic or radiation hydrodynamic behavior under con-
ditions that are relevant to astrophysical systems. By this means, one can
explore the dynamic processes in ways that allow precise reasoning from
the experimental results to the astrophysical process. Even so, astrophysi-
cal phenomena involve spatial and temporal scales that are many orders of
magnitude (sometimes 25) greater than the scales encountered in laboratory
experiments, so one may wonder whether a valid comparison is possible. The
issue of whether and how one can make this comparison is the issue of scaling.
When an experiment and an astrophysical system can be directly compared,
the experiment is said to be well scaled. The focus of the present chapter is
on how one can establish scaling that relates laboratory processes to astro-
physical ones. (This chapter draws heavily on work done by the author with
Dmitri D. Ryutov and Bruce A. Remington, reported in a series of papers
and reviews from 1999 through 2006.)

We begin with some historical remarks specific to this area. As applica-
tions of lasers were first developed, one of the great minds in plasma physics,
John Dawson, suggested in 1964 that they might be useful in the context
of astrophysics (see Dawson). With the lasers and instruments of that era,
one could have blown up a speck of matter, taken a picture, and marveled
at the exploding star. But such a picture, then or now, would have no rele-
vance to exploding stars. The advances in lasers and experimental technique
from that time through the 1980s set the stage for the use of lasers to study
the astrophysical properties and processes. Effort in both areas began in
the early 1990s. Work relating to equations of state and opacities was dis-
cussed in Chaps. 3 and 6. Among the early work in astrophysical processes
were laser experiments at the Naval Research Laboratory relevant to blast
waves in magnetospheres (see Ripin et al.) and in astrophysics (see Grun
et al.). The first publication to specifically suggest the use of lasers to address
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hydrodynamic processes in supernovae was by Takabe in 1993. There are
several review articles describing the early years of such work (Drake 1999;
Remington et al. 1999, 2000; and Takabe 2001, Remington, Drake, and
Ryutov 2006).

Our task here is to discuss the fundamental principles that must guide
laboratory experiments whose goal is to advance our understanding of astro-
physical processes. Our specific focus is the areas that high-energy-density
experiments can readily address – hydrodynamics and radiation hydrody-
namics. There are three issues that arise in the context of any particular
experiment. These might be labeled scaling, unique experimental contribu-
tions, and code validation. The issue of scaling is whether an experiment
is possible that is completely well scaled to the astrophysical system, or is
well-scaled with regard to certain key dimensionless parameters but not in all
respects. The issue of unique experimental contributions is whether experi-
ments can address questions that are important in the astrophysical context
but that cannot be answered by theory or simulation. We discuss below two
examples of this in the area of hydrodynamics. The issue of code validation
is whether an experiment can be defined that provides a useful and mean-
ingful test of a computational astrophysical simulation tool, whether or not
the entire system may be well scaled or may make a unique contribution.
In practice, there is no required relationship among these three issues. The
third (code validation) is generally the easiest to identify and so is a likely
starting point in any particular experimental effort. We turn now to the area
of hydrodynamics, where we will first discuss the issue of scaling.

In this chapter, we discuss the general scaling issues for hydrodynamic
experiments at some length, as this is an excellent example. We then discuss
two types of such experiments. These explore hydrodynamic instabilities in
supernovae and the destruction of clumps by shocks. Then we discuss scaling
in radiation hydrodynamic systems, and radiative jets as a specific example.
Before proceeding we should note that the laboratory study of processes in
astrophysics is not limited to high-energy-density systems. Processes that do
not require high Mach numbers or radiation can be studied at lower energy
density. One example, at this writing, is the work of a number of groups
who are advancing the study of magnetic reconnection, which is one source
of energetic particle production in magnetized interplanetary and interstellar
plasmas. Another example is the study of the dynamic behavior of magnetic
flux tubes. There will doubtless be more examples in the future.

10.1 Scaling in Hydrodynamic Systems

We first consider the issue of scaling for processes that can be described by
hydrodynamic equations. In the specific case of purely hydrodynamic sys-
tems, one can draw some general conclusions about scaling that are valid for
all experiments. This section develops these conclusions and discusses how to
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apply them to specific cases. The reader can find a more detailed discussion
in Ryutov et al. (1999, 2001) and Ryutov, Drake, and Remington.

The reader may wonder why one cares about comparing systems whose
behavior is hydrodynamic, so let us consider this first. It may seem as though
we understand hydrodynamics, but it would be more accurate to say that we
understand the equations that apply to hydrodynamics. We also know that
these equations are nonlinear in ways that produce immediate complexity
under many circumstances. This has two consequences. First, it means that
there are questions that are too complicated to be addressed successfully in
computer simulations. We will see one example of such a question below, in
our discussion of supernovae. A second example involves the onset of turbu-
lence, in the context of Sect. 5.8. The Reynolds number Re in astrophysical
flows is typically far above the value of 10,000 at which the mixing transi-
tion can begin. In contrast, the computer simulations cannot achieve even
Re ∼ 10, 000 when modeling moderately complicated systems because of nu-
merical viscosity. In addition, turbulence models are too uncertain to know
which approach to an integrated description of turbulence might be best. An-
other aspect of the impact of turbulence is that it remains unclear whether
fine structures in an evolving system can significantly affect the large-scale
evolution of the system, a process described in the literature as “stochastic
backscatter (Leith; Piomelli et al.). To address the presence and importance
of these effects in the context of astrophysics, experiments that are both
clever and well scaled are required.

Second, the complexity of realistic hydrodynamics implies that code val-
idation is essential even for the processes that may in principle be simulated
successfully. It is unclear how well we understand how to model numerically
the very nonlinear evolution of hydrodynamic systems. Like a series solution
to a differential equation, a computer simulation is only an approximation
to the actual solution of the physical equations being solved. Unlike a series
solution, it is very difficult to judge the error involved in the approximate
computational solution. In addition, independent simulations often produce
different results (Glimm, Grove, Li, et al.), especially on a scale below about
10% of the initial perturbation wavelength (Kane et al. 1997). Because of
these difficulties, a code that works well for a certain class of problems may
not work well for other problems. Thus, validation that is relevant to the
dynamics of interest is important for each specific dynamical process.

Now we turn to the specific issues involved in hydrodynamic scaling. We
are concerned with systems that obey the Euler equations, (2.1)–(2.3). Now
consider the initial value problem for this set of equations. Let us present
the initial spatial distributions of the density, pressure, and velocity in the
following way:

ρ(t = 0) = ρ∗f
( r

L∗

)
, p(t = 0) = p∗g

( r

L∗

)
,

and
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u(t = 0) = u∗h
( r

L∗

)
, (10.1)

respectively, where L∗ is the characteristic spatial scale of the problem, and
the other quantities marked by the asterisk denote the value of the corre-
sponding parameter in some characteristic point; the dimensionless func-
tions (vectorial functions) f, g, and h have absolute magnitude of order
unity. They determine the spatial shape of the initial distribution. We note
that there are four, dimensional parameters determining initial conditions:
L∗, ρ∗, p∗, and u∗. Let us then introduce dimensionless variables (which we
denote by the tilde) in the following way:

r̃ =
r

L∗ , t̃ =
t

L∗

√
p∗

ρ∗
, ρ̃ =

ρ

ρ∗
, p̃ =

p

p∗
,

and

ũ = u

√
ρ∗

p∗
. (10.2)

When one expresses the set of (2.1) to (2.3) in terms of the dimensionless vari-
ables, one finds that the equations maintain their form, with all the quantities
being replaced by their analogs bearing the tilde sign. The initial conditions
presented in the dimensionless variables acquire the form

ρ̃(t̃ = 0) = f(r̃), p̃(t̃ = 0) = g(r̃),

and

ũ(t̃ = 0) = u∗
√

ρ∗

p∗
h(r̃). (10.3)

Now consider two different systems, say, an astrophysical system and
a laboratory system. One sees that the dimensionless initial conditions for
the two systems are identical if the dimensionless functions f , g, and h are
the same, and the single dimensionless parameter, u∗√ρ∗/p∗, remains un-
changed. In other words, provided this parameter is invariant, and the initial
states are geometrically similar (i.e., the functions f , g, and h are the same),
one would have the same dimensionless equations and the same dimensionless
initial conditions for any two hydrodynamical systems. This implies that the
systems will evolve identically in a scaled sense.

Homework 10.1

Show that the Euler equations are in fact invariant under the transformations
just described.

Normally, similarity arguments are used to ensure that some parameter
(of interest in a particular problem) can be scaled between two systems.
This can be, for example, the normalized spatial scale for radiative cooling
in an astrophysical jet (Sect. 10.5), or the energy confinement time in a
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plasma device (as in Connor and Taylor). We are demanding much more,
that the whole dynamical evolution of two systems with properly scaled initial
conditions be similar.

There is only one constraint on the four parameters determining evolution
of the system. For the second system, one can choose the scale length, L∗,
arbitrarily. One can then also choose arbitrarily two of the three parameters,
p∗, ρ∗, and u∗. Then by choosing the magnitude of the remaining parame-
ter so as to maintain u∗√ρ∗/p∗ constant, one can obtain a system which
behaves similarly to the first one. This similarity was named in Ryutov et
al. (1999) the Euler similarity, and the parameter u∗√ρ∗/p∗ was named the
Euler number, Eu. It is very important that the Euler similarity covers not
only smooth solutions of the Euler equations, but also solutions containing
shock waves or multiple shocks. The proof can be found in Ryutov et al.
(2000).

There is a special case, often present in astrophysical objects (like SN
explosions) and in the corresponding laboratory experiments, that is much
simpler. Assume that there is a system with an arbitrarily distributed initial
density, and with some initial pressure profile and initial velocities of the
order of the sound velocities or less. Assume then that a planar (cylindrical,
spherical) piston is moved into the system with a velocity much greater than
the initial sound velocity. Considering as an example a spherical piston, we
can describe its motion by the equation

r = L∗qp(t/τ∗), (10.4)

where τ∗ is the characteristic time of the piston motion (the time within which
it is displaced by the distance ∼ L∗); the dimensionless function qp (with
subscript p standing for the piston) and its argument t/τ∗ are of the order of
unity. The initial density distribution will as before be ρ(t = 0) = ρ∗f(r/L∗),
with the function f being of the order of unity.

The strong shock propagating in front of the piston brings the plasma to
a new state; the characteristic pressure in this new state is

p∗ ∼ ρ∗L∗2/τ∗2, (10.5)

and the characteristic velocity is

u∗ ∼ L∗/τ∗. (10.6)

This state is essentially independent of the pressure and the velocity in front
of the very strong shock (see Chap. 4).

If one takes a second system, with the scale factors τ∗, L∗, and ρ∗ ar-
bitrarily changed but with the function f in (10.3) and the function qp in
(10.4) remaining the same (i.e., initial density distributions are geometrically
similar, as are temporal dependences of the piston position), the two systems
will evolve identically in the limit that the shock is strong enough.
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For example, if in system 1 characterized by scaling factors τ∗
1 , L∗

1, andρ∗1,
the density is ρ1(r, t) then the function f is ρ1(r, t = 0)/ρ∗1. The evolution
of the density in system 2 will then be ρ2 = (ρ∗2/ρ∗1) × ρ1(rL∗

1/L∗
2, tτ

∗
1 /τ∗

2 ).
In this case (10.5) and (10.6) imply that u∗√ρ∗/p∗ has the same value in
both systems, so there is no need to impose this as a separate constraint. The
implication is that all the characteristic parameters (τ∗, L∗, andρ∗) can be
varied independently, and still the similarity exists. This very broad similarity
can be extended to include the case where the piston surface deforms in
an arbitrary fashion during the piston motion; to do that, one should just
describe a piston by the general equation for a surface evolving with time:
F (r/L∗, t/τ∗) = 0.

A necessary condition for the validity of the Euler equations is that the
terms in a more general fluid description are negligible. We discussed the
requirements for this in Chap. 2. The specific constraints are that the fluid
description rather than the kinetic one must apply, that the Reynold’s num-
ber must be large, that the Peclet number must be large, and that radiative
energy transfer must be negligible. We discuss below the value of these num-
bers for one specific experiment and astrophysical system.

It is often the case that an experiment and a similar astrophysical system
meet these constraints, but that the value of one of the scaling parameters
is quite different. For example, high-energy-density experiments tend to have
Reynold’s numbers in the range of 105 to 107 while the Reynold’s number
of otherwise similar astrophysical systems is much larger. In such cases it is
worthwhile to ask what the significance of these differences may be. This is
not a topic we will explore here at any length. For the specific case of the
Reynold’s number, one would expect that the presence of an inertial range
would matter (see Sect. 5.8), but that the ratio of the Taylor microscale λT

to the Komogorov microscale ηk would not be important.

10.2 A Thorough Example: Interface Instabilities
in Type II Supernovae

As an example of a well-scaled experiment, we will now discuss experiments
to study interface instabilities in Type II supernovae in some detail. Overall,
Supernovae (SNe) involve a very broad range of physical processes. (The term
supernova is represented by SN, so the plural is SNe.) Their complete descrip-
tion requires the use of as disparate areas of science as particle physics and
general relativity on the one side, and hydrodynamic stability and turbulence,
on the other. Some aspects of SNe are amenable to study by experiments in
the laboratory, while others are not.

A nice description of the SN phenomenology, as well as existing theories
of their formation, can be found, e.g., in the book by Arnett. Other papers of
general interest include Bethe, Woosley, and Woosley and Eastman. SNe are
believed to explode by two fundamental mechanisms: collapse of the core (in
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large stars) and thermonuclear explosion (in small stars below 8 solar masses
at birth). The classification by types is based on spectra and is too involved
to discuss here. The Type Ia SNe, which will not be our focus here, are
predominantly thermonuclear. They occur when white dwarf stars, composed
primarily of C and O, accumulate enough mass to overcome the pressure
of their degenerate electrons. They then begin to gravitationally collapse,
releasing enough energy to cause explosive fusion burning of their C and O.
Our focus will be on the predominant core-collapse SNe of Type II.

10.2.1 The Astrophysical Context for Type II Supernovae

Any large-enough, pre-supernova star develops of shells of material around an
iron core. Iron accumulates in the core because Fe is the most stable nucleus
(see Chap. 9). The inner shell is composed primarily of the elements Si and
Ca, the second shell is primarily C and O, the third shell is mainly He, and
the outer shell is mainly H. One such star became SN 1987A. Any such star is
initially composed primarily of H. It develops the interior shells in succession
as the gravitational pressure compresses and ignites the accumulating mater-
ial that will form the next shell. This process stops with Fe, because the star
cannot create further energy by converting the Fe to any other material. But
once the star accumulates a “Chandrasekhar mass” (1.4 solar masses) of Fe,
the gravitational pressure on the core overcomes the degeneracy pressure of
the electrons and the core collapses. The collapsed core forms a neutron star
that might later be detected as a pulsar.

The collapse of the Fe core is accompanied by the generation of a short
but very intense burst of neutrinos (carrying away some 99% of the released
energy). Some of the neutrino energy is coupled to the remaining matter
that did not collapse, primarily near the core. The kinetic energy of the
exploding matter in a typical SN event is ∼1051 erg. This brief deposition
of energy creates an almost classic point explosion case (except for the small
hole in the middle). A blast wave (see Chap. 4) develops and propagates out
through the star, blowing it apart. When the blast wave emerges from the
star, this gives rise to the observed tremendous increase of luminosity. Only
a few percent of the hydrodynamic energy is emitted as visible light. In more
detail, all the elements of the description just given must be present, but may
be insufficient to explain the actual generation of the blast wave. It may be
that some nonsymmetric motions, even perhaps involving the generation of
a jet during the process of core collapse, are involved in the generation of the
blast wave.

Figure 10.1 shows typical light curves for three types of SNe. One should
remember that the light as detected by optical telescopes comes not from the
core, where the energy release has occurred, but rather from a photosphere, to
which the energy is transported by a complex combination of hydrodynamic
flows and radiative transport. Linking the energy release in the SN core to
a visible light curve is a substantial challenge. A correct description of the
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Fig. 10.1. Type I and II curves are normalized to their luminosity at the maximum
(reproduced from Doggett and Branch 1985). Note the presence of two sub-classes
of SN Type II, with one of them (P) having a plateau in luminosity, with the other
(L) showing a regular decay

material opacities and of the transport of material and radiation is very
important. In the present section we are concerned with the transport of
material.

Among the broad array of problems related to SN explosions, we shall
concentrate on the laboratory simulation of hydrodynamic phenomena in
Type II SN explosions and specifically on the evolution of hydrodynamic
instabilities at the interfaces in the star. We choose this topic because, on
the one hand, multi-dimensional hydrodynamic effects are thought to be very
important and, on the other hand, there already exist successful experiments
of this type, related to the shock breakout through the He–H interface. In
addition, the analysis of the scalability and other constraints can be nicely
illustrated; this example can serve as a template for similar analyses of the
other problems.

Hydrodynamic instabilities arise as follows during the stellar explosion.
At each interface between shells there is a significant density decrease. The
interfaces are not smooth but are structured by convection, rotation, and
other dynamics. The blast wave is likely to be born with structures resulting
from neutrino convection (one model of this leads to the structure seen in
Fig. 10.2). In addition, the blast wave is perturbed by the structure at the
interfaces as it propagates outward. Even though the shock at the head of the
blast wave will tend to anneal as described in Sect. 5.7.1, only small-enough
perturbations will anneal completely. As a result, each structured interface
will experience in its turn the passage of a structured blast wave. That is, the
blast wave communicates between interfaces, so that the structure at inner
interfaces produces additional structuring of the outer interfaces. During the
deceleration phase that follows the blast wave, the structures at the inter-
face will grow first through the Richtmyer–Meshkov process (Sect. 5.7.3) and
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Fig. 10.2. 2D simulation of SN 1987A, from Kifonidis, Plewa, Janka, and Muller,
Astrophys. J. Lett 531, L123 (2000)

then through the Rayleigh–Taylor instability (Sect. 5.1.2). All this had been
understood for some time, but the ultimate nonlinear consequences were not
clear before the advent of SN 1987A.

In observations of SN 1987A, emissions from the heavy elements, and
other indications of their presence in the outer layers of the supernova, were
observed only a few months after the explosion. The observed early appear-
ance of heavy elements (like Ni56 and Co56) in the photosphere of SN 1987A
(see Sutherland 1990, and references therein) is incompatible with a spheri-
cally symmetric expansion and seemed to indicate that the instabilities have
important and observable effects. Even so, simulations of the explosion in two
dimensions (see Arnett et al.; Fryxell et al.; Burrows et al.; Kifonides et al.
2000), which was all that was feasible computationally, did not produce rapid
enough penetration to explain the observations. Partial simulation studies in
three dimensions also indicated that the more-rapid penetration that would
be found in three dimensions was not large enough to make up the difference.

In the context of our discussion above, in the introduction to this chapter,
these circumstances created two roles for experiments. The first role is code
validation. It was worthwhile to determine whether systems of this type be-
have in some way that existing simulations did not reproduce. A well-scaled
experiment with two-dimensional structures would be sufficient for this pur-
pose. We discuss such an experiment next. The second role is the direct
observation of cases with realistic complexity. An important question, which
cannot be answered by simulations in the current era, is to what extent in
three dimensions the coupling between the interfaces in a diverging explosion
actually manages to increase the outward penetration of the inner material.
This is relevant not only to SN 1987A but also to other cases such as Cas-
siopeia A. Laser facilities to be completed during the early 21st century will
be able to carry out this second role.
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10.2.2 The Scaling Problem for Interface Instabilities
in Supernovae

We now turn to the challenge of performing well-scaled experiments to sim-
ulate interface instabilities in SN 1987A, specifically at the He–H interface.
This problem serves as an example for designing scaled laboratory experi-
ments. It allows one to clearly identify the most important steps leading to
the formulation of a scaled laboratory experiment. These steps, described in
more detail in the following, are: (1) make sure that hydrodynamic description
is adequate; (2) evaluate the role of transport processes (mass, momentum,
and energy transport); (3) determine the equation of state; (4) characterize
initial conditions; and (5) consider whether some simplification in geometry
is possible (e.g., can some time segment of evolution of a planar system ade-
quately describe the evolution of a spherically divergent system?).

As a representative set of plasma parameters in the He–H transition region
(Table 10.1), we consider the set of parameters given in Müller et al. These
are of course parameters from computer simulations, as observations are not
possible. However, they should be fairly reliable because of the simplicity of
the fundamental blast wave problem. With reference to the table, let h be
the density gradient scale-length, u be the characteristic velocity, T be the
plasma temperature (the electron and ion temperatures are equal), and ρ be
the plasma density. The characteristic deceleration experienced by a given
fluid element at the He–H interface in the SN following arrival of the blast
wave can be estimated as v/τ , with τ ∼ h/v, so v/τ ∼ v2/h ∼ 5×105 cm/s2.
The gravitational acceleration is much smaller and is also negligible in the
laboratory experiment to be discussed. Table 10.1 also shows parameters for
the laboratory experiment. These are again based on simulations, although
in this case several measurements support the detailed numbers given. From
the parameters in Table 10.1, we can derive the scaling parameters given in
Table 10.2.

Table 10.1. Fundamental hydrodynamic parameters for a supernova experiment

Parameter Supernova 1987A Experiment

(2000 s) (21 ns)
Length scale (cm) 9 × 1010 0.0180
Velocity (km/s) 2000 35
Density (g/cm3) 0.0075 0.4
Pressure (dynes/cm2) 3.5 × 1013 5.2 × 1011

Temperature (eV) 900 7.4
Zi 2.0 0.6
A 4.0 11.4
Density of nuclei (cm−3) 1.1 × 1021 2.1 × 1022
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Table 10.2. Derived scaling parameters for a supernova experiment

Derived Parameter Supernova 1987A Experiment

u∗/
√

p∗/ρ∗ 2.9 3.1
Collisional mfp (cm) 3.5 × 10−3 7.9 × 10−8

Kinematic viscosity (cm2/s) 7.0 × 107 0.334
Reynolds number 2.6 × 1011 1.9 × 105

Thermal diffusivity (cm2/s) 1.2 × 106 15
Peclet number 1.5 × 1013 4.2 × 103

Radiation mfp (cm) 6.8 × 102 2.0 × 10−4

Radiation Peclet number 106 2.5 × 109

Now we proceed with the steps just described. First consider whether
the Euler equations apply to these systems. The case of the experiment is
straightforward – the plasma is quite collisional and radiation is not impor-
tant. The SN is more complex. To be specific, we discuss properties of the
He plasma. At T = 800 eV it is fully ionized. Mean free paths with respect
to electron–ion (λei) and ion–ion (λii) collisions are very short, λei ∼ 10−3

cm and λii ∼ 2× 10−2 cm. The electron–ion energy equilibration time is less
than 10−9 s. Therefore, the electron–ion component behaves as a strongly col-
lisional gas with equal temperatures of electrons and ions. The particle pres-
sure of a helium plasma for ρ = 4×10−3 g/cm3, T = 800 eV is p = 2.3×1012

erg/cm3 = 2.3 Mbar. The radiation pressure for T = 800 eV is pR = 2× 1013

erg/cm3 = 20 Mbar. In other words, the radiation pressure dominates.
Despite the dominance of radiation, the Euler equations apply because

the matter entrains the photons. The photon mean free path (mfp) with
respect to Compton scattering (Thomson scattering at these low tempera-
tures), �C, is very short, �C ∼ 103 cm (the mfp for inverse bremsstrahlung
is much longer). In other words, the plasma containing the photon gas can
be described as a single fluid, whose pressure is the sum of the photon and
particle pressures, and which can be characterized by a single velocity of the
mass flow u. The energy per unit volume in the case where the pressure is
dominated by photons is ER = 3pR, thereby corresponding to the polytropic
gas with γ = 4/3. Therefore, the Euler equations apply to both systems.

The second task is to evaluate the dimensionless parameters discussed
in Sect. 2.3 and to consider their implications, with reference to the derived
parameters in Table 10.2. First we discuss the SN. When evaluating viscous
effects, all sources of viscosity must be added. An ordinary (particle) viscosity
(from (2.39), for a helium plasma with T ∼ 800 eV, ρ ∼ 8× 10−3 cm−3, and
ln Λ = 10, is ∼ 2000 cm2/s. The photon viscosity (from 2.40) is much larger
than the ordinary viscosity, νrad ∼ 7×107 cm2/s. Accordingly, the Reynold’s
number, evaluated for h ∼ 1011 cm, u ∼ 2 × 108 cm/s, and ν = νrad, is
2.6 × 1011. Hence, the viscous effects are very small.
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The Peclet number evaluated for thermal diffusivity (from 2.33) of the
electrons (lines 5 and 6 in the table) is very large, but in fact heat conduction
is dominated by the photons. The photon mean free path � is much less
than the characteristic length-scale h. An estimate (see Zeldovich and Raizer)
for the thermal diffusivity χ of the photons is χ ∼ c�. For the case under
consideration, where � is the mean free path for Compton scattering, �c, one
has χ ∼ 2× 1013 cm2/s. The corresponding radiation Peclet number is large,
∼ 106, meaning that the system is essentially adiabatic.

Now consider the experiment. Assuming based on simulations that the
average charge of the ions is ∼ 0.6, and taking the Coulomb logarithm equal
to 1, one finds (from 2.39) that the viscosity of CH2 plasma is ∼0.3 cm2/s.
Accordingly, the Reynold’s number is Re ∼ 2 × 105. Although smaller than
in the supernova, this is higher than a typical critical Reynold’s number
corresponding to the onset of the instability of the sheared flow (Re ∼ 103)
and the mixing transition (Re ∼ 104). Therefore, it is clear that viscous
effects will not determine the plasma behavior in the laboratory experiment.

Electron thermal diffusivity χ in the laser experiment is (from 2.33) ∼15
cm2/s, so that the Peclet number corresponding to the particulate heat trans-
fer is high, ∼4,200. (Because the plasma in these experiments could be con-
sidered ideal only marginally, the aforementioned estimates of ν and χ should
be considered as order-of-magnitude estimates.)

Turning to the role of radiative losses in the experiment, this subject is
complicated by potential effects of optical depth. (The large value of the radi-
ation Peclet number shown in the table implies that diffusive heat conduction
by radiation is small but does not preclude large radiative losses from plasma
that is not optically thick.) One can give an upper estimate for the effect of ra-
diation as follows. The maximum possible energy loss from the surface of the
plasma slab is that corresponding to the blackbody radiation at the plasma
temperature, 2σT 4. On the other hand, plasma energy content per unit area
of the plasma surface is (3/2)h(ne +ni)kBT . Dividing the second by the first,
one finds a lower-bound estimate for the characteristic plasma cooling time.
Taking parameters of Table 10.2, we find that it is 1.8 µs, 90 times longer
than the characteristic time of the hydrodynamic problem (h/v ∼ 2 × 10−8

s). In other words, radiative heat transport also does not affect the plasma
dynamics. To conclude this section: dissipative processes in the problem of
the stability of the He–H interface are negligible, and Euler equations are a
legitimate description.

The third topic on our list is the equation of state. Hydrodynamic equa-
tions are structurally stable with respect to minor differences in the equation
of state, so these differences cannot change the general similarity between
the astrophysical system and its laboratory counterpart. What matters is the
presence of phase changes. In this case, there are none during the postshock
evolution of interest. Therefore, we conclude that the laboratory experiment
correctly simulates all aspects of the hydrodynamics of a real supernova at
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Fig. 10.3. Experiment and supernova profiles from simulations. (a) He–H interface
in SN1987A at 2000 s. (b) CHBr–Foam interface in experiment at 21 ns

the stage of the shock propagation through the progenitor star. As to the
relation of scales, 21 ns in the laboratory setting corresponds to 2000 s in the
supernova, and 20 µm corresponds to 1010 cm.

Our fourth topic is initial conditions. Figure 10.3 shows an example of the
profiles in the supernova and the laboratory experiment, according to com-
puter simulations. If these were identical, and if the laboratory experiment
were spherical, then the experiment would evolve identically to the star. In
reality any laboratory experiment can reproduce only a limited time-segment
of a real process. One can create conditions in which the scaled spatial distri-
bution of all essential parameters in the experimental package are, at some
moment in time, similar to those of the astrophysical system (at least in the
vicinity of the region of interest). Then, the similarity arguments above show
that the two systems will evolve in a similar fashion. It is reasonable to use a
planar experiment, like this one, to simulate a limited portion of a spherical
explosion, but then the experiment will be a good model of the star only
until the divergence of the star becomes significant. A bigger limitation is
that the initial similarity can be attained only in a limited region of space.
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As a result, the temporal evolution will be similar only during some limited
time, which is set by the time of propagation of hydrodynamic perturbations
from the edges of the zone where the initial similarity exists.

The specific design of an experiment involves the specification of the struc-
ture of the target and the parameters of the laser (or other) drive, within the
limits of available target-fabrication and laser-system technologies. This typ-
ically involves conceptual analysis followed by 1D hydrodynamic simulations
to establish a viable approach. For example, in the experiment just described
one drives a steady shock with the laser pulse and sizes the target so that
the rarefaction from the front surface, which develops after the laser pulse
ends, overtakes the shock to form a blast wave before the shock reaches the
region of interest (see Fig. 4.23). 2D or 3D simulations can then evaluate
the effects of finite experiment size and the amount of instability growth one
can anticipate. One of the challenges is to obtain sufficient instability growth
within the limited time-interval during which the two systems are similar.

10.2.3 Experiments on Interface Instabilities
in Type II Supernovae

In one of the first attempts to conduct experiments that were a well-scaled
study of an astrophysical process (as opposed to measuring a property of as-
trophysical matter), a team of researchers conducted a series of experiments
aimed at the problem of hydrodynamic instabilities at the H–He interface in
the years around the turn of the 21st century. The point of these experiments
was to observe the dynamics of this process in a well-scaled environment. All
these experiments apply an initial ablation pressure either through direct
laser irradiation or through x-ray irradiation. They all produce a blast wave
by launching a shock that is later overtaken by a rarefaction (see Sect. 4.3).
The subsequent structure in the target then determines which aspects of un-
stable dynamics are being explored. Figure 10.4 (adapted from Robey et al.
2001) compares the time dependence of the velocity at the interface in such
an experiment with the velocity at the He–H interface in SN1987A, as deter-
mined by a simulation of the explosion.

The first such experiments (Remington et al. 1997; Kane et al. 1997,
1999a, 2000) used the Nova laser to examine the RT growth from a single-
mode initial perturbation at a planar interface. The instability grew until the
distance from the valleys to the peaks in the observed modulations (known as
the bubble-to-spike distance) became equal to the initial wavelength of 200
µm. This is very nonlinear (see Sect. 5.7). Simulations, using the astrophysical
code PROMETHEUS (Fryxell et al.) and the laboratory code CALE (Barton,
Tipton), reproduced this result, but the details of the structures did not
strongly resemble what seemed to be present in the rather poor data obtained
in this first attempt. Related experiments were also undertaken during the
same period by a French group (Benuzzi-Mounaix et al.).
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Subsequent experiments (Drake 2004, Robey, Kane et al., 2001, Robey,
Miles et al., 2003, Robey, Zhou et al., 2003, Miles 2004, Miles, Blue et al.,
2004, Miles, Braun, et al. 2004, Miles, Edwards, et al. 2004) improved the
quality of the data. The scaling parameters used in Tables 10.1 and 10.2
were taken from these experiments. Figure 10.3 shows the spatial profiles
of SN1987A and these experiments, based on simulations. One can see that
these profiles are similar, or in other words that the functions f and g are sim-
ilar. (Figure 10.4 showed that the interface trajectory is similar. One could
view this as showing the similarity of the generalized time-dependence for
the strong-shock case or as implying the similarity of the function h, a scalar
here.) One concludes from the tables and from these figures that the experi-
ment is a well-scaled (though not perfectly scaled) model of a segment of the
exploding star. This will remain true until the interface in the experiment dis-
covers that it is not spherical, when the interface is affected by disturbances
from the edges.

Figure 10.5 shows data from one such experiment. The image is an x-ray
radiograph, taken at 18 ns in the experiment. Darker regions in the image
show smaller x-ray intensity, produced primarily by absorption in the Br
dopant that was included in a tracer layer within the denser material. In this
case, a single mode with an initial wavelength of 50 µm and an initial peak-to-
valley amplitude of 5 µm has grown to a very large amplitude. The tips of the
spikes in the image have been broadened by the Kelvin–Helmholtz instability
and will soon begin to interact (Miles, Blue et al. 2004). The experiments
just mentioned set the stage for experiments that proceeded to take up the
challenge developed above – the study of how the instability would develop
in well-scaled experiments that employed more-complex, three-dimensional,
and ultimately realistic initial conditions (Robey, Miles, et al. 2003, Drake,
Leibrandt et al. 2004, Kuranz, Drake et al. 2004, Kuranz, Drake et al. 2004).

Related experiments have explored the effect of coupling between inter-
faces, discussed in Sect. 10.2.1, on the RT instability. These are worth men-



438 10 Experimental Astrophysics

Fig. 10.5. Radiographic data from a supernova simulation experiment, at 18 ns

tioning because they became the explicit focus of an extensive code validation
stuy. The experiment to examine this (Kane, et al., 2001) produced data that
were shown in Fig. 1.4. One can see the Cu spikes, extending to the right, and
the modulations in the second interface, made visible by the tracer strip in
the plastic below the interface. Detailed simulations of this experiment were
carried out as part of a validation study (Calder et al.) for the astrophysical
code FLASH, which included adaptive grids and other advanced features. A
detailed comparison of the simulation results with the experimental images
supported the same conclusion as in the previous case. The simulations repro-
duced the qualitative features of the data very well. Quantitatively, several
details were not accurately reproduced, including the exact spike length, the
height of the structuring in the interface, and the behavior at the edges of
the system. In the specific case of the FLASH simulations, the length of the
Cu spikes was found to change with the number of levels of refinement in
the simulation but did not appear to be converging toward the experimental
value.

Homework 10.2

Design a diverging experiment to address the coupling of two structured,
unstable interfaces that are affected by a blast wave. Beyond the basic re-
quirements for hydrodynamic scaling, identify other specific parameters that
are important to the dynamics. (Hint: review blast-wave propagation and
shock stability as part of your work.)
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Thus, well-scaled experiments can address significant issues in astrophysi-
cal systems that are purely hydrodynamic. The above examples have detailed
one case in which initial experiments were useful for code validation and in
which eventual experiments will address physical questions that cannot be
addressed in simulations of the complete astrophysical dynamics. In addi-
tion, the process of doing such experiments initiated a productive interplay
of astrophysical data, laboratory experiment, and computer simulation whose
ultimate outcome, as of this writing, remains to be seen.

10.3 A Second Example: Cloud-Crushing Interactions

The previous section discussed a case in which producing a system that was
well scaled in a global sense produced useful results. We also saw in Sect. 10.1
that producing the correct density structure and very strong shocks might be
sufficient to obtain good scaling in many hydrodynamic systems. However,
even when this is possible, it may not be sufficient to obtain results that
are genuinely useful, especially when one hopes to go beyond code validation
and address complex questions that simulations cannot answer. To obtain
genuinely useful results, one often must consider additional parameters that
assure that an experiment has the scales in time and space required to access
the interesting dynamics. We consider one such case here.

This case involves the interaction of shock waves or blast waves with
clumps of material. This is common in astrophysics. Shock waves, generally
produced by supernovae, propagate through an interstellar medium (or mole-
cular clouds) that is inherently very clumpy. One would like to observe the
resulting destruction of the clumps in laboratory experiments and to develop
and test the ability to accurately simulate this destruction. In the process,
one would like to identify whatever regimes exist, such as regimes in which
the dynamics of a given clump may be affected by the presence of other
clumps. One would also hope to identify whether any processes develop in a
scaled laboratory system that cannot be produced in a computer simulation,
such as the onset of turbulence.

In the case we will consider, the experiment and the astrophysical system
are both hydrodynamic and the shock wave that induces the destruction of
the clump is definitely a strong shock. As a result, any system in which a
strong shock encounters a dense clump of some specific shape will be hy-
drodynamically well scaled to any other such system, subject to the other
limitations discussed in Sect. 10.1. However, one can identify two other pa-
rameters that characterize the interaction of a blast wave and a clump in
a given experiment. Suppose the blast wave propagates at a given veloc-
ity us through a medium having a density ρm and interacts with a clump
having a characteristic density ρcl and radius rcl (and presumed to be spheri-
cal). The most-important scaling parameter describing this interaction is the
cloud crushing time, defined as tcc = (rcl/us)

√
ρcl/ρm. The corresponding
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Fig. 10.6. Schematic of experiment on interaction of blast wave with clump

dimensionless parameter in the experiment is the ratio of the duration of the
experiment (as a well-scaled system) to tcc. This must be large enough to see
the dynamics of interest. The second scaling parameter that describes this
interaction is the ratio of the width of the blast wave between its half-pressure
points to rcl. To model a specific astrophysical system in detail, one would
also have to match this parameter to the astrophysical value.

Homework 10.3

Determine why tcc as just defined is the relevant timescale for the crushing
of the cloud.

Figure 10.6 is a sketch of the geometry used in experiments to address the
destruction of a single clump by a planar blast wave (Klein et al.; Robey et al.
2002). A number of laser beams irradiated a layer of plastic material, driving
a shock into it. After the laser pulses ended, the rarefaction of the front sur-
face overtook this shock, creating a planar blast wave just as described in the
previous section. This blast wave eventually encountered a dense (Cu) sphere,
whose evolution was observed for several cloud-crushing times. In a funda-
mental sense, this experiment was not as well scaled as the one described
in Sect. 10.2, because the Cu sphere was liquefied but not vaporized by the
shock and thus had an equation of state rather different from that of an as-
trophysical cloud. Later, improved experiments used lower-density materials
that could be vaporized by the shock. As a result, this specific experiment is
of the type in which the experiment is not completely well scaled but certain
key dimensionless parameters are well scaled, so that it can be instructive
regarding the dynamics and perhaps useful for code validation. This initial
experiment is a relevant model of the incompressible fluid dynamics of cloud
destruction.

These experiments observed the evolution of the sphere for several cloud-
crushing times. The interaction of the sphere with the postshock flowing
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Fig. 10.7. Data from an experiment on interaction of blast wave with clump. These
three frames show what has become of the spherical obstacle after the passage of
the shock, seen in the first two frames but beyond the region observed in the third
frame. One can see the crushing of the sphere followed by the development of vortex
rings. The squares in the reference grids are 63 µm on a side. From Robey et al.
(2002)

plasma produces vortex rings (see Sect. 5.8). This is illustrated in Figure 10.7.
These are circular spirals of fluid that initially have vorticity on their surfaces.
The vortex rings are subject to bending instabilities that produce three-
dimensional structure by modulating the rings in the azimuthal direction
(see Widnall and Sullivan, 1973, 1974). The development and properties of
these structures can be examined in the data and in astrophysical simulations
of a similar system. Thus one can use these experiments to test the ability of
astrophysical codes to simulate this type of shock–cloud interaction.

Homework 10.4

Suppose that an astrophysical blast wave of interest is produced by a super-
nova explosion that is a known distance R from a clump of some radius rcl.
Determine the properties of an experimental blast wave and the duration of
the experiment that would be required to model the shock–clump interaction
in this system.

10.4 Scaling in Radiation Hydrodynamic Systems

Radiation hydrodynamic systems are challenging for both theory and exper-
iment. We saw in Sect. 7.4 how the addition of radiation to shock waves
greatly complicates their behavior, even without considering the details of
actual radiation emission and transport. We mentioned in Chap. 7 a num-
ber of examples of astrophysical systems that are radiation hydrodynamic
systems. In comparison to hydrodynamic systems, radiation hydrodynamics
introduces new difficulties in scaling, in simulation code development, and
in experiments. At minimum, such experiments ought to be able to provide
benchmarks for the implementation of radiation hydrodynamics in astrophys-
ical codes. Beyond that, one might hope to identify specific processes that
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matter in astrophysics, that could be produced in the lab, and that were
difficult or impossible to simulate with computers. In this section we discuss
the issues associated with scaling. While complete scaling is possible in the
abstract and perhaps in special cases, it seems more likely that actual exper-
iments will scale the important dimensionless parameters well but will not
manage to successfully scale all aspects of the radiating system. In this sec-
tion we discuss two types of system for which laboratory experiments seem
feasible – radiative shocks and radiative jets.

We will consider here only the radiative-flux regime, leaving the scaling
of radiation-dominated experiments to be developed when such experiments
exist. (Our discussion parallels that of Ryutov et al. 2001.) In the radiative-
flux regime, the first two Euler equations (2.1 and 2.2) remain unchanged,
but a radiative-heating term must be added to the third Euler equation (2.3),
which becomes

∂p

∂t
+ u · ∇p = −γp∇ · u − (γ − 1)∇ · F R, (10.7)

in which as usual F R is the radiation flux.
In the abstract, one may be able to express ∇·F R as a power law function

of density, pressure, and scale length in some astrophysical system, so that

∇ · F R1 = Aρα1pα2rα3 . (10.8)

Note that this formulation requires that the radiation transport be local. This
implies that the system of interest is either optically thin so that radiation
is a pure loss term or optically thick so that a diffusion model applies. For
an optically thin system, α3 would be zero, while for an optically thick sys-
tem it might not be. This case will serve our purposes here, although even
more general cases are possible. In principle ∇ · F R might be a somewhat
more complicated function of vectorial position r and might also include a
dependence on velocity.

If we now perform the variable transformation described in Sect. 10.1, we
obtain

∂p̃

∂t̃
+ ũ · ∇p̃ = −γp̃∇ · ũ − (γ − 1)

[
Aρ∗(α1+1/2)p∗(α2−3/2)L∗α3

]
ρ̃α1 p̃α2 r̃α3 .

(10.9)
This equation will be invariant between any two systems, such as an astro-
physical system and a laboratory system, if the coefficients α1, α2, andα3

and the quantity in square brackets are the same in both systems. In prac-
tice the values of ρ∗ and L∗ (if applicable) will be fairly tightly constrained
in an experiment, so the primary adjustment that could be used to obtain
a well-scaled experiment would be in increasing p∗ to make the quantity in
square brackets equal in the experiment to its value in the astrophysical sys-
tem and to adjust the composition of the experimental materials to make the
coefficients equal.
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As one might expect, one looses some freedom in specifying the parame-
ters by comparison with the purely hydrodynamic case. But all that matters
to have a well-scaled experiment is the net cooling rate and its dependences
on pressure and density. The microscopic mechanisms are not important.
This is significant because the radiation cooling in optically thin astrophysi-
cal systems is nearly always due to line radiation while the cooling in high-
energy-density experiments is more often dominated by thermal radiation.
Unfortunately, achieving such a perfectly scaled experiment is a very tall or-
der, requiring at minimum a very sophisticated design effort. In addition, for
any given case it is unlikely to be practical. This at least is the view from the
early 21st century.

Indeed, we have seen in Chap. 7 that radiation transport is often non-
local. In addition, even in cases with local radiation transport it may not
prove feasible to obtain the same, power-law scaling for the radiation in both
systems. In such cases, one cannot produce an experiment whose evolution
will be identical, in a scaled sense, to a specific astrophysical system. Even
so, the behavior of the astrophysical system may depend primarily on certain
dimensionless parameters that reflect the processes which control its dynam-
ics. Then one may be able to observe phenomena in the laboratory with the
same values of these essential dimensionless parameters. In the case of radia-
tive shocks, we saw in Chap. 7 that the controlling parameters are the optical
depth of the upstream and downstream regions. In the following, we consider
the case of radiative jets.

10.5 Radiative Astrophysical Jets: Context and Scaling

Many astrophysical jets are purely hydrodynamic, and so the discussion of
Sect. 10.3 would apply to simulation experiments aimed at them. Other astro-
physical jets are inherently magnetized or involve strong magnetic fields. One
might do some experiments relevant to these using relativistic high-energy-
density systems, but it is very unlikely that one could do so working in the
nonrelativistic regime that has been our primary focus. Our present interest,
in the context of radiation hydrodynamics, is in radiative jets. We proceed
to discuss these here.

10.5.1 The Context for Jets in Astrophysics

Galactic and extragalactic jets present some of the most visually intriguing
images encountered in astrophysics. One class of such objects are the stel-
lar jets known as Herbig–Haro (HH) objects (see Reipurth and Bally 2001),
thought to be collimated bipolar outflows emerging from accretion disks dur-
ing the star formation process. Figure 10.8 shows an image of one such jet,
HH 34. The jet shown emanates, at velocities of ∼300 km/s, from the pole
of a protostar near the bottom of the image. The protostar itself is hidden;
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Fig. 10.8. Image of the HH 34 jet. This image shows the hydrogen Hα emission.
The protostar is near the left in the center. From Riepurth et al. (2002)

one sees reflections through the dust surrounding it. Like other HH jets (see
Hartigan et al. 2000), HH34 includes multiple bow shocks, suggesting that
the bipolar outflow has been episodic. It is typical that the fastest moving
material (at ∼200 km/s) occurs on the axis, with slower yet higher luminosity
material concentrated at the edges of the jet (see Hartigan et al. 1993). This
suggests entrainment of ambient material due to the Kelvin–Holmholtz (KH)
instability along the edges of the jet, leading to a greater shock excitation
but slower velocities at the edges. The HH jets have typical scales of 1017 cm,
velocities of a few hundred km/s and densities njet of 102 to 103 cm−3. In
terms of density contrast, this corresponds to η = njet/nambient  1, where
nambient is the ambient number density. The bow shocks in such jets are often
radiative shocks. The internal shocks may or may not be.

Whereas HH jets are thought to be emitted during the formation phase
of a star, another category of jet is formed toward the end of the evolution
cycle. A star of a certain mass can pass into the asymptotic giant branch
(AGB) phase and then to the planetary nebula or proto-planetary nebula
(PPN) phase on its way to becoming a white dwarf. During the AGB-to-PPN
transition, it appears that bipolar jets can again be emitted, one example
being He 3-1475 (see Borkowski, Blondin, and Harrington). The central source
for this system is a star at a distance of ∼2 kpc, which is in the midst of
making the transition from a dust-enshrouded AGB star to a PPN. The star
is surrounded by a torus of molecular material expanding at 12 km/s. The
most spectacular features of He 3-1475 are the optical jets, and three pairs
of symmetric knots, moving in the direction perpendicular to the molecular
torus. The knots are located symmetrically with respect to the central star
and are moving radially away at velocities of 500 km/s. Closer to the star, the
jetlike outflows have velocities as high as 850 km/s. Radiative shocks moving
at velocities of ∼100 km/s are thought to be the excitation mechanism for
the observed emissions.
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Homework 10.5

Magnetized jets must have a ratio of plasma pressure to magnetic field pres-
sure (usually called β in plasma physics) no larger than about 1. For a low-Z
plasma with a density of 0.1 g/cm3 and a temperature of 10 eV, determine
how large a magnetic field would be required to satisfy this constraint. How
does this compare with the magnetic field of order 1 MGauss that is typically
produced in laser–plasma interactions and that might be produced by very
clever field-compression experiments?

The basic features of a high Mach number jet, present for both radiative
and purely hydrodynamic jets, are illustrated schematically in Figure 10.9
(Hartigan 1989). A source is assumed to exist that creates a beam or jet of
material (labeled 1) streaming into the ambient medium (labeled 2). This
launches a forward or bow shock into the ambient medium, moving at speed
vBS. The presence of the ambient medium causes the jet material to slow
down, creating a Mach disk in the jet. Within this description, beam or
jet refers to the collimated material streaming from the source to the Mach
disk. Shear along the sides of the jet triggers the Kelvin–Helmholtz (KH)
instability, which generates vortices and eddies that churn up mixing along
the contact discontinuity. The region of shocked jet material between the
contact discontinuity and jet (beam) is referred to as the cocoon. The KH
vortices in the cocoon can launch shocks into the jet (beam), which act as a
heating mechanism for radiative emissions from within the jet.

Contact 
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Shocked Jet 
  (cocoon)
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Fig. 10.9. Schematic of the structure of an astrophysical jet, from Hartigan (1989)

10.5.2 Scaling from Radiative Astrophysical Jets
to the Laboratory

There are three dimensionless parameters that characterize the properties of
a jet and the degree to which radiation is important to its dynamics. The
internal Mach number (the ratio of the flow velocity to the sound speed within



446 10 Experimental Astrophysics

5

0

−5

−5

5

0

0 5 10 15 20 25 30

Fig. 10.10. Impact of radiative cooling on jet structure, for Mach 20 jets whose
density equals the initial ambient density. From Blondin et al. (1990)

the jet), Mint, characterizes the amount of kinetic energy that can potentially
be converted to thermal energy through shocks. The cooling parameter, χj , is
defined by χj = Lcool/Rjet, where Rjet is the jet radius and Lcool corresponds
to the length behind the Mach disk beyond which the jet has cooled to some
low value. This characterizes the relative scale on which radiation can alter
the properties of the matter in the jet. The density parameter is η as defined
above. This affects the amount of pressure in the shocked ambient medium,
which interacts both with the head of the jet in the Mach disk region and
with the jet along its length via the pressure in the cocoon.

The effects of radiative cooling on astrophysical jets can be very large (see
Blondin et al. and Stone and Norman 1994). Figure 10.10 shows results of
simulations that assume a very high Mach number jet, having Mint = 20, and
an equal density with the ambient medium, so η = 1. The plasma is assumed
to be optically thin, so that photons emitted by hot regions of the jet leave the
system. The effects of radiation are included by means of a time-independent
cooling function Λ(T ), assuming equilibrium conditions (see Sect. 6.2.2 and
Fig. 6.5). Here χj is calculated for cooling to a temperature of 8×103 ◦K. As
the magnitude of radiative cooling is increased from a purely adiabatic jet,
χj  1 (Fig. 10.10a), to a strongly cooled jet, χj = 0.2 (Fig. 10.10b), the jet
morphology changes significantly. Radiative cooling removes heat from the
system, lowering the internal pressure of the jet. The working surface and jet
contract until pressure equilibrium is reestablished, making the radiatively
cooled jets denser and more compact. In a more detailed description, radia-
tion should be treated as a nonequilibrium, time-dependent process, and if
the medium is not optically thin, full transport (nonlocally redepositing the
photon energy) may be needed.
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Fig. 10.11. A ratiative jet experiment. Schematic (a) and images of self-emission
((b) axial and (c) side-on) from an experiment producing a radiatively collapsing
Au jet. Adapted from Farley et al.

10.5.3 Radiative Jet Experiments

High-energy-density experiments offer the means to create high-Mach-number
jets and to diagnose their subsequent dynamics and evolution (see Stone et al.
2000). For example, the effect on jet dynamics of variations in η,Mint, andχj

can in principle be directly observed in laboratory experiments. Here we dis-
cuss as an example the first experiment to produce a radiative jet, done on
the Nova laser at LLNL (see Farley et al. and Stone et al. 2000). A schematic
of the experimental arrangement is shown in Fig. 10.11a. A gold disk had
a 800 µm diameter cone of 120o full opening angle machined into it. Five
high-irradiance, 100 ps laser beams from the Nova laser irradiated the inside
surface of this cone were symmetric (in azimuth), with an average irradi-
ance IL ≈ 3× 1015 W/cm2. The high-speed, ablated Au plasma thus created
expands in a direction normal to the local surface. The radial velocity com-
ponent causes this plasma to implode and stagnate on the axis of the cone.
The axial velocity component brings the imploded plasma out into view as
a high-speed jet. Radiation from the hot, stagnated plasma causes the jet to
shrink in size and increase in density.

This experiment was diagnosed with x-ray imaging. One gated x-ray
framing camera looked directly face-on at the cone. This is illustrated in
Fig. 10.11b with the face-on x-ray image in emission at t = 0.25 ns relative
to the peak of the Gaussian laser drive. The small bright spot near the center
of the image is the imploded Au plasma that has stagnated on the axis, and
that is moving at ∼750 km/s out of the page, directly toward the recording
x-ray camera. Views of this same jet from the side in soft x-ray emission at
1.1 ns (Fig. 10.11c) show that the radiative emissions later in time are on the
surface of the Au jet. The reason for the forked nature of the emissions in the
side-on image is that the regions of the imploding plasma that stagnate first
on the axis (at ∼0.5 ns) radiatively cool at first, and appear dark (cool) later
in time. By 1.1 ns, this leading tip region stops emitting in the soft x-ray
band for which the instrument is sensitive, because the electron temperature
Te has dropped dramatically. A side-on radiograph found the densest part of
the jet to be along the cone axis (Farley et al.). Simulations of this experiment
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illustrate the importance of radiation. As the plasma collides on the axis, it
heats up to over ∼1 keV and has a high ionization state, Z ∼ 40, but a low
density, ρ ∼ 40 mg/cm3. In this state, the hot Au plasma cools itself rapidly
by radiative emissions, since the plasma is initially optically thin to the keV
photons. The temperature was measured by Thomson scattering at 0.6 ns, at
which time Te had already dropped to 250 eV. The radiative cooling leaves
a very compact, highly collimated jet moving axially away from the cone at
∼750 km/s. In simulations that do not include radiative cooling, the jet is an
order of magnitude too broad, since the pressure of the stagnated Au plasma
is high, which would stop the implosion (see Mizuta et al.).

A continuation of this experiment was done on the Gekko-12 laser at
the University of Osaka in Japan (see Shigemori et al.). These experiments
produced jets from cones of Au, Fe, Al, and CH. The results show a clear
correlation: the higher the Z, the shorter the cooling time and the narrower
the jet. The experiment at Gekko generating a Au jet reproduced very closely
the results from the original experiment, showing that the physics being in-
vestigated is reproducible and not facility dependent. In a complementary
experiment, the Magpie Z-pinch at Imperial College in London, England,
was used to produce radiatively cooled, high Mach number jets (see Lebedev
et al.). These radiative jet experiments observed similar trends to those just
described.

These two experiments (on Nova and on Gekko) are a good example of a
first attempt to produce a radiation hydrodynamic system that is relevant to
astrophysics. Even as experiments that scale important dimensionless para-
meters, they are incomplete, because they do not include an ambient medium
(thus, η ∼ ∞). In addition, the formation mechanism does not manage to
produce an emerging source of material in a consistent initial state. Rather,
the first part of the jet to form (that nearest the target ) is the trailing
portion of the jet that emerges. Each part of this jet has a unique history
of energy input and cooling dynamics. So if one were seeking a well-scaled
experiment that was a direct analog of any astrophysical jet, these first exper-
iments would not achieve this goal. However, the experimenters did manage
to vary the radiative cooling parameter χj over the range of 0.7 to 40 and to
vary the internal Mach numbers from 2 to 50. Given the paucity of radiation
hydrodynamic experimental data, these experiments are in fact of real value
for the validation of astrophysical codes. But further invention is needed to
develop radiative jet experiments that are well scaled even with regard to the
essential dimensionless parameters.

Homework 10.6

An approach that has been used to form hydrodynamic jets is to create an
adiabatic rarefaction by allowing a shock wave to emerge from a material
into an evacuated tube and then to emerge from this tube into an “ambient
medium”, at a lower density. Using the simple scaling results from this book,
develop a design for a similar experiment to produce a radiative jet.
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In this chapter we address the low-density and high-temperature regime of
high-energy-density physics identified in Chap. 1. While phenomena produced
in this regime often connect with those discussed in the previous chapters,
there are real differences in the underlying physics. A high-energy-density,
thermal, relativistic plasma would have a minimum temperature of 511 keV
and a density exceeding 1018 cm−3. At the turn of the century, such plasmas
did not exist in the laboratory. Producing them can be taken as a challenge
for the early 21st century. However, plasmas did exist at this density with
a mean electron energy exceeding 511 keV. Some such plasmas were made
relativistic by the electron oscillations caused by intense lasers. We will define
a relativistic laser beam as one producing a mean electron kinetic energy
exceeding 511 keV. Some of these laser-irradiated plasmas produce beams of
electrons with characteristic energies of many MeV. In addition, other, denser
plasmas existed with a mean electron energy exceeding 511 keV because of the
presence of a highly relativistic electron beam in a cold background plasma.

To place these systems in context, we return to the definition of high
energy density as corresponding to a pressure exceeding 1 Mbar, or an energy
density exceeding 1012 ergs/cm3. Table 11.1 is based on Table 1.1 in the
National Research Council report (Davidson). From the discussion of Chap.
8, it is clear that achieving these conditions is not so difficult. Here we consider
three specific relativistic examples.

For lasers, the challenge is to get the kinetic energy of the oscillating
electrons up to 511 keV. This requires I18λ

2
µ = 1.35, where I18 is the laser

irradiance in units of 1018 W/cm2 and λµ is the laser-light wavelength in µm.
This is not now difficult. It requires a laser of 1010 to 1012 W, assuming the
focal spot to be 1 to 10 µm. This is less than 1 J in 1 ps or 10 mJ in 10 fs.
The energy density of the electrons within such a focal spot remains a small
fraction of the energy density of the laser beam.

Electron beams at the turn of the century could produce 50 GeV electrons
in a 5 µm spot, with bunches of 5 ps duration at a repetition rate of 100 Hz.
The bunches contained 150 J each and thus contained 2×1010 electrons. The
bunches were long and narrow, being more than 1 mm long. Their volume
was ∼ 10−8 cm3, so the density of these electrons is 2×1018 cm−3. When such
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Table 11.1. Quantities corresponding to 1012 erg/cm3

Pressure 1 Mbar = 0.1 TPascal

Irradiance of laser or relativistic particle beam 3 × 1015 W/cm2

Blackbody radiation temperature 400 eV
Electric field strength 1.5 × 1011 V/m
Magnetic field strength 5 MGauss
Ablation pressure by (1 µm wavelength) laser at 4 × 1012 W/cm2

Ablation pressure by thermal radiation at 75 eV
Particle density for 511 keV mean kinetic energy 1018 cm−3

a beam passes through a solid with an electron density of 2× 1023 cm−3, the
resulting average electron energy is ∼ 500 keV. These beams do not deposit
their energy very readily, so studies with them primarily involve ways to
affect the beam. This includes the important area of wakefield acceleration,
discussed in Sect. 11.7.2.

Ion beams at the turn of the century (specifically the Relativistic Heavy
Ion Collider) could cause ion bunches to collide at a 50 MHz repetition rate.
The ions had an energy of 100 GeV per amu, or 20 TeV for Au ions; the
bunches were of ∼ 500 ps duration, ∼ 200 µm diameter, and ∼ 3 kJ energy.
Each bunch of such ions has an energy density of about 3 × 1012 ergs/cm3

shared among about 109 ions. Here again, the ion beams do not deposit their
energy very readily, so studies with them primarily involve ways to affect
the beam. In addition, as we mentioned in Chap. 8, beams of nonrelativistic
heavy ions can be used to heat high-Z matter into the high-energy-density
regime.

Most of this chapter is devoted to the behavior of matter in the presence
of electromagnetic fields strong enough to produce relativistic electron mo-
tions. The devices that produce relativistic laser beams are called ultrafast
lasers, for reasons that will become clear. The emphasis on ultrafast lasers
reflects both their broad availability and their potential to produce extremely
high electric and magnetic fields. We also discuss relativistic effects that can
be produced using high-energy electron beams in the area of particle accel-
eration. One can expect that more such applications will develop as the 21st
century proceeds.

As in the previous chapter, this chapter includes many more references to
journal articles than most of the book does. This reflects the relative newness
of work in this area. However, once again the present chapter is not written
as a review. Rather, it is intended as an introduction to the physics and the
issues.
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11.1 Development of Ultrafast Lasers

Since about 1980, the challenge of producing high-power lasers has become
distinct from that of producing high-energy lasers. While the laser systems
described earlier can heat cubic millimeters of material to million-degree tem-
peratures, they cannot produce relativistic electrons or distributions of ions
with billion-degree temperatures. This requires much more intense laser light.
One cannot produce such light by directly amplifying a laser pulse; the ampli-
fying glass would be damaged. The invention by Gerard Mourou of chirped
pulse amplification (CPA) has allowed laser systems to escape this limita-
tion (Mourou and Umstadter). All intense lasers amplify a laser beam whose
spatial area is much larger than the ultimate focused laser spot. CPA goes
further, also doing this in the dimension of time. In CPA, one amplifies a
laser pulse whose time duration is much longer than the ultimate duration
of the pulse reaching the laser spot. This is done as follows.

Despite the notion that lasers are coherent, single-frequency devices, any
laser pulse in fact has a finite bandwidth. For a laser pulse that is Gaussian
in time, with a frequency bandwidth ∆ω and time profile exp[−(t/τ)2], one
can show by Fourier transforming the laser pulse that ∆ωτ ∼ 1. Thus, very
short laser pulses may have a significant bandwidth. It is now possible to
produce laser pulses of order one cycle in duration (∼ 1 fs for visible light);
such pulses have a very broad bandwidth. There are a number of methods for
producing such pulses at low energy and low irradiance. The contribution of
CPA is to provide a way to stretch these pulses in time, allowing them to be
amplified at low irradiance before they are recompressed to high irradiance,
after which they are focused to enormous irradiance.

Figure 11.1 illustrates a simple compressor design that can stretch a pulse
in time. The first grating disperses the incoming, broadband, collimated laser
pulse in angle, so that the angle of reflection of each frequency is distinct. This
is illustrated in the figure by showing a pair of rays one labeled red and one
labeled blue. The grating diffracts the longer wavelength, red rays through a
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Fig. 11.1. Schematic of pulse stretcher. Credit: Enam Chowdhury
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larger angle. A lens pair is used to cause the angle of incidence on a second
grating to equal the angle of reflection from the first grating. The result is
that a collimated laser beam emerges from the second grating, with different
frequencies offset in space. A mirror reflects the light back upon itself, so
that each frequency retraces its path and one obtains an outgoing beam of
the same size as the initial beam. Geometrically nothing has changed, but
temporally each frequency has traveled a different distance, and the redder
frequencies have traveled less distance. One has dispersed the beam in time,
producing a chirped laser pulse whose frequency varies linearly with distance
along the pulse, with redder frequencies at the front.

Homework 11.1

Design a pulse stretcher. Suppose you have a laser beam with an 800 nm
central wavelength and a bandwidth of 20 nm (corresponding to a 50 fs laser
pulse). Use two identical gratings, recalling that for the first diffracted order
the scattered wavelength λ is given by λ = d(sin α + sinβ), where d is the
line spacing on the grating and α and β are angles of incidence and reflection
relative to the grating normal. Use two identical lenses, recalling that the
object distance, o, image distance, i, and focal length f are related by o−1

+i−1 = f−1. Note that the initial grating must be less than one focal length
from the lens to obtain stretching.

At this writing some ultrafast lasers have been dedicated systems with
a very short laser pulse, an excellent quality laser beam, and comparatively
little laser energy. Other systems have been aimed at delivering more laser
energy to the targets, which would be necessary for example for inertial fu-
sion using fast ignition (Sect. 8.2.4). These higher-energy systems are often
adaptations of a high-energy laser to the task of amplifying short laser pulses.
However, none of these lasers yet produces enough energy to create an iso-
lated, thermal, relativistic plasma.

11.2 Single-Electron Motion in Intense
Electromagnetic Fields

Many of the fascinating phenomena that ultrafast lasers can produce are a
consequence of the relativistic motion of the electrons. To develop some in-
sight into what this makes possible, we consider first the motion of isolated
electrons in the fields of such lasers. To do so, we take the electron velocity
to be v, the electron momentum to be pe, the vector and scalar potentials to
be A and Φ, and we work as in Chap. 8 in the Coulomb gauge. In Gaussian
cgs units, the electromagnetic wave equation is not changed for high veloci-
ties, although one must transform the fields properly between inertial frames
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of reference. To work complicated problems in relativity, four-vector nota-
tion becomes very convenient, but we will not invest time in this here. The
electromagnetic wave equation is

(
∂2

dt2
− c2∇2

)
A = 4πcJt, (11.1)

in which as before J t is the transverse current density. This equation is the
same for relativistic and nonrelativistic systems. It is helpful to take note of
some aspects of the implied fields, useful in what follows. In a plane-wave
decomposition, each spectral component has a distinct k, E, and B, and
these are all orthogonal. We let k define the parallel (z) direction. Since
E = (−1/c)(dA/dt), so long as the electric potential Φ = 0, and B = ∇×A,
one can see that (for any spectral component) E and B are out of phase with
A and in phase with each other. The fact that E and B are in phase and
vanish simultaneously may be counterintuitive if you have not considered it
previously. We allow A and thus E to define the x direction and B to define
the y direction. We define the pump strength of the electromagnetic wave as

ao =
eA

mec2
, (11.2)

for reasons that will become clear shortly. In practical units,

ao =

√
ILλ2

µ

1.37 × 1018W µm2/cm2
. (11.3)

We now consider the motion of an electron in a single plane wave (which
may for now include arbitrary spectral components). The equation of motion
for an electron is not changed in its fundamental form: the time rate of
change of momentum equals the force. But the electron momentum, pe, is now
relativistic. Given our definitions, the y component of the electron momentum
is constant in time. The equation of motion for the x and z components of
the electron momentum, labeled px and pz, respectively, are

dpx

dt
= −e

c
(cEx − vzBy) , (11.4)

and
dpz

dt
= −e

c
(vxBy) , (11.5)

in which pe = γrmev and in these Gaussian cgs units Ex = By. To avoid
complications involving products of real quantities in complex notation, we
here assume that Ex and By are real quantities, although (as the particle
experiences them) they may vary arbitrarily in time and space. We allow the
momenta and velocities to be complex.
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If one thinks of a given frequency component of the electric field as seen
by the particle, one can see that the detailed motion of the electron has an
indefinite number of harmonic components. The electric-field term in (11.4)
creates a second-harmonic response in the z motion (11.5), which in turn
creates a third-harmonic response in the x motion through the magnetic-
field term, which then creates a fourth-harmonic response in the z motion,
and so on.

Equations (11.4) and (11.5) and the related conventions enable us to de-
rive a generally useful relation between pz and px, as follows. Defining the to-
tal particle energy as Ee, so that with rest mass me and rest energy Eo = mec

2,
one has

Ee =
√

E2
o + p2c2. (11.6)

The rate of change of the particle energy is due entirely to the work done by
the electric field, so

dEe

dt
= −evxEx, (11.7)

from which by comparison with (11.5) we can see that

Ee − cpz = const ≡ α. (11.8)

Here α is defined for convenience. It depends on the state of the particle
when the field begins. If the particle is at rest at that time, then α = Eo. In
general, from (11.6) and (11.8), one finds

E2
o = Ee

2 −p2c2 = (Ee − pzc) (Ee + pzc)−p2
xc2 = α (α + 2pzc)−p2

xc2, (11.9)

from which
pz =

1
2αc

(
E2

o − α2 + p2
xc2

)
. (11.10)

If the particle is initially at rest so that α = Eo = mec
2, then we obtain

the well known result

pz =
p2

x

2mec
. (11.11)

This equation has some interesting things to tell us. First of all, it says that
motions in both x and in z are always part of the response of an electron to
a wave. Second, recalling that the momenta are complex in this representa-
tion, the motion in z includes a steady drift and an oscillation at twice the
frequency of the oscillation in x. This combination creates a path that looks
like a figure eight, vertically elongated when px is small compared to mec.
Third, isolated electrons cannot be permanently accelerated by light waves.
When an electron initially at rest is overtaken by an electromagnetic wave
packet, the electron oscillates in x and drifts in z, but as the wave packet
passes both these motions cease. The electron ends up displaced but once
again stationary. In the absence of collective effects, (isolated) electrons must
be created within the light wave, for example by ionization, to end up with
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significant net energy once the wave has passed. Fourth, in the limit of very
large fields, |pz| → γrmec, in which case |px| is smaller, being

√
2γrmec. As a

result, vx decreases, becoming vx = px/(meγr) → c
√

2/γr. Finally, the angle
of the electron relative to the z-axis, θ, is given by

tan θ =
√

2
γr − 1

(11.12)

This has sensible limits, going to 90◦ as γr reaches 1 and approaching 0
degrees as γr becomes very large.

Homework 11.2

Assuming that the electron motion is due to a plane wave with a single fre-
quency and that the electron movement is small compared to the wavelength
of the light wave, solve the above equations to find the electron trajectory.
Determine how it changes as the electron velocity increases (while remaining
� c).

Thinking strictly in terms of harmonic motion leaves out some aspects of
the electron motion, because as the field of the laser increases the electron
motion along z soon becomes significant on the scale of the laser wavelength.
In more detail, the electric field experienced by an electron within a (z-
directed) single-frequency plane wave in vacuum is

Ex(xp, t) = Ê cos [kzp(t) − ct + φo] , (11.13)

in which

zp(t) = zo +
∫ t

to

vz(t′)dt′. (11.14)

Here φo gives the phase of the electric field, the z-position of the particle is
zp, and zp at time to is zo. One can see that the particle will experience this
plane wave as a simple harmonic field only if zp is a linear function of t. Yet
we have already seen that this is not the case. Thus, an electron experiences
a light wave as a simple harmonic field only in the limit as the motion of
the electron in z vanishes. In the other limit, as zp → ct, the electron will
experience a nearly constant field. In this limit the maximum energy the
electron can extract from a light wave of finite spot size d is eELd, where the
electric field of the focused light wave is EL.

It is evident that an electron may be introduced into the wave with any
phase and thus may experience any field from zero to the maximum when it
is born. If the electron is born at rest when the electric field is zero, then the
electron returns to rest at the end of each cycle and ends up at rest when the
wave has passed. If the electron is produced at rest when the oscillating field
is at its maximum, then the electron ends up with the maximum possible
energy. When ionization creates the electrons, they may in principle have
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any phase with respect to the wave. But if the ionization is produced by the
wave itself, then the electron will tend to be produced when the electric field
is maximum and at near zero velocity. In this case most of the electrons will
gain a significant net velocity from their interaction with the wave.

We can explore the electron motion somewhat further as follows. We write
the Lorentz factor, which we label as γr, as

γr =

(
1
/√

1 − v2

c2

)
, (11.15)

or

γr =

√
1 +

p2
e

m2
ec

2
. (11.16)

Homework 11.3

Prove that these definitions (11.15) and (11.16) are equivalent.

Now we consider the solutions to (11.4) and (11.5) as the velocity of the
electron increases. In the event that vz is negligible, one has from (11.2)
and (11.4)

γrvx/c = ao, (11.17)

implying
vx/c =

ao

1 + ao
, (11.18)

and also
γr =

√
1 + a2

o (11.19)

in this regime. For small ao, this is identical to the result we obtained in Chap.
8 for the oscillating velocity of the electron in a light wave. As ao increases,
vx/c cannot exceed one, as should be the case. Equation (11.19) will fail to
be accurate as vz/c becomes significant (meaning 0.1 for most purposes). To
explore this, we can use (11.18) in (11.5), finding

d
dt

(vz

c

√
1 + a2

o

)
= − ao

1 + a0

dao

dt
. (11.20)

In the small ao limit, one evidently has vz/c = a2
o/2. One can solve (11.20),

using a computational mathematics program, to see when vz/c approaches
0.1. The additional assumption needed is a specification of a value of vz (e.g.,
zero) at some specific phase in the wave (e.g., π/4). Figure 11.2 plots the
maximum value of R[vz] in the small ao approximation and also plots R[a2

o]/4,
against the magnitude of ao. One sees that the above solutions reach their
limits when ao becomes a few tenths.

Once vz exceeds about 0.1, the solution to (11.4) and (11.5) for the ve-
locity and the trajectory becomes much more complex for two reasons. First,
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Fig. 11.2. Electron oscillating velocity in direction of k as ao increases. The dashed
curve shows the small-ao limit

one must deal with both terms on the left-hand side of (11.4), making their
solution a nonlinear mess. Second, one must consider how the variations in
vz affect the phase of the electron in the wave and change its behavior. To see
the essential feature that determines the qualitative behavior, we now pay
attention to the phase of the electron in the wave.

The outcome of the interaction at very large ao is that the electron moves
along k at nearly the speed of light. One can see from (11.4) that in this case
the force in the x-direction will be greatly reduced. To see how this comes
about, we can represent the pump strength as ao sinφ, explicitly writing the
phase of the wave as φ. For convenience, we treat all the physical quantities
as explicitly real for the present discussion. Now

φ = (k · x − ωt) = (kz − ωt) (11.21)

in which, without loss of generality for our present purposes, we assume the
phase to be zero when z and t are zero. We also take k to be in the z
direction, as assumed above, and chose the signs so the wave propagates in
the forward direction. This is traditional but not necessary. In the discussion
above, we assumed that z = 0 throughout. This is reasonable if the electron is
essentially stationary in z. However, as vz increases, the electron now moves
and as a result it no longer experiences a purely sinusoidal field. The position
zp of an electron is given by (11.14) with zo = to = 0. The phase experienced
by the electron, φe, is

φe =
(

k

∫ t

0

vz(t′)dt′ − ωt

)
= ω

(
1
c

∫ t

0

vz(t′)dt′ − t

)
. (11.22)

Recalling that By = Ex, (11.5) becomes

d
dt

(γrvz) = −ω
(
1 − vz

c

)
(vxao cos φe) . (11.23)

One can see that whether the electron is accelerated or decelerated in z
depends upon the sign of vx and cos φe. But now consider the impact of
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vz on the duration of the acceleration. One can see from (11.22) that φe

decreases as time increases. The question now is what time ∆t it takes for φe

to change by a certain amount, equal to −∆φe. Suppose the average velocity
during this period is vz/c. Then −∆φe = ω∆t(vz/c − 1), so

∆t =
∆φe

ω

1
1 − vz/c

. (11.24)

The important point is that periods when vz is larger, as will occur if the
electron is being accelerated along k, last longer than periods when vz be-
comes negative. The electron rides the wave when going forward but quickly
moves through it when going backward. The result is that the electron is
accelerated longer when moving forward, acquiring a high average forward
velocity.

The electron eventually will stop ever moving backward and instead will
move forward at nearly the speed of light, with the changes occurring pri-
marily in γr rather than in vz. To take an approximate look at this regime,
let vz/c = 1− δ, where δ is assumed to be small. Also suppose that the total
speed equals c, so that vx/c =

√
2δ to the lowest order. Then after defining

η = ωt for convenience, (11.23) becomes, to the lowest order in δ,

dδ

dη
= 4δ3ao cos

(
π +

∫ η

ηo

δ[η′]dη′
)

, (11.25)

in which we have added π to the phase to initialize the electrons moving
forward.

One can integrate this equation to see how δ behaves as time ( η) increases.
Figure 11.3 shows the value of δ and the value of the cosine in (11.25), taking
δ = 0.01 when η = 0. One can see that the brief periods of deceleration
(which decrease vz and thus increase δ) are not sufficient to greatly increase
δ and (allowing for the logarithmic abscissa) that the duration of a cycle
increases as δ decreases.

Homework 11.4

Solve (11.25) for a range of values of the initial phase (i.e., change π to various
other values, for fixed ao = 100 and δ(0) = 0.01. Comment on the variations
in the behavior.

The simple analysis above is not self-consistent, and it ignores the range
of initial conditions produced when an electron is introduced to the light wave
with an arbitrary phase. Enam Chowdhury, in his Ph.D. thesis at the Univer-
sity of Delaware (2004), did a numerical treatment of a related problem. He
used a tunneling-ionization model to inject electrons into fields corresponding
to a model of a focused laser beam. It is helpful to review some of his results
here.
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Fig. 11.3. Electron acceleration. (a) Deviation from speed of light for ao = 10
(upper curve) and ao = 100 (lower). (b) Phase φe of electron in wave for ao = 10

Figure 11.4 shows the distribution of final momentum states that result
from ionization of various ions in intense fields produced by a focused laser.
Even though the initial laser beam is polarized with the electric field in the
x direction, focusing the beam introduces finite electric fields in the y and

Fig. 11.4. Final state momentum plots for the ionization of atoms in a focus having
an f -number of 2.5. The dotted lines represent the relation given in (11.11). (a)
and (b) are for Ne7+ at 1017 W/cm2, (c) and (d) are for Ar8+ at 1019 W/cm2, and
(e) and (f) are for Ar15+ at 1020 W/cm2. Credit: Enam Chowdhury
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Fig. 11.5. The electron energy spectrum for the same physical conditions as in
Fig. 11.4, with the left, center, and right columns corresponding to 1017 W/cm2,
1019 W/cm2, and 1020 W/cm2, respectively. The top panels show the angle of
deviation from the z-axis, in the x–z plane. The bottom panels show the angle of
deviation from the z-axis, in the y–z plane. Here again the dotted lines represent
the relation given in (11.11). Credit: Enam Chowdhury

z directions. This produces the finite momentum in y seen in the top set of
panels in this figure. The relation between pz and px is dominated by the
behavior corresponding to an electron at rest, shown as a dashed line in the
bottom panels. This is because most electrons are ionized near the peak of
the laser field and are nearly at rest when they are produced. Such electrons
form the most intense peaks in Fig. 11.4f, with momenta along the mean
electric field of about ±1.5 MeV/c. The other ionization events produce the
range of electron momenta shown.

Figure 11.5 shows the angle of the electrons relative to the z-axis. The top
panels show the distribution in the x–z plane. This tends to follow the relation
for an electron initially at rest at the maximum field (11.11), shown as a
dashed line. The bottom panels show the distribution in the y–z plane. These
electrons are influenced by the y-component of the electric field produced by
focusing.

Thus, one can produce a beam of energetic electrons, having a distribution
of energies like those seen in Figs. 11.4 and 11.5, from ionization produced
during the laser pulse. This technique can be used to obtain a brief, energetic
electron beam that can be used as a probe or to drive other processes. In con-
trast, the production of intense, directed beams of electrons for accelerators
tends to require the interaction of a high-energy-density source with a plasma.
We discuss this at more length in Sect. 11.7.1 after a general introduction to
relativistic laser–plasma interactions.
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11.3 Initiating Relativistic Laser–Plasma Interactions

One cannot abruptly initiate a laser pulse at an irradiance high enough to
produce strongly relativistic effects. The very best one can do is to produce
a laser pulse with a Gaussian shape in time, with a pulse width whose char-
acteristic time to reach 1/e from its maximum is ∼ 1/∆ω, where ∆ω is the
bandwidth. The problem this creates is that any target experiences all irra-
diances from zero to the maximum as the laser pulse arrives. The laser and
optical system must have three properties in order to obtain the cleanest-
possible laser–solid interactions. First, the laser spot size must be close to
the diffraction limit, so that the experimental results will not be confused
by structure within the laser spot. Second, most of the laser energy must be
present in this spot, to avoid large signals from lower-intensity interactions
outside it. Third, the pulse shape in time must be close to Gaussian, with-
out significant structure early in time. Such early structure is known as a
prepulse.

These issues have led laser systems devoted to the pure study of inter-
action phenomena at high fields to produce shorter and shorter laser pulses,
to minimize the interactions at lower intensities. Such lasers also need to
use deformable mirrors as part of their focusing system, to produce nearly
a diffraction-limited spot. These developments lead in their limit to systems
described as λ3 lasers (λ is the wavelength of the light), whose goal is to
obtain a laser pulse of one cycle in the duration of its maximum irradiance
(and thus of length λ in space), focused to an area of approximately λ2. For
light at a central wavelength of 800 nm, the duration of one cycle is about
3 fs. In contrast, lasers devoted to delivering large energies to a target, for
example to attempt fast ignition (see Chap. 9), end up using much longer
pulses, of order picoseconds. Some of the consequences of this are discussed
below.

In discussing these consequences, it will prove useful to refer to three
laser systems of the early 1990’s. The Vulcan laser, at the Rutherford Ap-
pleton Laboratory in Britain, produced at that time relatively high energy
in a long (∼2 ps) pulse, by doing chirped pulse amplification within a laser
system capable of large output energies (see Danson et al.). The TITANIA
laser in Britain (see Chambers et al.) produced a spot that was five times
the diffraction limit yet still contained substantial internal structure in ad-
dition to a prepulse. The laser facility of that same era at the Center for
Ultrafast Optical Sciences (CUOS) at the University of Michigan produced a
diffraction-limited spot. It could put high irradiance on target without ever
producing a plasma layer whose thickness exceeded a skin depth. (The skin
depth is the penetration distance of the evanescent laser pulse into a medium
past a sharp, reflecting interface. It is the inverse of the imaginary value of
the wavenumber in the region where the light cannot penetrate. For a sharp,
plasma interface at a very high density, the skin depth is c/ωpe.)
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To produce a very thin, plasma layer imposes three requirements on the
laser system. First, the irradiance of the laser light that independently makes
its way through the laser optics to the target and that arrives nanoseconds
before the main pulse, must be kept below 108 W/cm2, to avoid producing
vapor or plasma in front of the target. (see Combis et al., Lindley et al., and
Sauerbrey et al.). Such “prepulses” are often produced by amplified sponta-
neous emission (ASE) from laser amplifiers, or by leakage through Pockels
cells, and can easily be several tens of nanoseconds in extent. ASE prepulses
have proven useful for the purpose of maximizing the production of hot elec-
trons (see Kmetec et al.) or x-rays (see Rousse et al.), but they are harmful
if one’s goal is to obtain very clear evidence regarding laser interactions with
solid matter.

Second, the irradiance of any “pedestal” on the main laser pulse itself
must be kept below 1012 W/cm2 to avoid plasma production that is too early.
Such pedestals are typically a few ps to a few hundred ps in duration. They
are often caused by effects within the laser system that alter the frequency
spectrum of the laser light, such as group velocity dispersion in the laser
glass or gain-bandwidth narrowing. Early short-pulse glass lasers typically
had a pedestal of order 10−3 times the maximum irradiance. Later, with
the advent of Ti:sapphire oscillators, this was reduced to less than 10−5.
The laser at CUOS in 1992 had a measured pedestal of 2 × 10−6 times the
maximum irradiance, next improved to 10−8 times the maximum infrared
irradiance (see Nantel et al.). Doubling the frequency of this pulse kept the
pedestal below 108 W/cm2, even as IL approached 1020 W/cm2. In contrast,
the highest-energy, ultrafast, glass lasers of that era had pedestals above 1012

W/cm2 for many ps.
The third requirement on the laser system is that the main laser pulse

must rise steeply enough at low irradiance. Once IL exceeds about 1012

W/cm2, plasma forms at the surface of the solid and begins to expand. We
give IL because the onset of preplasma depends primarily on the power de-
livered. (This does not rule out small effects that depend on wavelength
and/or absorption, which we ignore here.) The rate of critical-surface expan-
sion scales as the sound speed, which is proportional to T

1/2
e , where Te is the

electron temperature. It reaches of order 100 nm/ps at IL ∼ 1015 W/cm2.
Once ILλ2

µ exceeds 1015 W µm2/cm2, the ponderomotive pressure of the re-
flecting light wave becomes large enough to stop the plasma expansion (see
Liu and Umstadter). At higher intensities, the ponderomotive pressure com-
presses the plasma and pushes the critical density layer back toward the solid
material. A sufficiently intense pulse can first steepen an existing preplasma,
so that the local density scale length, L/λ, becomes quite small, and can then
push the critical surface inward, decreasing D. We distinguish between L, the
local scale length of the density profile at the critical density, and D, the dis-
tance from critical density to solid density. L and D are simply connected for
a free expansion but may be quite different in plasmas that have expanded
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and then been compressed. In the end, the only way to retain smooth, thin,
planar plasma is to limit the initial plasma expansion so as to keep both L
and D small at all times.

The CUOS laser of the early 1990’s accomplished this by doubling the
frequency of a very clean, Gaussian laser pulse of 400 fs FWHM. The dou-
bling efficiency was saturated at the highest intensity, so that the FWHM of
the converted pulse was also about 400 fs. However, at lower intensity on the
rising edge, the intensity of the second harmonic, proportional to the square
of the first-harmonic intensity, rose quite steeply. The second-harmonic inten-
sity, at 527 nm wavelength, increased from 1012 to 1019 W/cm2 (16 e-foldings)
in 500 fs. Confirmation that this laser system produced negligible preplasma
was provided by studies of the high-density plasma using x-ray spectroscopy
(see Jiang et al. 1995). The increase in IL from 1012 W/cm2 to 1015 W/cm2

took only 180 fs, which allowed the plasma to expand only about 10 nm. This
is less than a skin depth for solid density (17 nm at 1023 cm−3). After that,
the light pressure prevented the plasma layer from expanding further.

Figure 11.6 compares the nominal profiles of the pulses of our three ref-
erence laser systems. A laser system with a clean, Gaussian pulse of 1 ps
FWHM, having a peak IL of 1.6× 1017 W/cm2, requires 700 fs to increase in

Fig. 11.6. Reference laser pulses of lasers in the early 1990’s. A schematic CUOS
laser pulse is compared to clean, Gaussian pulses having FWHM of 1 ps and 2.5
ps. The two longer pulses are the best pulses that might have been produced by
the TITANIA and Vulcan laser systems of that era, respectively. The longer pulses
permit much more time for plasma formation
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IL from 1012 W/cm2 to 1015 W/cm2. This would allow a plasma expansion
above 50 nm. This would have been achieved by the TITANIA laser system
if it had a clean pulse and no pedestal or prepulses. A laser system with a
clean, Gaussian pulse of 2.5 ps FWHM, having a peak IL of 1019 W/cm2, re-
quires 1500 fs to increase in IL from 1012 W/cm2 to 1015 W/cm2. This would
allow a plasma expansion above 100 nm. This would have been achieved by
the Vulcan laser system if it had no prepulse. The resulting parameters are
compared in Table 11.2.

Table 11.2. Comparison of plasma size and excursion distances in planar experi-
ments

Iλ2
µ Plasma size Excursion distance

Experiment (W µm2/cm2 ) D/λ xos/D

Vulcan (1993) 3 × 1015 0.2 0.04
Titania (1998) 1 × 1016 0.2 0.08
CUOS (1999) 7 × 1018 0.02 7

One issue that determines how thin a plasma layer is thin enough to
study laser–solid interactions is whether the interaction dynamics involves
the solid-density matter or only involves the lower-density plasma near its
surface. A demanding measure of this, and one which determines whether
Brunel electrons, discussed further below, can participate in the absorption
dynamics, is the ratio xos/D. Here xos = aoc/(γrω) = (λ/2π)(ao/γr) is the
excursion distance of the electrons in the electric field of the laser. We compare
this parameter in Table 11.2 for the three reference cases.

11.4 Absorption Mechanisms

The absorption mechanisms change as IL increases in ultrafast laser-target
interactions. At low enough irradiance (<1014 W/cm2), the laser cannot heat
the dense plasma very much in a short pulse, and collisional absorption of
the evanescent laser electric field dominates the interaction. Strong laser ab-
sorption is observed at normal incidence and in s-polarization (with the laser
electric field parallel to the surface of the target ) is consistent with that
expected from collisions. The absorption is enhanced in p-polarization (with
the laser electric field parallel to the target normal), for modest scale lengths
L, when the evanescent electric field of the laser light penetrating to critical
density is resonantly enhanced, leading to resonance absorption (see Kruer).

As IL increases above 1015 W/cm2, the plasma becomes hot enough that
collisional effects become small. Then the absorption becomes more compli-
cated, introducing a number of mechanisms that we will not explore here.
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These include sheath inverse bremsstrahlung, the high-frequency skin effect,
and the anomalous skin effect, all of which are discussed in a common context
by Rozmus et al. and by Gibbon and Forster. The simple relation between
electron temperature and laser irradiance that we derived in Chap. 8 now
breaks down, as the outward convection of hot material is no longer the
important energy loss channel for the electrons. Even so, Te scales as some
power of IL that is not too far from 1/2. In this regime, resonance absorption
is still strong but the energy transfer mechanism may not be collisional. The
noncollisional absorption might be due to breaking of the laser-driven elec-
tron plasma waves, but there is also evidence in some simulations of repeated
“Langmuir collapse” as in Gibbon (1994). Experimentally, there is clear ev-
idence of resonance absorption in this regime as described in Chaker et al.
and Meyerhofer et al.

As IL increases above 1018 W/cm2, the physical excursions of the elec-
trons can become comparable to the thickness of the plasma layer at the
surface of a solid. In this case, the excursions of the electrons into the vac-
uum, accelerated by the laser light wave, can lead to enhanced absorption
when they return and enter the solid. This effect, often called the Brunel
effect as it was first identified theoretically by Brunel (1987) and later repli-
cated in theory and simulation by others including Bonnaud et al. and Kato
et al., can significantly enhance the absorption for p-polarized light. Reso-
nance absorption gives way to vacuum excursions as IL increases and the
scalelength decreases, but the transition is complex (see Gibbon and Bell,
1992). As discussed above with reference to Table 11.2, the condition for sig-
nificant absorption by vacuum excursions is xos/D > 1. (Here xos/D is the
relativistic generalization of the parameter given by Brunel, vos/ω, where vos

is the nonrelativistic, electron oscillation velocity in the laser electric field.)
It is worth noting that much earlier experiments produced plasmas that

were recompressed, by the ponderomotive force, to have density profiles that
were locally very steep. Both some experiments using CO2 lasers (see Bach
et al. and Fedosejevs et al.) and more recent ones using 1 µm lasers (see
Norreys et al.) produced plasmas that, probably, satisfied xos/L > 1 at the
critical surface. However, in the process of recompression these initially much-
thicker plasma layers became rippled. This precluded clean diagnosis of the
interaction processes.

In this same irradiance regime the anomalous skin effect begins to be-
come important for normal incidence, if the plasma layer is sufficiently thin.
The electrons are heated enough that the normal skin depth becomes smaller
than the electron excursion length and the electron mean free path, leading
to increased penetration of the laser electric field into the solid. Ruhl and
Mulser used Vlasov simulations to study laser–solid interactions in this irra-
diance regime. They explain the connection between the Brunel effect and
the anomalous skin effect as the natural limits of the force on the electrons
through its dependence on the angle of incidence.
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The Brunel effect eventually saturates in consequence of v×B forces (see
Brunel 1988). As IL increases into the strongly relativistic regime, further new
effects are predicted to arise. The v×B motion of the relativistic electrons in
the laser field begins to produce a significant electron velocity directed into
the target (see Pukhov and Meyer-ter-Vehn). This can lead to hole boring
and collisionless shocks, discussed in Sect. 11.8.

Despite the variation in specific absorption mechanisms, all the absorption
processes involve transferring laser energy to electrons. When laser light is
absorbed at a solid surface, this produces a distribution of electrons, often
approximately Maxwellian in shape. One can write an energy flux balance
equation that qualitatively describes the heating, as

fabsIL = nckBTeveff , (11.26)

in which fabs is the fraction of the laser energy that is absorbed, nc is the
critical density, and veff is the effective velocity at which energy flows away
from the absorption region. In the slow (ns), large-plasma regime of Chap. 8,

fabs ∼ 1 and veff ∼ cs ∝ T 1/2
e so Te ∝ I

2/3
L . (11.27)

As the temperature increases and the collisional absorption becomes smaller,
one enters a regime in which fabs ∝ νei/ωo but veff is still of order the sound
speed. Then, since νei ∝ T

−3/2
e , one has

Te ∝ I
1/3
L in the weakly collisional regime. (11.28)

Beyond these regimes the excursions of the electrons begin to matter and
one finds that fabs depends more weakly on Te, bringing the increase of Te

with IL up closer to

Te ∝ I
1/2
L in the excursion regime. (11.29)

As the laser irradiance increases into the strongly relativistic regime, the
electrons are observed to have a characteristic energy of order the kinetic
energy of the electron oscillations in the laser light. This is a natural result
– any process that manages to deflect an electron, changing its velocity in
the direction of the laser electric field, will have the effect of converting some
fraction of this energy into randomized motion. So the quiver energy must set
the energy scale once the absorption loses its temperature dependence and
the electrons leave at c. In the relativistic regime, the characteristic energy
of these electrons, Ehot, is

Ehot =
(√

1 + a2
o − 1

)
mec

2. (11.30)

For simple estimates, one often describes the “temperature” of these electrons
using the relation kBTh = Ehot. Once ao is very large, one has

kBTh ∼ aomec
2. (11.31)
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11.5 Harmonic Generation

As IL increases above 1017 W/cm2, the interaction of the laser with the
overdense target can lead to the emission of many harmonics of the laser
light. This phenomenon has utility both as a diagnostic of the interaction
mechanisms and as a potential source of coherent, short pulses of soft x-rays
for other applications. Early theory on harmonic production from solids (see
Bezzerides et al. and Grebogi et al.) was motivated by the observation of
many harmonics from long-pulse experiments using CO2 lasers (see Burnett
et al. and Carman et al.). The important mechanism in this regime is the
oscillation of the critical surface in the electric field of the laser light.

If the interaction geometry remains simple and planar, then the pump
laser light will be specularly reflected and any harmonics will be emitted
within the cone angle of the reflected pump light. It is well established that
this requires a plasma layer that is much less than one wavelength in ex-
tent. Thus, the angular distribution of harmonic light is an indicator of how
planar the surface is. In experiments on the TITANIA laser system, a tran-
sition from specular to diffuse harmonic emission was observed when the
maximum intensity of the laser pulse (of 1 ps FWHM for these experiments)
exceeded 1.6× 1017 W/cm2. The 1 ps FWHM laser pulse shown in Fig. 11.6
corresponds to this maximum intensity. One should note that, with such a
pulse, the amount of preplasma produced by the leading edge of the laser
pulse increases significantly as IL increases. In experiments on the Vulcan
laser system, whose long laser pulse (illustrated in Fig. 11.6) produced much
more preplasma, diffuse harmonic emission was always observed (see Norreys
et al.). In experiments at Toronto (see Zhao), there was a transition from
specular to diffuse harmonic emission when a prepulse was introduced 1.5
ns before the main pulse. A consistent interpretation of these data, and of
much other data with lower intensities and longer pulse lengths not discussed
here, is as follows. Given sufficient preplasma production, the critical surface
where the laser light reflects becomes rippled. This is discussed, for exam-
ple, by Wilks et al. (1992). Possible mechanisms include corrugation through
electron clustering, irregular lateral motion of the ions, and Rayleigh–Taylor
instabilities. This causes the laser–plasma interaction to occur over a wide
range of angles, causing the scattering and reflection of the laser light to
become diffuse. Once diffuse scattering sets in, the angular structure of the
signal becomes worthless as a diagnostic of the interaction dynamics.

Theoretical work in the 1990s, nicely reviewed by Gibbon (1997), con-
cluded that efficient harmonic production is possible from the interactions
of sufficiently intense laser pulses with the overdense plasma at the surface
of a solid. Wilks et al. (1993) observed odd harmonics in both 1D and 2D
PIC simulations and observed (weaker) even harmonics in the 2D case. Rel-
ativistic oscillations of the critical surface introduce harmonic structure into
the light reflected from it. One can think of this first in terms of the driven
currents that emit the reflected radiation. At all angles of incidence, the
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ponderomotive force drives density oscillations with even harmonic content,
which beat with velocity oscillations at the pump frequency ω to produce
a current source with odd harmonic content. (We ignore here the case of
circularly polarized light.)

For oblique incidence, the harmonic content also depends on the polariza-
tion. In s polarization, a current source also develops with only even harmonic
content. In p polarization, the density oscillations have both odd and even
harmonic content. Those with odd harmonic content beat with velocity os-
cillations at ω to produce a current source with even harmonic content. In
both s and p polarizations, the even harmonics are expected to be very weak
near normal incidence and to increase as the angle of incidence increases.

An alternative way to think through the harmonic generation process is to
treat the reflection from the critical surface as a reflection from an oscillating
mirror, as suggested by Bulanov et al. Lichters et al. have done this to produce
a cold-plasma model which accounts for the harmonic production observed in
their simulations. They note that a correct treatment of the retarded source
terms introduces substantial anharmonic content to this oscillation and that
including this effect gives quantitative agreement between the model and
the PIC simulations in some cases. (Highly resolved calculations for oblique
incidence become possible by boosting the frame of a 1D PIC calculation to
the Lorentz frame in which the electromagnetic wave appears to be normally
incident.) They provide a quantitative model involving few assumptions that
can be used to calculate the predicted spectrum of the harmonics. They
have difficulty with the magnitude of the lowest even harmonics in oblique
incidence with s polarization, as illustrated in Fig. 11.7. They suggest that the
sharpness of the plasma–solid boundary significantly affects the production
of these harmonics.

Fig. 11.7. The spectrum of harmonic emission from simulations by Lichters et al.,
along with predictions from their model (diamonds). The crosses are from an ad
hoc model intended to mimic the effects of surface plasma
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Another source of harmonic emission is also discussed by Gibbon (1996).
He argues that the particles which undergo vacuum excursions produce a
very anharmonic current source, repeating at the pump frequency, as they
reenter the solid and are strongly decelerated. Gibbon points out that for
oblique incidence at fairly large angles, such as 60o, vacuum excursions will
become the dominant source of harmonic emission.

11.6 Relativistic Self-Focusing
and Induced Transparency

We now ask what effect the plasma has on the laser light. To do so we return
to the wave equation for the laser light, (11.1), and evaluate Jt = −enevx =
−enecao/γr. Converting A to ao, we obtain

(
∂2

∂t2
+

ω2
pe

γr
− c2∇2

)
ao = 0, (11.32)

in which ωpe is the plasma frequency corresponding to the electron density
ne. Upon first glance, this may appear to be a simple equation, in which the
plasma frequency is reduced by a factor of γr. However, since γr depends on
ao through v, it also varies in time on the same timescale as ao does. One
must work out the effects of this when seeking a detailed solution, but one
can formulate the solution in terms of an appropriately averaged γr, which
we designate as 〈γr〉. One obtains a modified dispersion relation,

ω2 −
ω2

pe

〈γr〉
− c2k2 = 0, (11.33)

from which the phase velocity is seen to be

ω

k
= c

1√
1 − ω2

pe

〈γr〉ω2

= c
1√

1 − ne
〈γr〉nc

. (11.34)

Two conclusions follow from these equations. First, the wave travels slower
in regions of higher ao. Since this corresponds to the center of a focused laser
beam, the phase fronts become curved and the laser beam tends to self-focus,
a phenomenon known as relativistic self-focusing. This effect is opposed by
diffraction of the laser beam, but above some threshold laser-beam power the
beam does self-focus. This threshold laser-beam power, Psf , is

Psf = 17.4 (nc/ne) GW, (11.35)

in which nc is the critical electron density as defined in Sect. 8.1. We saw that
lasers producing relativistic high-energy-density conditions typically exceed
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this power. If such a laser-beam interacts with a sufficient volume of plasma,
it will self-focus.

The second conclusion is that a relativistic laser beam can penetrate to
a higher density than a nonrelativistic one. Taking (11.11) at face value, the
density of reflection, where the phase velocity goes to zero, is ne = 〈γr〉nc.
Thus, the laser can penetrate to higher density by a factor of 〈γr〉. In detail
the effect is more complicated because of the fluctuations in γr. Despite this,
the net effect is that a relativistic laser beam can penetrate to a higher
density than a nonrelativistic beam. This phenomenon is known as induced
transparency.

11.7 Particle Acceleration

Much of the interest in relativistic laser–plasma interactions revolves around
the acceleration of particles by such lasers. It is hoped that beams of parti-
cles might be produced for fast ignition. Beams of protons from such lasers
may prove useful for proton radiography. Alternatively, beams of electrons
may produce γ-rays for radiography. By interacting intense lasers or particle
beams with plasmas, researchers are working at this writing to produce ad-
vanced particle accelerators. This is possible because one can produce much
larger electric fields in plasmas than one can between electrodes in vacuum.
For these reasons, it is sensible to discuss the mechanisms of particle accel-
eration here.

11.7.1 Acceleration Within Plasmas

The potential applications of high-energy-density plasmas and beams to elec-
tron accelerators nearly all involve the behavior of wakes in plasmas. The
mechanism responsible for generating wakes is perhaps best understood by
taking some time to throw rocks in a lake. The rock itself pushes some water
outward, generating a first circular outgoing wave. But the rock also displaces
water, in response to which the remaining water rushes in toward the center
and then rebounds outward, with the consequence that a second circular out-
going wave is created. When one proceeds from throwing rocks to watching
boats, one can see that these two waves correspond to the bow wave and to
the trailing wake. The wakes propagate at an angle to the path of the boat,
depending on their phase speed relative to the boat. If one gets onto the
water and is able to match speeds with the wake, perhaps on a windsurfer or
in a kayak, one can ride the wake, gaining speed and extracting energy from
it. At this point one will understand the wakefield accelerator, save for a few
(i.e. many) technical details. The seminal paper on the application of wakes
to acceleration in plasmas was written by Tajima and Dawson in 1979.

When one works inside a plasma, the key to producing electron acceler-
ation is to generate some kind of wake. (In some limits, the wake begins to
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look more like an extended plasma wave). The fundamental requirement is
to create a local source of pressure that moves through the plasma, creating
a wake that moves near the speed of light and whose electric field is large.
Suppose for a moment that we repeat the experiment with the rock, except
by creating a local and brief source of pressure, of some size λp, within a uni-
form cold plasma. (All realistic plasmas are cold when compared to motions
at c.) The source is brief in the sense that it moves the electrons but causes
little displacement of the ions. The local disturbance of the plasma creates a
spherical wake, potentially including structure analogous to the two waves in
the water, for the same reasons. The wake propagates because the electron
density oscillates in response to a displacement, and because the displacement
is local. We know from Sect. 2.4 that the electrons will oscillate in response
to a charge separation at the electron plasma frequency, ωpe. Since the per-
turbation moves a distance λp in one plasma cycle, the velocity of this wake
is

vp = ωpe/kp, (11.36)

where kp = 2π/λp. If it happens that vp ≈ c and that the wake is strong
enough to trap some electrons and carry them along, then our imaginary
spherical wake would accelerate these electrons to relativistic velocities.

The simplest application of this idea to real systems is to create a packet
of photons or electrons of very-high energy density (and thus high pressure),
whose characteristic length is close to πc/ωpe, as this will most effectively
excite a plasma wake for which vp ≈ c. As this high-pressure packet traverses
the plasma, it creates a strong plasma wake. The particles in such a wake can
be trapped by it and substantially accelerated. The intense field produced
immediately behind the high-pressure packet can be particularly effective at
producing a beam of accelerated particles having a narrow energy spread and
low divergence.

More complicated applications of the wakefield idea abound, because
they require less-demanding experimental hardware. A laser beam above the
threshold for relativistic self-focusing will tend to focus to produce a small
region with very intense fields. When one or more extended laser beams reso-
nantly drives an extended, intense plasma wave with k ∼ ωpe/c the resulting
electric field will tend to self-modulate on the scale of ωpe/c through the
action of an instability (exactly how depends on details). This will drive in
turn a series of wakes in the plasma and can accelerate particles. When two
laser beams are used to create such a plasma wave by beating, in a process
identical to the beating involved in stimulated Raman scattering (Chap. 8),
the accelerator is known as a beat-wave accelerator. In the beat-wave ac-
celerator and some of the other approaches, one cannot expect the plasma
wake to trap cold particles and instead must inject particles that are then
accelerated to higher energy. Overall, there is a veritable zoo of possibilities
with an alphabet-soup of acronyms describing various different approaches
to the goal of creating plasma wakes to accelerate electrons. We will leave
the exploration of this zoo to those who develop a specialized interest.
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To determine how worthwhile it may be to pursue all of this, one would
like to know the possible electron energy gain. We evaluate this next, following
Tajima and Dawson. The maximum energy gain will occur when the wake
becomes so large that it breaks. This occurs when the electron excursion
distance during a plasma period, xos, reaches kpxos ≈ 1. We observe this
oscillation in the lab frame, where

xos = eEw/(meω
2
pe). (11.37)

Here Ew is the electric field in the wake, related to the potential Φ by |Ew| ≈
kpΦ. This gives

eΦ = meω
2
pe/k2

p ≈ mec
2 (11.38)

in the lab frame.
The energy gain of the electron is most simply evaluated in the moving

frame of the plasma wake, where the electron oscillates in a stationary po-
tential well. Referring to the volume of Landau and Lifshitz on the theory of
fields for the relativistic transformations, we find the depth of the potential
well in this moving frame, Φ(w), in terms of the lab-frame quantities, as

eΦ(w) = γreΦ ≈ γrmec
2, (11.39)

in which
γr = 1/

√
1 − v2

p/c2. (11.40)

Thus γr is the relativistic factor corresponding to the motion of the plasma
wake. We also take β ≡ vp/c. The electron has its maximum energy in the lab
frame just when it has the maximum energy in the frame of the wake, where
the energy is γrmec

2. To find the corresponding laboratory frame energy,
Elab, we Lorentz transform the energy back into the lab frame, finding

Elab = γr[γrmec
2 + βc(γrβmc)] = γ2

rmec
2(1 + β2) ≈ 2γ2

rmec
2. (11.41)

It is helpful to know the relativistic factor γmax of the accelerated electron,
seen in the lab frame, that has this much energy. This is evidently

γmax = 2γ2
r . (11.42)

For the specific case of using a light pulse to create the pressure, the
optimum light pulse will have a group velocity, vg, that equals vp. As we
discussed in Chap. 8,

vg = c/

√
1 −

ω2
pe

ω2
, (11.43)

from which one can infer that

γmax = 2ω2/ω2
pe. (11.44)
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Thus, for example if one uses laser light of wavelength 1 µm to drive a wake
in a plasma of density 1017 cm−3, one finds γmax = 2 × 108 and Elab = 10
GeV. There are reasons this is not trivial, though. The required laser pulse
duration of π/ωpe is 180 fs. The length over which a uniform plasma must
be provided so that this acceleration can occur, �a is

�a ≈ Elab/|eEw| = 2cω2/ω3
pe, (11.45)

which would be 34 cm. Sustaining a uniform plasma and a focused laser
pulse over this distance would be a severe challenge. But if one raises the
plasma density (i.e., increases ωpe) to make the distance shorter, the laser
pulse length soon approaches one laser cycle. Clever technique will be needed
to achieve energies of tens of GeV or more using lasers. At this writing, this
is an active area of research.

Homework 11.5

Find the time required to accelerate the electron to ∼ 30 GeV in the example
just given.

Homework 11.6

Suppose one has a laser beam that can be focused to 1020 W/cm2 in a
10 µm diameter spot. Would one obtain higher-energy electrons from tunnel
ionization (as in Sect. 11.2) or from using the laser for wakefield acceleration?

Among other alternatives, one can use an electron bunch to create the
pressure, in which case the plasma wake will accelerate some members of
this bunch to higher energy. At this writing, energy increases above 1 GeV
have been obtained on a ∼ 30 GeV electron beam. In this application, the
optimum plasma density is determined by the length of the electron bunch,
�b, which should be

�b = πc/ωpe (11.46)

for the reasons discussed above. To keep the electron bunch focused as it
propagates requires a balance between beam divergence and self-focusing in
the plasma. This sets a relation between the plasma density and the beam
size at the plasma entrance, rbo,

ω2
pe = 2γbc2ε2b/r4

bo, (11.47)

in which the relativistic factor for the bunch is γb and the emittance of the
bunch (related to divergence, and having units of distance times angle) is εb.
Thus, the electron bunch must be carefully shaped for optimum acceleration.
It remains true in this case that γmax = 2γ2

r and that eEw ≈ mecωpe, so the
acceleration length is
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�a ≈ γmaxc/ωpe = 2γ2
r c/ωpe. (11.48)

One can see that keeping �a from growing while increasing γmax requires
increasing ωpe. This in turn requires shortening the bunch and making it
smaller in diameter. At this writing, this is also an active area of research.

11.7.2 Acceleration by Surface Potentials on Solid Targets

The wakefield and beat-wave processes just discussed might perhaps be devel-
oped into next-generation particle accelerators. Accelerators place demand-
ing constraints on the dispersion of the accelerated particles in energy and in
angle. Some other applications, such as proton radiography, may not be so
demanding in these respects. Beams of protons (and other ions) are typically
observed when relativistic laser beams strike solid targets. One way that they
arise, which might be called electrostatic ion acceleration or sheath acceler-
ation, is easy to understand. The laser interacts with the electrons, and it
removes many of them from the target. The result is that the target becomes
positively charged, expelling ions from its surface. Because the surface is pla-
nar, the ions are expelled along the target normal. Because the laser produces
plasma on the front surface of the target and produces electrons that easily
penetrate a target that is not too thick, it is not uncommon to see beams of
ions that emerge from both surfaces.

We can analyze this type of acceleration by building on our analysis of the
self-similar rarefaction in Sect. 4.2 and following the discussion of Mora. In
Sect. 4.2 we used a Boltzmann distribution to describe the electrons, finding

eΦ = kBTe ln(ne/neo), (11.49)

in which the potential is Φ and the initial electron density at the target surface
is neo. This equation is valid so long as electron collisions are fast enough to
sustain a Maxwellian distribution, and this remains true even in ultrafast
experiments. So we will assume here that the expansion is isothermal, at
least while the most energetic ions are produced before the expanded plasma
cools significantly.

We also previously derived the self-similar solution for the ions, finding

ρ = ρo exp
(
− x

cst
− 1

)
, (11.50)

in which cs is as usual the sound speed. In an ultrafast experiment, the ions
have little time to heat so cs =

√
ZkBTe/mi. The derivation of this equation

assumed quasineutrality of the plasma, so ρ = neAmp/Z. We considered in
Chap. 2 the possibility that such an expansion might extend to an electron
density at which interactions with background gas were common, providing a
maximum potential energy and thus a maximum ion energy of order 20 kBTe.
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One can easily show that the electric field, Ess, corresponding to the self-
similar solution, is constant and is given by

eEss = kBTe/(cst). (11.51)

However, in an ultrafast experiment the self-similar model breaks down
because the assumption of quasineutrality becomes invalid. Charge separation
can always occur on the scale of a Debeye length, λD. Once λD exceeds the
local scale length of the ion density profile, cst, the self-similar model breaks
down. Then the electrons are able to stay ahead of the ions, which creates
an expansion front and pulls the ions along. This roughly occurs when

λD = λDo

√
neo/ne = λDo exp [(1 + cst)/2] , (11.52)

in which the Debeye length at neo is λDo. From the self-similar rarefaction,
this occurs at x = (cst)(2 ln(ωpit)− 1), where ωpi is the ion plasma frequency
at neo, equal to

√
4πneoZe2/mi. For fully ionized, solid-density Be, one has

ωpi ∼ 3×1014 rad/s, so ωpit ∼ 100 in a few hundred fs. In this case the electric
field at the ion front, Efront, is estimated to be 2Ess, due to the surplus of
electrons at larger x. Simulations of the plasma expansion have shown that
to excellent accuracy

eEfront =
ωpi

cs

2kBTe√
5.44 + ω2

pit
2
. (11.53)

One can integrate (11.53) (which = midvi/dt)to find the ion velocity vi

and the maximum ion energy, Emax. These are

vi = cs

[
ln(2ω2

pit
2) − 1

]
, (11.54)

and
Emax = 2ZkBTe

[
ln(ωpit

√
2/2.72)

]2

. (11.55)

For ωpit ∼ 100, this gives Emax ∼ 40ZkBTe. In the strongly relativistic regime,
where kBTe ∼ aomec

2, this implies Emax ∼ 20Zao MeV. This implies that
ion accelerations to many MeV are plausible by sheath acceleration even for
modest values of ao. This process is most likely to be important on the front
side of solid targets and on the rear side of solid targets that are thick enough
that the explosion processes discussed below are not dominant.

11.7.3 Acceleration by Coulomb Explosions

A third important acceleration mechanism, also responsible for high-energy
ion production and even for ion beams, is known as a Coulomb explosion.
Coulomb explosions, created by the irradiation of molecules with photons or
particle beams, have been used in chemistry since at least the 1970’s. We will
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see shortly why it took longer to produce them using lasers. Our analysis
draws in part on Zweiback.

First consider a spherical distribution of ions at constant density ni, from
which the electrons have been magically removed. One can integrate Gauss’
law to find the electric field at location of any ion at radius r inside the
cluster, in cgs units, as

E = 4πniZer, (11.56)

then solve E = −∇Φ to find the potential Φ as

Φ = 2πniZe

[(
8π

3

)
r2
o + (r2

o − r2)
]

for r < ro and

Φ = 2πniZe

(
8π

3

)
r3
o

r
for r > ro,

(11.57)

in which as usual ni is the ion density, Z is the ionic charge, and e is the
charge of an electron. In addition, the initial radius of the sphere is ro and
we have chosen Φ to be zero as r → ∞.

The dynamics of such an ion cloud is simple. All the ions are accelerated
outward, with the outermost ions being accelerated most greatly. As r in-
creases for each ion, the acceleration decreases. So no interior ion overtakes
any outer ion. As a result, each ion at radius r ends up converting the electro-
static potential energy created by the charge at radii < r into kinetic energy.
The maximum ion energy Emax is obtained when an ion at the outer edge of
the sphere has been accelerated until the remaining potential is negligible.
Then the maximum ion energy is

Emax =
8π

3
2πniZ

2e2r2
o. (11.58)

The derivation of the corresponding, normalized, ion energy distribution func-
tion f(Ei) = (1/N)dN/dEi is left as homework. It is

f(Ei) =
3
2

√
Ei

E3/2
max

for Ei < Emax and

= 0 for Ei > Emax.

(11.59)

For ro = 10 µm, which is a plausible laser-beam spot, Emax evaluates to
0.76ni/(1018 cm−3) MeV for Z = 1. Thus, MeV energies might plausibly be
obtained from gasses and much larger energies could be obtained from (thin)
solids, if in fact such explosions can be produced. We now consider some
aspects of this.
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Homework 11.7

Solve for the potential of a spherical cloud of ions having uniform density,
and for the energy distribution function of the ions produced by a Coulomb
explosion of this cloud.

To create a Coulomb explosion, the laser must strip the electrons from
the ions and expel them from the cloud. The laser will have to turn on very
quickly and reach sufficient irradiance. Two timescales matter. These are the
explosion time itself and the sonic expansion of the cloud. Let us consider
these in reverse order. The sound speed here again is cs =

√
ZkBTe/mi, so

the sonic disassembly time is

τsonic = ro/cs =
√

r2
omi/(ZkBTe). (11.60)

If we crudely estimate kBTe = aomec
2 from (11.31), then we find

τsonic = 140

√(
Ar2

µ

Zao

)
fs , (11.61)

in which rµ is ro in µm.
The explosion time can be found by solving the equation of motion for an

ion at the outer surface of the cloud. Because the charge within the cloud is
fixed and remains within the radius of the ion, one can relate the ion velocity
to the potential energy. One has, for the ion velocity vi,

1
2
miv

2
i = Emax

(
1 − ro

r

)
, (11.62)

which can be written as
(

vi

vmax

)2

= 1 − ro

r
. (11.63)

This allows the equation of motion,

d
dt

(
vi

vmax

)
=

ZeE

vmax
=

Emax

mirovmax

(ro

r

)2

, (11.64)

to be written as
d
dt

(
vi

vmax

)
=

vmax

2ro

(
1 − v2

i

v2
max

)2

. (11.65)

By integrating this equation to find when the ion energy reaches half of Emax,
we can obtain a reasonable value for the duration of the explosion, τexp, which
is

τexp = 3 ps
√

A

Z
√

n18
, (11.66)
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in which n18 is the ion density in units of 1018 ions per cm3. Note that
this turns out to be independent of the radius of the cloud. At the densities
associated with solids or with clusters in gasses, of order 1023 ions per cm3,
this time is of order 10 fs.

The third requirement is that the laser must be able to expel the electrons.
The electrons are affected by the ponderomotive force produced by the laser
light, discussed in Sect. 8.1. The nonrelativistic expression for this force can
be written as the gradient of a ponderomotive potential, defined by U =
me〈v2

os〉/2, where the brackets denote an average that introduces a factor
of 2. One finds that this potential contributes to the total energy of the
electrons and thus can balance other sources of potential energy, such as
the Coulomb potential associated with a charged cloud. The relativistically
correct ponderomotive potential can be written

U = mec
2
(√

1 + a2
o − 1

)
. (11.67)

Setting this equal to the maximum Coulomb potential, which is Emax, we find

ao > 1.2
√

n18

√
2 + 1.5n18 (11.68)

to have enough ponderomotive potential to completely remove the electrons.
If instead the ponderomotive potential is only large enough to remove some of
the electrons, the cloud of ions will still explode. However, it will not produce
the maximum possible ion energies.

In summary, to obtain a Coulomb explosion the laser pulse must rise
quickly enough to avoid thermal expansion. This time decreases as the laser
irradiance increases or the laser spot (or the target cloud, if it is smaller)
shrinks. The laser pulse must also rise quickly enough to avoid a premature
explosion before the electrons are expelled and must be of long enough dura-
tion for the explosion to occur. This duration decreases as density increases,
reaching femtoseconds for solid densities. Finally, the laser pulse must be
powerful enough to expel the electrons, and the required irradiance increases
roughly as the square of the ion density.

11.8 Hole Drilling and Collisionless Shocks

When the laser irradiance onto a high-density target plasma (having ne > nc)
becomes large enough, the ponderomotive pressure no longer merely keeps
the density profile steep, but actually drills a hole into the plasma, pushing
the ions ahead of it. Under circumstances we will discuss, this can drive
a collisionless shock into the plasma. The shock reflects plasma ions, but
often will not be relativistic. As a result the reflected ions are given roughly
twice the velocity of the shock (in the laboratory frame). This is another
mechanism, in addition to sheath acceleration and Coulomb explosions, that
can produce energetic ions in ultrafast laser–plasma interactions.
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The phenomenon of hole drilling by relativistic lasers was first discussed
by Wilks et al. (1992). One can understand the basic behavior by considering
the momentum exchange between the laser beam and the plasma ions. The
electrons, of course, carry negligible momentum because of their small mass.
The momentum of each photon is �k, so that the total incident momentum
flux is �k × IL/(�ω) = IL/c and the total momentum flux delivered to the
plasma by the laser is (1 + η)IL/c, where the fraction of the laser power
reflected is η. This must be balanced by the momentum flux of the ions. If
the ions that have already been swept up move into the target at vi, then
the ion flux being swept up is nivi and the momentum flux being delivered
to the newly-swept-up ions ions is miniv

2
i . Thus,

(vi

c

)2

=
IL(1 + η)
nimic3

, (11.69)

or if we formulate this in terms of ao, using also (8.13),

(vi

c

)2

=
a2

o(1 + η)
mic3

nc

ni

1.37 × 1018

1.1 × 1021
= 2.7 × 10−4a2

o(1 + η)
nc

neo

Z

A
, (11.70)

where the electron density in the target is neo and the critical density for the
laser, from (8.13) is nc. This equation applies to the regime of non-relativistic
ion velocity once ao is large enough that other pressures are negligible. It
implies that a picosecond-timescale laser having ao ∼ 30 can drill a hole into
a critical-density target that is 50 µm deep. This may prove important in the
context of fast ignition (see Chap. 9).

We can compare this ion velocity to the sound speed as follows. For large
ao, the laser-heated electron temperature Th is given by kBTh ∼ aomec

2, as
discussed above. Thus, the sound speed is

(cs

c

)2

=
1
c2

ZkBTh

mi
= ao

me

mp

Z

A
. (11.71)

Thus, the ions penetrate the plasma with a Mach number given by

M2 =
(

vi

cs

)2

= 0.5ao(1 + η)
nc

neo
. (11.72)

This in turn gives a threshold value of ao to make this Mach number greater
than 1, as

ao ≥
(

2
1 + η

)
neo

nc
. (11.73)

Thus, lasers will drive supersonic ion fluxes into critical-density plasmas be-
ginning at ao ∼ 1 and into solid-density plasmas beginning at ao ∼ 100.

In the context of hydrodynamics, we would conclude that a shock must
form once M > 1. However, collisions are far too weak to produce a shock
in such a target, so if one is to form it must be by means of collisionless
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dynamics. This does occur, as follows (for a further description, see the two
papers by Forslund and Shonck and the one by Silva et al.). Interpenetrating
plasmas are unstable to an instability known as the two-stream instability
once the interpenetration velocity exceeds the thermal velocity of one of the
species. This instability can resonate between any two species in the plasma,
so that there is an ion–ion and an ion–electron two-stream instability. Both
these instabilities have a growth rate of some fraction of the ion–plasma
frequency, given by ω2

pi = 4πniZ
2e2/mi (in cgs units). This means that they

grow to a large amplitude rapidly on the timescale on which the ions move.
They are so-called electrostatic instabilities, producing longitudinal electric
fields but no magnetic fields.

These instabilities lead to a shock of sorts, as follows. The electrostatic
waves become quite large and trap electrons locally where the ions begin to
interpenetrate. This takes a time of order 5× 2π/ωpi, as has been confirmed
by PIC simulations. The trapped population of electrons prevents further
electrons from crossing the interaction zone. As a result, the ions that do
cross this zone establish a positive potential and are reflected. The system
reaches a steady state. In the shock frame, one would say that the ions coming
in from upstream are in large part elastically reflected once they cross the
trapped-electron region, while the downstream ions are stationary, being held
in place by the ram pressure associated with the reflected ions on one side and
the momentum flux delivered by the laser on the other side. In the laboratory
frame, one would say that the laser pushes ions into the target, that at their
leading edge a group of trapped electrons is produced, and that the resulting
positive potential barrier strikes the ions beyond it and sends them ahead of
the shock at twice the shock velocity. The density of the ions downstream of
the shock, which is effectively compressed from both sides, ends up somewhat
larger than the density of the ions ahead of the shock.

Figure 11.8 shows the results of a simulation of such a shock. Like most
displays of PIC results, the dots on this plot correspond to the location of a
given particle in z velocity and in z position. The initial location of the target
was from 500 to 640 distance units. One can see sheath-accelerated particles
at the two ends of the target. The shock is at about 550 distance units and
is followed by structure that we will not concern ourselves with here. The
shock-reflected ions are the highest-energy particles, seen streaming ahead of
the shock with momenta above 0.15mpc.

Since few ions join the ions behind the shock, the “piston” velocity at
which the laser pulse pushes the ions ahead of it equals the shock velocity.
One thus has a reflected-ion velocity, vref , given by

(vref

c

)
= 0.03ao

√
nc

neo

Z

A
, (11.74)

which we can also write as(vref

c

)
=

0.06
(1 + η)

√
neo

nc

Z

A
M2. (11.75)
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Fig. 11.8. Particle velocities from a PIC simulation of a collisionless shock. A laser
pulse having ao = 16 has been incident on a plasma initially having ne = 10nc for
a time of 1024/ωo from Silva et al.

Even for M not much larger than 1, this can easily reach a few tenths of the
speed of light. Under the right conditions, with a solid-density target and a
very large ao, even a shock with M ∼ 2 might drive relativistic reflected ions.

Homework 11.8

Derive the relativistic version of this theory and find the relativistically cor-
rect revision to (11.75).

It would seem from the above equations that relativistic ions would be
straightforward to produce by sufficiently increasing M . This, however, does
not work in practice because the ability of the fluctuations produced by the
two-stream instability to trap electrons is limited, and as a result ions above a
certain energy (in the shock frame ) cannot be reflected. The limiting Mach
number, known as a critical Mach number, is M ∼ 3. Above this Mach
number fluctuations are still driven and the interpenetrating ion beams are
affected, but there is no longer a shock. Faster ions cannot then be driven by
shocks, but they can be driven in the “laser piston” regime, discussed in the
next section.

The mechanism of laser-driven collisionless shocks is most effective and
most important in comparatively thin targets. This better enables the laser
to keep the electrons heated throughout the target so that the shock remains
below the critical Mach number and in addition allows the ions to move
through the target in time to be further accelerated by the sheath on its rear
surface.

A different type of “shock” is produced during any realistic Coulomb
explosion of more than a small, isolated cluster. This develops as follows
(see Kaplan et al.). The density profile of the ions is never entirely uniform,
and in addition the electron expulsion may not be complete at the outer
edges of the initial ion cloud. This has the consequence that the force on the
ions reaches a maximum within the cloud, and that some ions within the
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cloud are accelerated more strongly than those on its outer edge. As a result,
some ions overtake others. If the explosion truly involves cold ions and no
electrons, then the Mach number of this interpenetration will be too large
to drive the type of shock described above. (Such shocks might develop if
the ions were warm enough or some laser-heated electrons were present, to
sufficiently increase the sound speed.) But even in the absence of instabilities
or other ion interactions, one ends up with ions of three velocities overlapping
in a certain regions. These are the slow ions and two groups of faster ions.
The two groups of fast ions originate either just inside or just outside the
initial radius of the fastest (most strongly accelerated) ions. This leads the
ion density to increase in the region where the overlap occurs. In addition,
there is a large concentration of ions per unit velocity at the two ends of this
region, where in each case two of these groups merge. The resulting structure
is often referred to as a shock shell.

11.9 Other Phenomena

We have already seen that a host of phenomena can be produced when a
laser beam irradiates a target at a relativistic irradiance. We discuss several
more here.

As the laser irradiance increases beyond the levels that drive collision-
less shocks, (11.70) would predict from momentum balance that the laser
can produce relativistic ions. In detail, however, the laser pulses push on the
electrons and they in turn create an electric field that accelerates the ions.
When the electrons are able to accelerate the ions to relativistic velocities
during the laser pulse, the system has entered the laser piston regime, dis-
cussed by Esirkepov et al. The requirements for this regime can be calculated
in simple limits as follows.

We suppose that the laser beam pushes all of the electrons completely
out of the initial target, which is a thin layer of thickness d. For simplicity
suppose that d is much less than the width of the laser spot, which implies
that the electric field is independent of exactly how far the electrons have
been pushed. The electric field is produced by both the electron layer and
the ion layer, each of which has the same charge. From Gauss’ law one can
show that the electric field experienced by the ions closest to the electrons is
then

E|| = 16π2eneod, (11.76)

which is in cgs units. In SI units the coefficient that is 16π2 would be 4π.
The relativistically correct ion energy is

Ei =
√

m2
i c

4 + p2
i /(2mi) =

√
m2

i c
4 + (eE||ct)2, (11.77)

in which the rightmost expression is specific to ions that acquire energy
while moving through constant electric field at speed c (which is clearly an
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approximation for early times). The approximate time at which the kinetic
energy of the ions reaches their rest mass, thus making them relativistic, can
be found from this to be

trel =
mic

2

eE||
=

mic
2

16π2e2neod
=

Z(c/d)
4πω2

pi

. (11.78)

If we hope to avoid complications not present in this model, this acceler-
ation should happen within a laser cycle, so that ωotrel ∼ 2π. We would like
to know how intense a laser is required to accomplish this. We find this by
recognizing that the electric field in the laser, EL, must be larger than E||
and using (11.78) to solve for d. We find this implies that the target thickness
should be

d ∼ Zcωo

8π2ω2
pi

=
c

8π2ωo

ω2
o

ω2
pe

mi

me
=

c

8π2ωo

nc

neo

mi

me
, (11.79)

which will typically be some fraction of a laser wavelength. Using this result
in (11.76), EL ≥ E||, and ao = eEL/(meωoc), we find

ao =
1
2π

mi

me
, (11.80)

which for protons is an ILλ2
µ of ∼ 1.2 × 1023 W µm2/cm2.

Another phenomenon that results form laser-solid dynamics is magnetic-
field generation. The beams of electrons produced by the laser carry substan-
tial currents. As a result, they drive substantial magnetic fields. This is easier
than it may seem. For example, suppose one wants to produce a 1 GGauss
field. From (8.69), supposing that one drives an electron current by sending
a beam of electrons, at c, through a circle of diameter 10 µm. The density of
this beam must be only ∼ 1015 cm−3. One can achieve this by accelerating
one electron in 108 to ∼ c. Measuring the field, however, is a severe challenge.
At his writing, it is believed that GGauss fields have been produced.

Currents can be driven either into the target or along the surface. Ruhl
and Mulser identified the production of a surface magnetic field in their cal-
culations, arising from the ponderomotive force, which generates charge sep-
aration and surface currents for oblique incidence. These in turn produce a dc
magnetic field, which was found in the simulations to vary strongly with ir-
radiance. This field, which can approach 100 MG, causes dramatic variations
in the absorption with IL and angle of incidence (see their figure 6.) Wilks
et al. (1992) also observed a dc magnetic field in (fully relativistic and elec-
tromagnetic) 2D PIC simulations for normal incidence, at intensities larger
than those considered by Ruhl and Mulser. They attribute it to electron
heating at the light–plasma interface. In addition, other magnetic-field gen-
eration mechanisms come into play at relativistic intensities (see Bychenkov
and Tikhonchuk and Sudan).

A third phenomenon of potential interest in astrophysical contexts is
positron production. It requires more than 1028 W/cm2 to produce electron–
positron pairs directly from vacuum. However, when the laser light interacts
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with solid targets, it becomes possible to produce pairs at much lower irradi-
ance. This is discussed, for example, by Liang, Wilks, and Tabak. This first
requires the production of energetic electrons, with the characteristic energy
Ehot from (11.20). The threshold electron energy for pair production by in-
teraction with a nucleus is 2mc2, and the cross-section scales as the square
of the nuclear charge, Z2

nuc. The threshold irradiance for pair production in
steady state is about 1020 W/cm2. For a dynamic, ultrafast interaction, Liang
et al. find a comparable threshold value. At this writing, positron production
has been observed. It remains to be seen whether one can produce a plasma
whose energy density is dominated by the pairs and whether a laser–target
system can become a practical positron source.

Relativistic laser beams can produce nuclear reactions within a target.
The first step is the production of electrons having energies of many MeV.
For example, when a beam having an irradiance above 1020 W/cm2 and a
total energy of 50 J, with a substantial prepulse, was used by Cowan et al. to
irradiate a Au target, a distribution of electrons was produced with energies
up to 100 MeV. These electrons in turn produced bremsstrahlung photons
with energies of tens of MeV by interaction with the Au nuclei. These photons
exceeded the energy threshold of ∼ 10 MeV for photonuclear reactions in the
Au and in Cu located near the target. This caused transmutation of these
elements.

We mentioned above the use of electron bunches to drive wakefield ac-
celeration in a plasma. Other effects can also be explored using high-energy
electron beams (see Joshi et al.). One can use a tailored plasma to focus,
defocus, or steer the beam. One can cause the beam to undulate in the trans-
verse direction in the plasma. On the one hand, this happens naturally if the
parameters are such that the beam repeatedly self-focuses and due to the nat-
ural tilt of the beam with respect to its propagation direction. On the other
hand, one could imagine more active steps to create waves in the plasma that
undulate the beams. This would produce tunable, forward-directed radiation
with potential applications.

Beyond the above, the collisions involved in high-energy (as distinct from
high-energy-density) physics create temporary, relativistic environments of
an extremely high energy density. While much of the behavior might be best
described in terms of particle physics, one does encounter concepts such as
the “quark–gluon plasma” that have much in common with various plasma
systems. In addition, some of these systems may have applications to astro-
physics (see Chen). This potentially includes cosmic acceleration experiments,
the spectroscopy of heavy elements, experiments related to event horizons,
and experiments with the dynamics of relativistic jets.

The area of relativistic high-energy-density experiments has been devel-
oping very rapidly, in recent years, at the time of this writing. One can look
forward to exciting further ideas and discoveries in the coming years.



12 Appendix A: Constants, Acronyms,
and Standard Variables

Table 12.1. Table of Constants

useful
Name Symbol cgs value alternative SI value

Bohr radius ao 5.29× 10−9 cm 0.529 Å 5.29× 10−11 m
Speed of light c 3× 1010 cm/s 3× 108 m/s
Electronic charge e 4.8× 10−10 statcoul 1.6× 10−19 Coul
Planck constant h 6.63× 10−27 erg-sec 6.63× 10−34 J-sec
Boltzmann constant kB 1.6× 10−12 erg/eV 1.6× 10−16 1.38× 10−23 J/K

J/keV
Electron rest mass me 9.11× 10−28 g 9.11× 10−31 kg
Proton mass mp 1.67× 10−24 g 1836me 1.67× 10−27 kg
Stefan-Boltzmann σ 5.67× 10−5 ergs/ 1.03× 105 W/ 5.67× 10−8 W

(cm2 s deg4) (cm2 eV4) m−2 K−4

Table 12.2. Table of Acronyms

Acronym Represents

ASE Amplified spontaneous emission
CPA Chirped pulse amplification
DPP Distributed phase plate
DPR Distributed polarization rotator
ICF Inertial confinement fusion
LTE Local thermodynamic equilibrium
NLTE Nonlocal thermodynamic equilibrium
RT Rayleigh Taylor
KH Kelvin Helmholtz
RM Richtmyer Meshkov
RPP Random phase plate
SBS Stimulated Brillouin scattering
SN Supernova
SRS Stimulated Raman scattering
SSD Smoothing by spectral dispersion

exp[] Equivalent to e[]
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Table 12.3. Table of standard variables

Name Symbol

Atomic weight (average) A
Vector potential A
Atwood number An

Area of capsule Ac

Area of laser spots AL

Area of walls of hohlraum Aw

Magnetic field B
Thermal intensity B(T )
Thermal spectral intensity Bν(T )
Isentropic sound speed cs

Specific heat at const vol cV

Small vortex diameter d
Element of area dA
Critical to solid density distance D
Electron charge e
Electric field E
Spectral kinetic energy E(k)
Themal energy density EBB

Energy released by fusion Efus

Hydrogen ionization energy EH

Electric field of laser beam EL

Total radiation energy density ER

Energy in Marshak wave Ew

Spectral radiation energy density Eν

Energy difference between ionization states j and k Ejk

Electron total energy Ee

Electron rest mass energy Eo

Ion total energy Ei

Thermal flux FBB

Electron free energy Fe

Electromagnetic force density F EM

Lorentz force F L̄

Radiative energy flux F R

Total radiation flux FR

Photon flux F γ

Spectral radiation flux Fν

Eddington factor fν = pν/Eν

Distribution function f(v)
“Gravitational” acceleration g
Laser irradiance IL

Total intensity IR

Laser irradiance in units of 10xx W/cm2 Ixx

Spectral intensity Iν
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Table 12.3. (continued)

Name Symbol

Current density J
Richardson number Jr

Total mean intensity JR

Transverse current density J t

Mean spectral intensity Jν

Riemann invariants J+ or J−
Wave number k
Wave vector k
Coefficients in Maxwell’s equations k1, k2, k3

Scale length of a profile L
Eddy diameter �
Compton mean free path �C

Mach number M
Upstream Mach number Mu

Internal Mach number Mint

Fusion fuel mass mf

Mass ablation rate ṁ
Shock normal n
Electron density ne

Ion density ni

Critical density nc

Scalar fluid pressure p
Total scalar pressure p̃
Electron momentum pe

Fermi degenerate pressure pF

Scalar radiation pressure pR

General pressure tensor P
Ablation pressure Pabl

Power threshold for relativistic self-focusing Psf

Turbulent energy dissipation Pt

Radiation spectral pressure tensor P ν

Thermal Heat flux Q
Radiation Strength parameter Q
Spitzer–Harm heat flux QSH

Free-streaming heat flux QFS

Internal energy R
Gas constant p/(ρT ) R
Ion sphere radius Ro

Radiation strength parameter Rr

Poynting flux S
Specific entropy s
Specific entropy of electrons se

Source of quantity Q SQ

Spectral source function Sν

Time t



Table 12.3. (continued)

Name Symbol

Temperature T
Immediate post-shock temperature T2 or Ts

Fermi-degenerate temperature Td

Electron temperature Te

Effective temperature Teff

Ion temperature Ti

Temperature corresponding to a radiation flux Tmin, Teff

Energetic electron temperature Thot

Precursor temperature Tp

Radiation temperature TR

Immediate postshock plasma (mainly electron) temperature Ts

Hohlraum wall temperature Tw

Fluid velocity u
Zeroth-order fluid velocity U
Characteristic velocity for scaling arguments U
First-order components of fluid velocity u1 = (u, v, w)
Kolmogorov velocity scale uk

Particle velocity v
Velocity difference between frames of reference v
Phase velocity vp

Oscillating velocity of electron in light wave vos

Electron thermal velocity vth

Rocket velocity (or capsule velocity) V
Exhaust velocity Vex

Vertical component of velocity w
Vortex rotational velocity w
Eddy rotational velocity we

Marshak wave scaling variable W
Mag. Energey den. WB

Electric energy density WE

Space x
Marshak wave penetration depth xM

Fusion yield Y
Ionic charge (average) Z
Albedo α
Various angles α
Fraction of incoming photons ionized αi

Various angles β
Relativistic velocity (v/c) β
Various angles χ
Coeff of thermal diffusivity χ
Electron momentum χe

12 Appendix A: Constants, Acronyms, and Standard Variables488
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Table 12.3. (continued)

Name Symbol

Jet cooling parameter χj

Rosseland-mean opacity χR

Spectral total opacity χν

Specific internal energy ε
Total specific internal energy density ε̃
Downstream emissivity εd
Specific internal electron energy εe
Fermi energy εF
Specific internal ion energy εii
Specific kinetic ion energy εik
Upstream emissivity εu
Efficiency of ideal rocket εR
Various angles φ
Fusion burn fraction φ
Phase of a wave φ
Phase experienced by an electron φe

Scalar electric potential Φ
Polytropic index γ
Relativistic γ γr

Instability growth rate γo

Strong coupling parameter Γ
Flux of quantity Q ΓQ

various angles and fractions η
x-ray conversion efficiency η
Kolmogorov length scale ηk

Spectral emissivity ην

Spectral scattering emissivity ηνsc

Spectral thermal emissivity ηνth

Absorption opacity κ
Total coefficient of heat conduction κ̃
Opacity of thin layer using cooling function κastro

Thermal bremsstrahlung absorption coefficient κb

EM wave absorption coefficient κEM

Specific Planck mean opacity κm

Planck mean opacity κP

Radiative coefficient of heat conduction κrad

Thermal coefficient of heat conduction κth

Spectral absorption opacity κν

Wavelength of a wave λ
Vortex characteristic scale λ
Taylor microscale λT

Debye length λD

Electron Debye length λDe
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Table 12.3. (continued)

Name Symbol

Ion Debye length λDi

Mean free path λmfp

Wavelength in microns λµ

Astrophysical cooling function Λ
Chemical potential µ
Classical chemical potential µc

Vortex characteristic scale λ
Atomic mass per charge (A/Z) µe

Electron–ion collision rate νei

Optically thin cooling rate ν
Kinematic viscosity ν
Radiation frequency ν
Extinction rate νe

Cooling rate normalization for thin layer ν∗
rad

Cooling rate more general ν1

Cooling rate using cooling function νastro

Radiation cooling rate for thin layer νrad

Kinematic photon viscosity νrad

Scaling variable ne/T
3/2
e θ

Degeneracy parameter Θ
Mass density ρ
Charge density ρc

Density of Q ρQ

Scattering opacity σs

Spectral scattering opacity σν

Viscosity stress tensor σν

Kolmogorov time scale τk

Optical depth at frequency ν τν

Optical depth τ
Wave frequency ω
Laser light frequency ωo

Normalized frequency ωn

Electron plasma frequency ωpe

Ion plasma frequency ωpi

Scattered light frequency ωs

Irradiance conversion by hohlraum ξ
General similarity variable ξ
Gravitational potential Ψ
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This notebook provides an example of a computational  math derivation
of the basic shock relations.

‡ Begin by loading packages we may want for plotting

<< Graphics`MultipleListPlot`

<< Graphics`Graphics`

<< NumericalMath`ListIntegrate`

$TextStyle =

8FontWeight Ø "Bold", FontFamily Ø "Helvetica", FontSize Ø 12<

8FontWeight Ø Bold, FontFamily Ø Helvetica, FontSize Ø 12<

‡ First suppose g does not change. Write the balance equations as quantities
equal to zero

eq1 = r1 u1 - r2 u2

eq2 = r1 u12 + p1 - r2 u22 - p2

eq3 =
i

k
jjjjp1 u1 + r1 e1 u1 +

r1 u13

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

y

{
zzzz -

i

k
jjjjp2 u2 + r2 e2 u2 +

r2 u23

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

y

{
zzzz

ü Analysis: 3 equations.
First want relations between pressure and density.
Use EOS to eliminate e.
Then use first two equations to eliminate u1 and u2. 

ü The next step is the first example of a pattern replacement. This is a key technique for doing 
algebra in Mathematica without being forced to define dummy variables. It saves a lot of 
confusion.

eq3a = eq3 ê. 9e1 Ø
p1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r1 Hg - 1L

, e2 Ø
p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 Hg - 1L

=
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cond1 = Solve@8eq1 ã 0<, u2D
H* Here we solve an equation to create a condition giving the

value of a variable. It is useful to use a systematic

notation for this. Then we substiture the results *L
eq4 = eq2 ê. cond1@@1DD
eq5 = Heq3a ê. cond1@@1DDL

ü The next two steps are why this is a pain to do on paper.
We solve for u1 and then substitute in the energy equation, and finally solve for p2.
If you try it on paper, the algebra is a lot easier using 1/r as a variable.

cond2 = Solve@eq4 ã 0, u1D
eq6 = eq5 ê. cond2

cond3 = Solve@eq6 ã 0, p2D

cond3@@2DD

prat = Simplify@Hp2 ê. cond3@@2DDL ê p1D
H* creating a normalized ratio of p2êp1 *L

pratv = Simplify@prat ê. 8r1 Ø 1 ê V1, r2 Ø 1 ê V2<D

ü The above two results are the standard expressions for the pressure ratio.
Next find the density ratio. 

cond4 = Solve@eq6 ã 0, r2D

rhorat = Simplify@Hr2 ê. cond4@@1DDL ê r1D
H* rhorat is the ratio r2êr1 *L

eq7 = r2 ê r1 - rhorat

ü Here we created an equation for the density ratio, eq7, which is equal to zero. That lets us
proceed to find other solutions, for example involving Mach number. This follows:

cond5 = Solve@eq4 ã 0, p2D

cond6 = Solve@eq7 ã 0 ê. cond5@@1DD, r2D

cond7 = Simplify@cond6 ê. p1 Ø r1 cs2 ê gD
H* using the standard definition of sound speed *L

cond8 = Simplify@Hcond7@@2DD ê. u1 Ø Mu csLD
H* Mu is the upstream Mach number *L



13 Appendix B: Sample Mathematica Code 493

rhorat2 = Hr2 ê. cond8@@1DDL ê r1

H* get the standard expression for the density ratio *L

prat2 = Simplify@prat ê. r2 Ø r1 rhorat2D
H* get the standard expression for the pressure ratio *L

Trat = Collect@Simplify@prat2 ê rhorat2D, MuD
H* develop an expression for the temperature ratio *L

test = Simplify@Trat ê. Mu Ø 1D H* check sensibility *L

p2a = Simplify@p1 Hprat2 ê. Mu2 Ø Hr1 us2 ê Hg p1LLLD

p2b =
r2

ÅÅÅÅÅÅÅÅÅÅÅ
A mp

kB HZ + 1L T ê. r2 Ø r1 rhorat2

p2b = p2b ê. Mu2 Ø Hr1 us2 ê Hg p1LL

cond9 = Solve@p2b - p2a ã 0, TD

T2 = Collect@T ê. cond9@@1DD, usD

Ten = T2 ê. kB -> 1

Tenig = Ten ê. g Ø 5 ê 3

H* With p1 = 0, this is the "standard" result *L
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Notebook to do Fermi distributions and related calculations

ü Begin by loading useful packages

<< Graphics`MultipleListPlot`

<< Graphics`Graphics`

<< NumericalMath`ListIntegrate`

$TextStyle =

8FontWeight Ø "Bold", FontFamily Ø "Helvetica", FontSize Ø 12<

‡ Sections that follow
1. Fermi degenerate distributions
2. Classical vs Degenerate density and pressure calculations

‡  1. First section produces fermi degenerate plot, using the expression in the
text for the electron distribution function

f =
ExpA -eFermi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kT

E + 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ExpA -eFermi +enÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

kT
E + 1

g = Exp@-en ê kTD
f1 = Simplify@f ê. 8en Ø a eFermi<D
g1 = Simplify@g ê. 8en Ø a eFermi<D

f2 = SimplifyAf1 ê. 9 eFermi Ø
1
ÅÅÅÅ
b
kT=E

g2 = SimplifyAg1 ê. 9 eFermi Ø
1
ÅÅÅÅ
b
kT=E

g1 = Plot@8f2 ê. b Ø .01, f2 ê. b Ø 1, f2 ê. b Ø 10, g2 ê. b Ø 10<,
8a, 0, 10<, PlotRange Ø 880, 10<, 80, 1.1<<, Frame Ø True,

PlotStyle Ø 88Thickness@0.008D<, 8Thickness@0.008D<,
8Thickness@0.008D<, 8Thickness@0.015D, GrayLevel@.5D<<D

Export@"fermi distributions.eps", g1, "EPS"D

LinearLogPlot@
8f2 ê. b Ø .01, f2 ê. b Ø 1, f2 ê. b Ø 5, g2 ê. b Ø 5<,
8a, 0, 10<, PlotRange Ø 880, 10<, 8.2, 1.1<<D
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‡ 2. Classical vs Degenerate density and pressure calculations

ü Basic relations

efermi =
i

k
jjjj
6 p2

ÅÅÅÅÅÅÅÅÅÅÅ
2

y

{
zzzz

2ê3
i
k
jj

h
ÅÅÅÅÅÅÅÅ
2 p

y
{
zz
2 ne2ê3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 me

Q1 = HkB TeL ê efermi H* this is Q *L
Qy = PowerExpand@Q1 ê. ne Ø Hy Te3ê2LD
coefQy =

Qy ê. 8y Ø 1, me Ø 9.11 10-28, h Ø 6.63 10-27, kB Ø 1.6 10-12<

QF = PowerExpandAQ1 ê. ne Ø
i

k
jjjjTe

3ê2 4 p H2 me kBL3ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

h3
Fonehalf

y

{
zzzzE

Some quantities relevant to results in the book by Lindl

neLindl =
0.25

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2.5 1836 9.11 10-28

eFermiLindl = 7.9 *
neLindl
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1023

pFermiLIndl = 9.9
i
k
jj
0.25
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2.5

y
{
zz
5ê3

QLindl = Q1 ê. 9me Ø 9.11 10-28, h Ø 6.63 10-27, kB Ø 1.6 10-12,

Te Ø
11.5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
11604

0.001, ne Ø neLindl=

H* the range of y of interest is 1014 to 1026 *L
H* so the range of Q is *L
coefQy

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

H1014L
2ê3

H* to *L

coefQy
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

H1026L
2ê3

H* i.e. 0.001 to 106 *L

This next plot shows why this is the range
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g2 = LogLogPlot@8ni, 10 ni, 20 ni, 40 ni, 80 ni<, 8ni, 1019, 1024<,
PlotRange Ø 881019, 1024<, 81. 1020, 1. 1026<<, Frame Ø TrueD

N@1019 ê 10003ê2D

ü This part calculates m/(kB Te)  for Q = T/Td 

Solve@ Qy ã Q, yD
mclassQ = LogAPowerExpandA

i

k
jjjj

h3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H2 p me kBL3ê2

 q
y

{
zzzz ê. q Ø Hy ê. Solve@ Qy ã Q, yDLE@@1DDE

mfermiQ = PowerExpandA
i

k
jjjjH3 p2L2ê3 i

k
jj

h
ÅÅÅÅÅÅÅÅ
2 p

y
{
zz
2 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 me kB

q2ê3y

{
zzzz ê.

q Ø Hy ê. Solve@ Qy ã Q, yDLE@@1DD

Qcrit = N@ Q ê. Solve@mclassQ ã 0, QD@@1DDD

H* range of m us *L
N@mclassQ ê. Q Ø 106D H* to *L
N@mfermiQ ê. Q Ø .001D

Qclass = Q ê. Solve@m1 == mclassQ, QD@@1DD
Qfermi = Q ê. Solve@m1 == mfermiQ, QD@@1DD

ü One desires to generate plots showing how the chamical potential is related to the 
temperature. This is difficult both because one must construct tables of results from 
numerical integrals and because Mathematica does not happily do this. The following
aproach works.
One has to
(a) set up the integral, 
(b) do the integral to fill a table (here using finer resolution as the potential approaches
zero),
(c) arrange the arrays of numbers as needed for plotting, and
(d) make the plots.

Clear@m1D

eq100 =
i

k

jjjjjjH3 ê 2L HIntegrateA
è!!!!
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@x - m1D

, 8x, 0, 200<E
y

{

zzzzzz

-2ê3

eq100 ê. 8m1 Ø 15, HIntegrate Ø NIntegrate<
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eq101 =
i

k

jjjjjjH3 ê 2L HIntegrateA
è!!!!
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@x - m1D

, 8x, 0, mend<E
y

{

zzzzzz

-2ê3

eq102 =
i

k

jjjjjjH3 ê 2L HIntegrateA
è!!!!
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@x - m1D

, 8x, 0, 2 m1<E
y

{

zzzzzz

-2ê3

t1 = Table@8-m1, N@QclassD, N@QfermiD,
eq101 ê. 8HIntegrate Ø NIntegrate, mend Ø Max@200, 2 m1D <<

, 8m1, -21, -2, 1<D;
t2 = Table@8-m1, N@QclassD, N@QfermiD,

eq101 ê. 8HIntegrate Ø NIntegrate, mend Ø Max@200, 2 m1D <<
, 8m1, -1.99, -.01, .01<D;

tneg = Join@t1, t2D;
thetaplot = Transpose@tnegD@@4DD;
mplot = Transpose@tnegD@@1DD;
neglist = Transpose@Append@8thetaplot<, mplotDD;
classplotneg = Transpose@tnegD@@2DD;
negclass = Transpose@Append@8classplotneg<, mplotDD;
Null

g1 = LogLogListPlot@neglist, PlotRange Ø 8810-3, 103<, 80.1, 20<<,
PlotJoined Ø True,

Frame Ø True, PlotStyle Ø 8Thickness@0.005D<D;
g2 = LogLogListPlot@negclass,

PlotRange Ø 8810-3, 103<, 80.1, 20<<,
PlotJoined Ø True, Frame Ø True, PlotStyle Ø

8Thickness@0.008D, GrayLevel@0.5D, Dashing@80.02, 0.02<D<D;
g3 =

Show@
g1,

g2D
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g4 = LogLogListPlot@neglist, PlotRange Ø 88102, 106<, 80.1, 25<<,
PlotJoined Ø True, Frame Ø TrueD

g5 =

LogLogListPlot@negclass, PlotRange Ø 88102, 106<, 80.1, 25<<,
PlotJoined Ø True, Frame Ø True, PlotStyle Ø

8Thickness@0.008D, GrayLevel@0.5D, Dashing@80.02, 0.02<D<D;
g6 =

Show@
g4,

g5D

ü The above did the work for negative chemical potential. Now do it again for positive
chemical potential

t3 = Table@8m1, N@QclassD, N@QfermiD,
eq101 ê. 8HIntegrate Ø NIntegrate, mend Ø Max@200, 2 m1D <<

, 8m1, .1, 20, .1<D;
t4 = Table@8m1, N@QclassD, N@QfermiD,

eq101 ê. 8HIntegrate Ø NIntegrate, mend Ø Max@200, 2 m1D <<
, 8m1, 30, 1000, 10<D;

tpos = Join@t3, t4D;
thetaplot = Transpose@tposD@@4DD;
mplot = Transpose@tposD@@1DD;
poslist = Transpose@Append@8thetaplot<, mplotDD;
posclass = Transpose@Append@8Transpose@tposD@@2DD<, mplotDD;
posfermi = Transpose@Append@8Transpose@tposD@@3DD<, mplotDD;

g11 =

LogLogListPlot@poslist, PlotRange Ø 8810-3, 103<, 80.1, 1000<<,
PlotJoined Ø True, Frame Ø True,

PlotStyle Ø 8Thickness@0.005D<D;
g12 = LogLogListPlot@posclass,

PlotRange Ø 8810-3, 103<, 80.1, 1000<<,
PlotJoined Ø True, Frame Ø True, PlotStyle Ø

8Thickness@0.008D, GrayLevel@0.5D, Dashing@80.02, 0.02<D<D;
g13 = LogLogListPlot@posfermi,

PlotRange Ø 8810-3, 103<, 80.1, 1000<<,
PlotJoined Ø True, Frame Ø True,

PlotStyle Ø 8Thickness@0.008D, Dashing@80.02, 0.02<D<D;
g14 = Show@g11, g12, g13D



13 Appendix B: Sample Mathematica Code 499

Now one can explort the plots for the two regimes, to be combined in graphics software

Export@"muvsthetaneg.eps", g3, "EPS"D
Export@"muvsthetapos.eps", g14, "EPS"D

‡ Now do the pressure integral, for pe/(ne kB Te)

eqF32 = HIntegrateA
x1.5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@x - m1D

, 8x, 0, mend<E

eqF12 = HIntegrateA
x0.5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@x - m1D

, 8x, 0, mend<E

eq200 =
2
ÅÅÅÅ
3

eqF32
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
eqF12

ü Can leave out m < 0 as this is obviously ~ 1.

p1 = Table@
8m1, eq200 ê. 8 HIntegrate Ø NIntegrate, mend Ø Max@200, 2 m1D<<,
8m1, 0.11, 99.01, .1<D

g100 = LogLogListPlot@p1, PlotRange Ø 8 80.1, 100<, 80.5, 40<<,
PlotJoined Ø True, Frame Ø TrueD

Export@"p vs m fermi.eps", g100, "EPS"D

ü From this calculation, at large m one has p/(ne kB Te)  =  (2/5) m/(kB Te)
But in the degenerate regime m/(kB Te) = 1/Q  .  So p = pF = (2/5) m eF

‡ Compare electron and ion energy contributions in classical regime.

jmax = IntegerPartA0.63
è!!!!!!
Te E

eion = ‚
i=1

jmax

i^2 EH ê. EH Ø 13.6

eelec =
3
ÅÅÅÅ
2
0.63

è!!!!!!
Te Te H* Te and EH in eV here *L

gener = LogLogPlot@8eion, eelec<,
8Te, 5, 1000<, PlotPoints Ø 1000, Frame Ø TrueD

Export@"energy comparison.eps", gener, "EPS"D
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A List of the Homework Problems

Homework 2.1

One approach to deriving the Euler equations is to identify the density, flux,
and sources of mass, momentum, and energy and then to use (2.5). Do this for
a polytropic gas and then simplify the results to obtain (2.1) through (2.3).

Homework 2.2

Linearize the Euler equations to derive (2.7) and (2.8). Find appropriate
divisors to make these equations nondimensional and discuss which terms
are smaller than others. Then derive (2.9).

Homework 2.3

Take the actual, mathematical Fourier transform of (2.9) to find (2.10).

Homework 2.4

Substitute, for the density in (2.9), the actual, mathematical Fourier trans-
form of the spectral density ρ̃(k, ω). Show how the result is related to (2.10).

Homework 2.5

Derive (2.14) from (2.1), (2.2), and (2.4).

Homework 2.6

Generalize the above derivation to a plasma with an arbitrary number of ion
species, each of which may have a distinct temperature.

Homework 2.7

Derive (2.63).
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Homework 2.8

Derive a replacement for (2.65), keeping an appropriate version of the drag
term at the end of (2.62).

Homework 2.9

Find the sizes and directions of the particle orbits. Explain from fundamental
laws of electromagnetics why their direction is as it is. Show pictorially why
the E × B drift moves particles in the same direction.

Homework 3.1

Inertial fusion designs typically involve the compression of DT fuel to about
1,000 times the liquid density of 0.25 g cm−3. Assuming that this compression
is isentropic and that the fuel remains at absolute zero, determine the energy
per gram required to compress this fuel. Compare this to the energy per gram
required to isentropically compress the fuel to this same density, assuming the
fuel is an ideal gas whose final temperature is to be the ignition temperature
of 5 keV.

Homework 3.2

Argue conceptually that the contribution of the denominator in (3.16) at large
µ/(kBTe) is a step function. Evaluate this integral numerically to determine
how rapidly it becomes a step function as µ/(kBTe) increases.

Homework 3.3

Show, in the limit as Te → 0, that neεe = (3/5)neεF .

Homework 3.4

Derive 3.24 and 3.26 and discuss their differences.

Homework 3.5

Make plots comparing Zbal from (3.35) with the estimate 20
√

Te as a function
of Te, for ion densities of 1019, 1021, and 1023 cm−3. Discuss the results.

Homework 3.6

Carry out the evaluation in (3.2.9) and compare the result to Zbal, for Te = 1
keV, Znuc = 30, and ni = 1021cm−3.
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Homework 3.7

Plot the ratio of ∆E to the ionization energy versus Zi from 1 to 80 for ion
densities of of 1019, 1021, 1023, and 1025 cm−3. Discuss the results.

Homework 3.8

Derive (3.73).

Homework 3.9

The value of R used here ignores the internal energy in excited states (as well
as the energy lost by radiation during ionization, which would properly have
to be treated by more general equations). Again assuming hydrogenic ions,
estimate what fraction of the internal energy is present in excited states, and
how this varies with Z.

Homework 4.1

Add a gravitational force density and gravitational potential energy to (4.2)
and (4.3) and derive the modified jump conditions.

Homework 4.2

Suppose that during the shock transition significant energy is lost by radia-
tion. Write down the modified jump conditions.

Homework 4.3

Determine from energy arguments how to generalize (4.20) for a two-species
plasma.

Homework 4.4

Appendix B shows a derivation of (4.10)–(4.15). For γ1 = γ2, derive (4.18)
and (4.20). Using a computational mathematics program is suggested.

Homework 4.5

Derive from (4.10) and (4.12) a general expression for T2, valid for weak and
strong shocks, for γ1 = γ2. Express the result in physically clear parameters,
so the relation among the terms is evident. Check your result by finding it
as a limit of (4.19) and by finding (4.20) as a limit from it.
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Homework 4.6

Evaluate the entropy variation of (4.24) as the Mach number approaches 1.

Homework 4.7

Derive (4.28)–(4.31).

Homework 4.8

Derive (4.34) and (4.35).

Homework 4.9

Derive (4.42). This requires thinking about which frame of reference one is
working in, a key element in all such problems.

Homework 4.10

Determine the equations and derive the behavior of the simpler case in which
a shock is incident on a stationary wall. Let state 0 be the state of the
unshocked fluid, state 1 be that of the once-shocked fluid, and state 2 be the
state of the reshocked fluid produced when the shock reflects from the wall.

Homework 4.11

For the simpler case in which p1 = p4 = 0, ρ1 = ρ4, andγ1 = γ4 = γ, which is
not a bad approximation for many flyer plate collisions, solve (4.44)–(4.1.50)
to find the pressure and velocity of the shocked material.

Homework 4.12

Show that the conservation of mass in fact requires x ≥ −cst in (4.61)
and (4.62).

Homework 4.13

Obtain (4.74) from (4.73).

Homework 4.14

Sketch the C+ and C− characteristics in a fluid flowing uniformly with ve-
locity u.
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Homework 4.15

Plot the minimum density and pressure in the rarefaction as a function of
U. Discuss the meaning of the plots. Reasonable normalizations are recom-
mended.

Homework 4.16

Show that this type of analysis produces α = 1/2 for cylindrical blast waves
and α = 2/3 for planar blast waves

Homework 4.17

Find the coefficients α for cylindrical and planar momentum-conserving snow-
plows.

Homework 4.18

Derive (4.95)–(4.97).

Homework 4.19

Derive (4.106)–(4.108).

Homework 4.20

Use a computational mathematics program to integrate these equations to
find and plot the profiles, and to evaluate Q, for a cylindrical case. Apply this
to find the behavior of a lightning channel produced by a deposited energy
of 1010 ergs/cm.

Homework 4.21

Assuming that a strong shock reaches an interface beyond which the density
(ρ4) is 0.1 times the density of the shocked material to the left of the interface
(ρ1), solve for the profiles of the fluid parameters in the rarefaction that
results.

Homework 4.22

Assuming that γ1 = γ4 (or not, if you wish), derive (4.116) from (4.44)–(4.52)
by letting p3 approach p1 as the definition of the transition to a rarefaction.
Hint: This one is not easy. Taking a limit will be necessary and the approach
to the solution will matter.
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Homework 4.24

An entertaining aspect of this specific problem is that it is one case where
the traditional model in which shocks are driven by moving pistons does not
produce correct qualitative behavior. Consider a rarefaction as it approaches
a piston that is moving forward at a constant velocity. What will happen?

Homework 4.25

To obtain these results, one must evaluate the equations in cylindrical polar
coordinates. Beginning with the first two Euler equations, carry out this
evaluation.

Homework 4.26

Thus, a property of uniform flow is that ur = −∂uφ/∂φ in any cylindri-
cal polar coordinate system. Landau and Lifshitz use a geometric argument
to demonstrate this. Instead, demonstrate this using a vectorial argument.
(Hint: Begin by taking dot products of unit vectors along r and φ with an
arbitrary velocity vector.)

Homework 5.1

Consider a system with water above oil as just described. Suppose there is an
small, sinusoidal ripple on the surface. Find the vertical profile of the force
density between the lower and upper boundaries of the ripple for a region of
denser fluid and for a region of less-dense fluid. Discuss the comparison of
the two fluids and the shape of the force density profile.

Homework 5.2

The final relation in (5.22) is significant for our specific application, in which
one needs to integrate, across an interface, equations that contain discontinu-
ous quantities along with derivatives of discontinuous quantities. By treating
the delta function and the step function as limits of appropriate functions
(see a mathematical methods book), prove this relation.

Homework 5.3

Find the solution for the velocity profiles and the growth rate for the RT
instability for two uniform, constant density fluids that are confined by two
planar surfaces each a distance d from the interface, which is accelerated at
constant g.
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Homework 5.4

The discussion above (5.43) shows that ñ = (n/
√

kg)
√

k̃. This would suggest
that it might make more sense to separate the meaning of the axes more
cleanly by using δ̃ = (n/

√
kg) and k̃ = [(k2ν)/

√
gk]2/3 as the two variables.

Recast this equation in terms of these new variables, solve it, and plot the real
roots from k̃ = 0 to 2. Discuss the results and compare them to n =

√
Angk.

Homework 5.5

Derive (5.44) and (5.45) from (5.41). Comment on the nature of the terms
that have been dropped.

Homework 5.6

Find the plane-wave solutions to (5.48) and discuss their behavior.

Homework 5.7

Consider an exponential density profile that decreases in the direction of the
acceleration, g, as ρ = ρoe

−z/L, and thus is the opposite of the case analyzed
above. Apply the RT instability analysis to find n for this case. Discuss the
results.

Homework 5.8

Carry out this calculation and find (5.66). Then find the limits when (a)
kp → 0 and kxL  1 and (b) when An = 0 and Lp = 0. Compare these with
previous results in the chapter.

Homework 5.9

Work out the linear theory to find an expression for the growth rate for the
case of a density gradient that extends for a finite distance between two layers
of constant density.

Homework 5.10

By operating on (5.82) and (5.84), create two scalar differential equations
that can be subtracted to eliminate terms involving p. Compare the resulting
differential equation to (5.21) and discuss.
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Homework 5.11

If we take the point of view that the modulations of interest are proportional
to eint, then we would insist on finding negative imaginary n in order to have
growth of the modulations, as opposed to damping, in time. However, this
should give us pause because the complex representation is only a mathemat-
ical convenience while the physical quantities are real. Considering the real,
physical quantities, what is the significance of finding positive or negative
imaginary n. (The chapter in Jackson, which introduces waves, may be of
some help regarding the connection of real physical quantities and a complex
representation.)

Homework 5.12

Suppose β is small enough that terms involving β in (5.127) can be dropped.
Determine whether the two boundaries seen in Fig. 5.10 ever cross, completely
eliminating the instability.

Homework 5.13

Analyze the shock conditions for a small-amplitude ripple and show that the
change due to the ripple in the ẑ component, relative to that from a planar
shock, is second order in the ripple amplitude [i.e., generalize (5.130)].

Homework 5.14

Solve (5.133) through (5.136) to find the ratio of α, η, and χ to β. Plot the
results for various values of γ and comment on what you observe.

Homework 5.15

Evaluate the small-angle limit of the equations for a shock at an oblique
interface with a density decrease, and produce a plot similar to Fig. 5.19 for
this case.

Homework 5.16

Consider the qualitative behavior of the postshock interface when there is a
rarefaction but χ < 0. Redraw Fig. 5.19 for this case. Discuss the evolution
of the interface.

Homework 5.17

Develop (5.144) and (5.145) from the equations in Chap. 2.
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Homework 5.18

Derive (5.147) through (5.149).

Homework 5.19

To be more precise about this point, one should recognize that what moves
with the fluid is the vorticity passing through a surface S. Prove this by
taking the time derivative of the integral of ω · dS over a surface S that
moves with the fluid and may change its shape in time. Relate the result
to (5.154). Hint: The key here is the evaluation of the partial derivative in
time of the surface as a contour integral involving the edge of the surface.

Homework 5.20

Obtain (5.153) through (5.155) from the momentum equation.

Homework 6.1

Integrate the thermal intensity over 2π steradians to find the total radiation
power per unit area from a surface at temperature T.

Homework 6.2

Using the particle treatment of the radiation, derive an expression for the
total radiation momentum density, and show that it equals F R/c2.

Homework 6.3

Derive (6.14).

Homework 6.4

From the uncertainty principle, the spectral width in frequency, ∆ν, of an
emission line is roughly the inverse of the decay time. For a typical decay
time of 1 ns, find the normalized spectral width ∆ν/ν, for emission lines in
the visible and in the soft x-ray with a photon energy of 100 eV.

Homework 6.5

Derive (6.27)

Homework 6.6

Take moments of the radiation transfer equation to derive (6.38) and (6.40).
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Homework 6.7

Beginning with (6.47), derive Eqs. (6.48) to (6.51).

Homework 6.8

Derive (6.56). Discuss the result.

Homework 6.9

Demonstrate this.

Homework 6.10

Given these relations, show that the radiative transfer equation is relativis-
tically invariant.

Homework 6.11

Derive (6.73), (6.74), and (6.75). Discuss the limits on v/c for this specific
description if the emission and absorption are dominated by a) continuum
emission or b) line emission.

Homework 6.12

Rework (6.78) into the form of a conservation equation and discuss the mean-
ing of the terms that result.

Homework 7.1

Carry out the calculations just described and compare the behavior of pure
hydrogen as opposed to C1H1 (used in Fig. 7.1).

Homework 7.2

Derive the dispersion relation for isothermal acoustic waves from the Euler
equations. That is, demand constant temperature and see what happens.

Homework 7.3

Figure 7.4 shows the wave properties as ω varies for fixed η. Consider how
the wave properties vary with η for β = 1 and fixed ω/(νec

2
s/c2). Plot the

normalized phase velocity and damping length for 0.01 ≤ η ≤ 10 and discuss
the results.
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Homework 7.4

We did not explore the angular variation in the contributions to (7.34). One
might imagine that the largest contributions could come at grazing angles,
where µ is very small and the optical depth along a line of sight becomes
large. The model used here would be less realistic if most of the emission
came at grazing angles, because real systems will have layers that are not
truly planar and certainly are not infinite in extent. Use a computational
mathematics program to derive (7.34). Then modify the calculation in order
to explore how large the contribution is from such grazing angles. Conclude
whether or not the results above might be reasonable estimates for real layers.

Homework 7.5

It is curious that (7.39) and (7.41) do not depend on β, so that these waves
seem not to care whether the system is fully ionized. Beginning with (7.37),
derive (7.41) and discuss why there is no β dependence.

Homework 7.6

Beginning with ρ(∂ε/∂t) = ∇ · (κrad∇T ), derive (7.51).

Homework 7.7

Work through the constant-flux model, providing all the missing mathemat-
ical steps. Then plot the positions vs. time of the radiation wave and of a
disturbance (in the radiation-heated material) moving at Mach 1 or Mach
10. Discuss the results.

Homework 7.8

Show that (7.74) is a solution to (7.73). Clearly annotated work with a com-
putational mathematics program is preferred.

Homework 7.9

Consider a gold container shaped so that a planar approximation is rea-
sonable, having planar walls spaced 1 mm apart in vacuum. Assume ρ =
20 g/cm3 and treat cV = 1012 ergs/(g eV) as constant. Use other parameters
from Ch. 6 as appropriate. Suppose 100 kJ/cm2 is the initial energy content
of the vacuum between the walls and that the initial wall temperature is
negligible. Approximate the heat front in the walls as a square wave. From
zero to 10 ns, find the position of the heat front and the temperature of the
surface as a function of time. Plot the ratio of the energy content of the walls
to the energy content of the vacuum. Discuss the result.
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Homework 7.10

Develop the equivalent of (7.76) for a spherically symmetric system.

Homework 7.11

Demonstrate this point explicitly by considering a system having a planar
flow of material within a cylinder of some diameter and of finite length yet
losing radiation both radially and axially, and integrating over the cylinder.

Homework 7.12

Derive (7.82).

Homework 7.13

Working with the Planck description of blackbody radiation, find and plot
the fraction of photons that are ionizing as a function of temperature. You
will need a computational mathematics program to generate the plot.

Homework 7.14

Determine whether (7.91) admits a self-similar solution, assuming a diffusive
of FR

Homework 7.15

Solve (7.94) numerically, for several relevant values of n. Comment on the
results.

Homework 7.16

Evaluate the net radiation flux (FR−Fo) for an optically thin precursor using
a calculation similar to that done in (7.101) and (7.105).

Homework 7.17

Assuming that the upstream radiation flux at the shock is 2σT 4
f , the intensity

is isotropic, and the absorption and emission from the upstream medium
contribute negligibly to JR, find the steady-state temperature of the upstream
medium.
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Homework 7.18

Beginning with (7.80)–(7.82), derive the final inverse compression (7.115)
under the assumptions of the present section.

Homework 7.19

Consider a truly radiation-dominated case, so p can be neglected in (7.124)
and (7.125). Solve these equations for pR and ρ. Find the dependence of the
post-shock T on the shock velocity , and compare it to the dependence of a
non-radiative shock.

Homework 7.20

Express p and pR as reasonable functions of T and solve (7.124) and (7.125)
to find T and ρ in the post shock state. This may be a numerical solution, for
which you should make reasonable choices about the parameters and show a
few cases. Provide at least one graph based on these equations as part of the
analysis.

Homework 8.1

Derive (8.3) from Maxwell’s equations.

Homework 8.2

Derive an equation for the conservation of charge from (8.3).

Homework 8.3

Using the equation of motion for the electron fluid in the fields of an electro-
magnetic wave in a plasma of constant density, determine the time-averaged
distribution of energy among the electric field, the magnetic field, and the
kinetic energy of the electrons. Discuss how this varies with density.

Homework 8.4

Derive (8.20).

Homework 8.5

Derive (8.22). Calculate the energy density of the laser light wave and show
how this is related to the source term on the right-hand side.
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Homework 8.6

Develop an energy equation for the electron fluid including a Spitzer–Harm
heat flux, and show that it is a diffusion equation.

Homework 8.7

Determine the range of electron velocities that contribute significantly to
the heat flux, by plotting the first-order contribution to the argument of the
heat-flux integral (8.28).

Homework 8.8

Find the approximate expression for εR to second order in the quantity
ma/mo. Plot the corresponding rocket efficiency and the value of (8.49).
Discuss the comparison.

Homework 8.9

By analyzing the isothermal rarefaction, derive the ratio of the energy re-
quired to sustain the rarefaction to the energy injected into the rarefaction
at the heat front.

Homework 8.10

Evaluate the ablation pressure (p1) for the expansion heat front case, assum-
ing the ablator is Be with a density ρo of 1.8 g/cm3, as a function of radiation
temperature from 100 eV to 300 eV. Compare the result with the value given
by (8.58).

Homework 8.11

Assume that a hohlraum of 1 mm radius is heated for 1 ns at a temperature of
200 eV. Estimate the pressure produced at the center of the hohlraum when
the plasma expanding from the gold walls reaches the axis. (Note: this is not
an application of (8.67). Instead, you will need to think about the rarefaction
produced during the heating pulse.)

Homework 8.12

While one can vary the properties of the Z-pinch load from one experiment
to the next, one can modify the pulsed-power device itself on a somewhat
longer timescale. Such devices are typically characterized by the number of
Volt-Seconds they can produce, and operate so that V τ = constant. First,
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consider and then explain why Volt-Seconds is a reasonable way to charac-
terize a pulsed-power device. Second, using the scaling relations developed in
Sect. 8.3.1, discuss how to optimize the stagnation power for a device with
V τ = constant.

Homework 8.13

An alternative way to think about what could be done with an imploding
radiative shock is to imagine that one can drive a converging shock in an
optically thin system. Assuming that such a shock reaches steady state, plot
the radiation flux and its characteristic temperature against shock velocity
for densities of 0.01 and 0.1 g/cm3. Comment on the comparison with the
above calculation.

Homework 8.14

Revisit the derivation at the beginning of Sect. 8.3. Consider two infinitely
wide, plane parallel conductors carrying opposing currents. Find the force per
unit area between them and express it in terms of the magnetic field magni-
tude. Discuss how the force per unit area compares to the energy density of
the magnetic field.

Homework 9.1

Plot the burn fraction versus ρr. Discuss the impact of the assumptions made
in deriving the burn fraction on this curve, and on the size of a system
designed to produce a certain quantity of fusion energy.

Homework 9.2

Carry out the evaluation just described. For deuterium at a density of 0.1
g/cm3, plot the pressure as a function of temperature for deuterium treated as
bosons and for deuterium treated as a classical gas. Discuss the comparison.

Homework 9.3

Derive the classical relation between entropy and pressure (normalized by
the Fermi pressure of the electrons).

Homework 9.4

Plot the minimum required implosion velocity , for ρr = 3 g/cm2, versus final
fuel density. Discuss the result.
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Homework 9.5

Derive (9.26). Why do we need to express this result using a 1/3 power?

Homework 9.6

Suppose that one could apply a pressure p for a time t, using some energy
source. With this source, we could accelerate some amount of mass per unit
area, ρo∆r, to vimp = 300 km/s. Define a fusion capsule using the reflected
pressure due to sunlight for 12 h as the pressure source. Approximate sunlight
as light with a wavelength of 580 nm and an irradiance of 1 kW/m2. How
long would such a capsule take to implode?

Homework 9.7

Derive the spectrally averaged absorption coefficient for bremsstrahlung in
DT. Check your value against the value found in the NRL plasma formulary.

Homework 9.8

Evaluate the appropriate integral of the radiative transfer equation over solid
angle to obtain FR from a spherical volume of DT. Find the value of the
characteristic distance. Compare your result to the result in (9.31), which
assumes that the integral over solid angle of the distance across the fuel gives
πRh. Extra credit: generalize this calculation to include arbitrary optical
depth and discuss the results.

Homework 9.9

The Lawson criterion is generally written as nτ > 1014 s/cm3, with density
n and confinement time τ . Find a way to relate this to (9.15) and comment
on the comparison.

Homework 9.10

One choice in a central hot spot design is how much to increase the pressure
above the minimum value of 13.5 Gbars. Increasing the pressure decreases the
size of the hot spot but increases the energy required to create this pressure.
Keeping the constraints on density and ρr found above, consider the effects
of scaling the pressure in the hot spot.

Homework 9.11

Evaluate the amount of RT growth for the sunlight-driven fusion system of
the problem 9.6.



14 Appendix C: A List of the Homework Problems 517

Homework 10.1

Show that the Euler equations are in fact invariant under the transformations
just described.

Homework 10.2

Design a diverging experiment to address the coupling of two structured, un-
stable interfaces that are affected by a blast wave. Beyond the basic require-
ments for hydrodynamic scaling , identify other specific parameters that are
important to the dynamics. (Hint: review blast-wave propagation and shock
stability as part of your work.)

Homework 10.3

Determine why tcc as just defined is the relevant timescale for the crushing
of the cloud.

Homework 10.4

Suppose that an astrophysical blast wave of interest is produced by a super-
nova explosion that is a known distance R from a clump of some radius rcl.
Determine the properties of an experimental blast wave and the duration of
the experiment that would be required to model the shock-clump interaction
in this system.

Homework 10.5

Magnetized jets must have a ratio of plasma pressure to magnetic field pres-
sure (usually called β in plasma physics) no larger than about 1. For a low-Z
plasma with a density of 0.1 g/cm3 and a temperature of 10 eV, determine
how large a magnetic field would be required to satisfy this constraint. How
does this compare with the magnetic field of order 1 MGauss that is typically
produced in laser-plasma interactions and that might be produced by very
clever field-compression experiments?

Homework 10.6

An approach that has been used to form hydrodynamic jets is to create an
adiabatic rarefaction by allowing a shock wave to emerge from a material
into an evacuated tube and then to emerge from this tube into an “ambient
medium”, at a lower density. Using the simple scaling results from this book,
develop a design for a similar experiment to produce a radiative jet.
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Homework 11.1

Design a pulse stretcher. Suppose you have a laser beam with an 800 nm
central wavelength and a bandwidth of 20 nm (corresponding to a 50 fs laser
pulse). Use two identical gratings, recalling that for the first diffracted order
the scattered wavelength λ is given by λ = d(sin α + sinβ), where d is the
line spacing on the grating and α and β are angles of incidence and reflection
relative to the grating normal. Use two identical lenses, recalling that the
object distance, o, image distance, i, and focal length f are related by o−1

+i−1 = f−1. Note that the initial grating must be less than one focal length
from the lens to obtain stretching.

Homework 11.2

Assuming that the electron motion is due to a plane wave with a single fre-
quency and that the electron movement is small compared to the wavelength
of the light wave, solve the above equations to find the electron trajectory.
Determine how it changes as the electron velocity increases (while remaining
� c).

Homework 11.3

Prove that these definitions (Eqs. 11.15 and 11.16) are equivalent.

Homework 11.4

Solve (11.25) for a range of values of the initial phase (i.e., change π to various
other values, for fixed ao = 100 and δ(0) = 0.01. Comment on the variations
in the behavior.

Homework 11.5

Find the time required to accelerate the electron to ∼ 30 GeV in the example
just given.

Homework 11.6

Suppose one has a laser beam that can be focused to 1020 W/cm2 in a
10 µm diameter spot. Would one obtain higher-energy electrons from tunnel
ionization (as in Sect. 11.2) or from using the laser for wakefield acceleration?

Homework 11.7

Solve for the potential of a spherical cloud of ions having uniform density,
and for the energy distribution function of the ions produced by a Coulomb
explosion of this cloud.

Homework 11.8

Derive the relativistic version of this theory and find the relativistically cor-
rect revision to (11.75).
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